首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lateral reticular nucleus (LRN) resides in the rostral medulla and caudal pons, is implicated in cardiovascular regulation and cranial nerve reflexes, and gives rise to mossy fibers in the cerebellum. Retrograde tracing data revealed that medium-sized multipolar cells from the magnocellular part of the LRN project to the cochlear nucleus (CN). We sought to characterize the LRN projection to the CN using BDA injections. Anterogradely labeled terminals in the ipsilateral CN appeared as boutons and mossy fibers, and were examined with light and electron microscopy. The terminal field in the CN was restricted to the granule cell domain (GCD), specifically in the superficial layer along the anteroventral CN and in the granule cell lamina. Electron microscopy showed that the smallest LRN boutons formed 1-3 synapses, and as boutons increased in size, they formed correspondingly more synapses. The largest boutons were indistinguishable from the smallest mossy fibers, and the largest mossy fiber exhibited 15 synapses. Synapses were asymmetric with round vesicles and formed against thin dendritic profiles characterized by plentiful microtubules and the presence of fine filopodial extensions that penetrated the ending. These structural features of the postsynaptic target are characteristic of the terminal dendritic claw of granule cells. LRN projections are consistent with known organizational principles of non-auditory inputs to the GCD.  相似文献   

2.
In the cochlear nucleus, there is a magnocellular core of neurons whose axons form the ascending auditory pathways. Surrounding this core is a thin shell of microneurons called the granule cell domain (GCD). The GCD receives auditory and nonauditory inputs and projects in turn to the dorsal cochlear nucleus, thus appearing to serve as a central locus for integrating polysensory information and descending feedback. Nevertheless, the source of many of these inputs and the nature of the synaptic connections are relatively unknown. We used the retrograde tracer Fast Blue to demonstrate that a major projection arises from the contralateral pontine nuclei (PN) to the GCD. The projecting cells are more densely located in the ventral and rostral parts of the PN. They also are clustered into a lateral and a medial group. Injections of anterograde tracers into the PN labeled mossy fibers in the contralateral GCD. The terminals are confined to those parts of the GCD immediately surrounding the ventral cochlear nucleus. There is no PN projection to the dorsal cochlear nucleus. These endings have the form of bouton and mossy fiber endings as revealed by light and electron microscopy. The PN represent a key station between the cerebral and cerebellar cortices, so the pontocochlear nucleus projection emerges as a significant source of highly processed information that is introduced into the early stages of the auditory pathway. The cerebropontocerebellar pathway may impart coordination and timing cues to the motor system. In an analogous way, perhaps the cerebropontocochlear nucleus projection endows the auditory system with a timing mechanism for extracting temporal information.  相似文献   

3.
Physiological, anatomical, and clinical data have demonstrated interactions between somatosensory and auditory brainstem structures. Spinal nerve projections influence auditory responses, although the nature of the pathway(s) is not known. To address this issue, we injected biotinylated dextran amine into the cochlear nucleus or dorsal root ganglion (DRG) at the second cervical segment (C2). Cochlear nucleus injections retrogradely labeled small ganglion cells in C2 DRG. C2 DRG injections produced anterograde labeling in the external cuneate nucleus, cuneate nucleus, nucleus X, central cervical nucleus, dorsal horn of upper cervical spinal segments, and cochlear nucleus. The terminal field in the cochlear nucleus was concentrated in the subpeduncular corner and lamina of the granule cell domain, where endings of various size and shapes appeared. Examination under an electron microscope revealed that the C2 DRG terminals contained numerous round synaptic vesicles and formed asymmetric synapses, implying depolarizing influences on the target cell. Labeled endings synapsed with the stalk of the primary dendrite of unipolar brush cells, distal dendrites of presumptive granule cells, and endings containing pleomorphic synaptic vesicles. These primary somatosensory projections contribute to circuits that are hypothesized to mediate integrative functions of hearing.  相似文献   

4.
In order to confirm the multiple neurotransmitter biosynthetic ability, the possibility to separation of the activities of tyrosine hydroxylase (TH), choline acetyltransferase and glutamic acid decarboxylase was tested by subcloning of a clonal rat pheochromocytoma PC12 cell line. All of 9 subclones obtained showed significant activities of above 3 enzymes, indicating that the PC12 cell has multi-functional properties of neurotransmitter syntheses. One of the subclones, designated PC12h, was demonstrated to have nerve growth factor- (NGF) responsive TH activity. The ED50 value of NGF to increase the TH activity was 1.7 ng/ml (6.5 X 10-11 M). A simultaneous addition of saturating amounts of NGF (50 ng/ml) and dexamethasone (10-6 M) resulted in the increase of TH activity that is equal to the sum of those achieved when either effector was added separately, indicating that the NGF- mediated increase of TH activity in PC12h cells was independent upon the effect of dexamethasone. And also, the TH activity increased by NGF was somewhat potentiated in PC12h cells cultured in a hormone- supplemented serum-free medium.  相似文献   

5.
A reciprocal connection is known to exist between the cuneate nucleus, which is a first-order somatosensory nucleus, and the cochlear nucleus, which is a first-order auditory nucleus. We continued this line of study by investigating the fiber endings of this projection in the cochlear nucleus of rats using the neuronal tracer Phaseolus vulgaris leucoagglutinin in combination with ultrastructural and immunocytochemical analyses. In the cochlear nucleus, mossy fiber terminals had been described and named for their morphologic similarity to those in the cerebellum, but their origins had not been discovered. In the present study, we determined that the axonal projections from the cuneate region gave rise to mossy fiber terminals in the granule cell regions of the ipsilateral cochlear nucleus. The cuneate mossy fibers appear to be excitatory in nature, because they are filled with round synaptic vesicles, they make asymmetric synapses with postsynaptic targets, and they are labeled with an antibody to glutamate. The postsynaptic targets of the mossy fibers include dendrites of granule cells. This projection onto the granule cell interneuron circuit of the cochlear nucleus indicates that somatosensory cues are intimately involved with information processing at this early stage of the auditory system. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Local circuit interactions between the dorsal and ventral divisions of the cochlear nucleus are known to influence the evoked responses of the resident neurons to sound. In the present study, we examined the projections of neurons in the ventral cochlear nucleus to the dorsal cochlear nucleus by using retrograde transport of biotinylated dextran amine injected into restricted but different regions of the dorsal cochlear nucleus. In all cases, we found retrogradely labeled granule, unipolar brush, and chestnut cells in the granule cell domain, and retrogradely labeled multipolar cells in the magnocellular core of the ventral cochlear nucleus. A small number of the labeled multipolar cells were found along the margins of the ventral cochlear nucleus, usually near the boundaries of the granule cell domain. Spherical bushy, globular bushy, and octopus cells were not labeled. Retrogradely-labeled auditory nerve fibers and the majority of labeled multipolar neurons formed a narrow sheet extending across the medial-to-lateral extent of the ventral cochlear nucleus whose dorsoventral position was topographically related to the injection site. Labeled multipolar cells within the core of the ventral cochlear nucleus could be divided into at least two distinct groups. Planar neurons were most numerous, their somata found within the associated band of labeled fibers, and their dendrites oriented within this band. This arrangement mimics the organization of isofrequency contours and implies that planar neurons respond best to a narrow range of frequencies. In contrast, radiate neurons were infrequent, found scattered throughout the ventral cochlear nucleus, and had long dendrites oriented perpendicular to the isofrequency contours. This dendritic orientation suggests that radiate neurons are sensitive to a broad range of frequencies. These structural differences between planar and radiate neurons suggest that they subserve separate functions in acoustic processing. J. Comp. Neurol. 385:245–264, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
A variety of recent studies of cerebellar development have focused attention on the role of Purkinje cells as organizing elements for the topography of afferent fiber connectivity in the cerebellum. We have investigated the involvement of Purkinje and granule cells in the maintenance of topographic spinocerebellar mossy fiber projections by analyzing the distribution of spinocerebellar mossy fiber terminals in lurcher(+/Lc) mutant mice. Purkinje cells in the +/Lc mutant degenerate starting after the first week of postnatal development because of an intrinsic genetic defect. The loss of their Purkinje cell targets also results in the death of 90% of the granule cells. We examined the distribution of spinocerebellar mossy fiber terminals in the juvenile and adult +/Lc mutant to determine how the pattern of afferent projections is affected by the loss of Purkinje cells shortly after innervation of the cerebellum. Labeling of spinocerebellar mossy fiber terminals with WGA-HRP in the P38 and adult +/Lc mutant showed that, despite the loss of almost all Purkinje cells and 90% of the granule cells, spinocerebellar mossy fiber project to the appropriate folia and segregate into relatively normal parasagittal bands. While we cannot rule out the possibility that Purkinje cells may be involved in the initial establishment of topographic maps, our results indicate that Purkinje cells are not necessary for the maintenance of the normal spinocerebellar mossy fiber topographic map. © 1994 Wiley-Liss, Inc.  相似文献   

8.
This study compares the distribution of protein kinase C (PKC) alpha and beta with the distribution of PKC epsilon in the hippocampal formation of rats by immunocytochemistry and in situ hybridization histochemistry. Alpha and PKC beta are members of the group A PKC genes that were first described; PKC epsilon is a member of the group B PKC genes that were more recently identified by molecular cloning. A combination of all three gene products and their mRNAs overlapped in their distributions in dentate granule cells and pyramidal and nonpyramidal neurons. However, each subspecies predominated in one of the major cell types. PKC alpha-immunoreactivity and mRNA were most intense in CA2-3 pyramidal cells and dendrites, whereas PKC beta-immunoreactivity and mRNA were most intense in CA1 pyramidal cells and dendrites. PKC epsilon-immunoreactivity and mRNA were concentrated in dentate granule cells and CA3 pyramidal cells. Furthermore, PKC epsilon-immunoreactivity was detectable in mossy fibers. Each subspecies labeled different kinds of interneurons that were particularly numerous in, but not restricted to, the hilus. These data support the contention that different subtypes of hippocampal neurons are distinguished by the expression of different combinations of PKC subspecies under resting conditions.  相似文献   

9.
To determine the influence of the superior colliculus (SC) in orienting behaviors, we examined SC projections to the sensory trigeminal complex, the juxtatrigeminal region, and the facial motor nucleus in rats. Anterograde tracer experiments in the SC demonstrated predominantly contralateral colliculotrigeminal projections. Microinjections in the deep layers of the lateral portion showed labeled nerve fibers and terminals in the ventromedial parts of the caudal principal nucleus and of the rostral oral subnucleus and in the medial part of the interpolar subnucleus. Some terminals were also observed in the juxtatrigeminal region and in the dorsolateral part of the facial motor nucleus contralaterally, overlying the orbicularis oculi motoneuronal region. Verification by retrograde tracer injections into the trigeminal target regions showed labeled SC neurons mostly in lateral portions of layers 4-7. When the juxtatrigeminal region was involved, a remarkable increase of labeled neurons was observed, having a patch-like arrangement with a decreasing gradient from lateral to medial SC portions. Retrograde tracer injections in the dorsolateral VII nucleus showed bilateral labeled neurons mainly in the deep lateral SC portion. Retrograde BDA microinjections into the same trigeminal or juxtatrigeminal regions, followed by gold-HRP into the dorsolateral VII nucleus, demonstrated a significant number of SC neurons in deep layers 6-7 projecting to both structures by axon collaterals. These neurons are mediolaterally grouped in patches along the rostrocaudal SC extent; a subset of them are immunoreactive for glutamic acid decarboxylase (GAD). They could be involved in the coordination of facial movements. Simultaneous anterograde and retrograde tracer injections into the lateral SC portion and the VII nucleus respectively localized trigeminofacial neurons receiving collicular input in the trigeminal principal nucleus and pars oralis. Therefore the SC should play a crucial role in regulating motor programs of both eye and eyelid movements.  相似文献   

10.
11.
We report here on the fine structure and synaptic connections of neurons and axon terminals in the rat fascia dentata displaying immunoreactivity to antibodies against cholecystokinin octapeptide (CCK). In the fascia dentata and hilar region, CCK-immunoreactivity was confined to nonpyramidal neurons that were similar in appearance to basket cells known to use gamma-aminobutyric acid (GABA) as neurotransmitter. These neurons exhibited dense accumulations of endoplasmic reticulum and infolded nuclei, and established asymmetric and symmetric synaptic contacts with presynaptic terminals. Among those terminals that formed asymmetric synaptic contacts, giant mossy fiber boutons arising from granule cell axons were identified. Cholecystokinin-immunoreactive terminals established symmetric synaptic contacts on the cell bodies and dendrites of granule cells. Similar contacts were formed on nonimmunoreactive hilar neurons. Some of these hilar cells were identified as commissural neurons by retrograde filling with horseradish peroxidase (HRP) following injection of the tracer into the contralateral fascia dentata. Synaptic contacts were rarely observed between immunolabeled pre- and postsynaptic elements. The results are discussed with regard to inhibitory processes in the fascia dentata since other studies have shown that CCK is coexistent with GABA in hippocampal nonpyramidal neurons.  相似文献   

12.
Following injection of HRP into contralateral thalamus, retrogradely labeled cells were observed in principal sensory trigeminal nucleus (Vp) and an area of juxtatrigeminal nucleus (JX) formerly described by John and Tracey (1987). When PHA-L was delivered to dorsomedial part of the subnucleus oralis (Vodm), PHA-L labeled terminals were seen in dorsomedial part of the Vp (Vpdm) and in the JX region. Comparing the distribution of PHA-L labeled terminal field with that of HRP labeled JX neurons showed that the labeled terminals and neurons were overlapped closely in the JX. The distribution patterns of the labeled terminals and JX neurons were also the same: viewed on the coronal planes caudal-rostrally, both of the labelings began to appear at the levels where the facial nerve root was just broken. Rostrally, at middle levels of the motor trigeminal nucleus (Vmo), the labelings showed their typical view covering dorsal and ventral JX (dJX, vJX). The labelings disappeared at rostral poles of the Vmo and Vp. When injections of PHA-L into the Vodm and HRP into the contralateral thalamus was made in one rat, the contacts between Vodm projecting terminals labeled with PHA-L and HRP labeled trigemino-thalamic neurons were seen in the JX and also in the Vpdm. Then, electron microscopic (EM) study was done, injections of kainic acid into the Vodm and HRP into the contralateral thalamus was performed simultaneously. After EM embedding, the JX and Vpdm regions were selected, ultrathin sections were cut and observed with EM. In both areas, axo-somatic and axo-dendritic synapses were seen between degenerated boutons and HRP labeled somata or dendrites. Namely, the Vodm projecting terminals synapsed on trigemino-thalamic neurons in the JX and Vpdm. Anyway, axo-dendritic synapses was the main type of observed synapses. Thus, the present work demonstrated 1. the JX containing a group of trigemno-thalamic neurons was a target of special projections froin the Vodm; 2. The Vodm neurons projected to the contralateral thalamus through the relay of JX and Vpdm neurons.  相似文献   

13.
A recent study, carried out in the monkey brain demonstrated a hitherto undescribed projection from the lateral to the basal nucleus of the amygdaloid complex. In the present study, we used light and electron microscopic techniques to determine whether a similar connection exists in the rat brain and to define what type(s) of synaptic contacts are produced by fibers of this projection. Injections of the lectin tracer Phaseolus vulgaris leucoagglutinin (PHA-L) were placed into several levels of the lateral nucleus and the distribution of fibers in the basal (basolateral) nucleus was evaluated. All lateral nucleus injections resulted in labeled fibers in the basal nucleus, though the density and distribution of labeled fibers depended on the position of the injection site within the lateral nucleus. In general, the heaviest labeling of the basal nucleus was observed after injections at midrostrocaudal levels of the lateral nucleus, especially when the injection was located ventrally. Fibers originating from cells labeled by these injections were observed throughout much of the rostrocaudal extent of the basal nucleus. Rostrally situated injections resulted in substantially lower levels of labeled fibers in the basal nucleus. Injections placed caudally in the lateral nucleus resulted in light to medium levels of labeled fibers in the basal nucleus; the terminal field in these cases did not extend as far rostrally as after the rostral and midlevel injections. Electron microscopic analysis of PHA-L labeled fibers revealed that they contributed synapses to the basal nucleus. The majority of PHA-L labeled terminals formed asymmetric contacts on dendritic spines or shafts; a smaller number of PHA-L labeled terminals formed symmetrical synapses.  相似文献   

14.
We have carried out a detailed analysis of the intrinsic connectivity of the Macaca fascicularis monkey hippocampal formation. Here we report findings on the topographical organization of the major connections of the dentate gyrus. Localized anterograde tracer injections were made at various rostrocaudal levels of the dentate gyrus, and we investigated the three-dimensional organization of the mossy fibers, the associational projection, and the local projections. The mossy fibers travel throughout the transverse extent of CA3 at the level of the cells of origin. Once the mossy fibers reach the distal portion of CA3, they change course and travel for 3-5 mm rostrally. The associational projection, originating from cells in the polymorphic layer, terminates in the inner one-third of the molecular layer. The associational projection, though modest at the level of origin, travels both rostrally and caudally from the injection site for as much as 80% of the rostrocaudal extent of the dentate gyrus. The caudally directed projection is typically more extensive and denser than the rostrally directed projection. Cells in the polymorphic layer originate local projections that terminate in the outer two-thirds of the molecular layer. These projections are densest at the level of the cells of origin but also extend several millimeters rostrocaudally. Overall, the topographic organization of the intrinsic connections of the monkey dentate gyrus is largely similar to that of the rat. Such extensive longitudinal connections have the potential for integrating information across much of the rostrocaudal extent of the dentate gyrus.  相似文献   

15.
This study examined the cellular and connective organization of hippocampal tissue taken from 6-8-day-old rats and cultured by the roller tube technique for 3-6 weeks. In the cultures containing the fascia dentata and the hippocampus proper (CA1, CA3, CA4) the main cell and neuropil layers were organotypically organized when observed in ordinary cell stains. The normal distribution of smaller cell populations of AChE-positive neurons and somatostatin-reactive neurons was demonstrated by histochemical and immunohistochemical methods. Both cell types were mainly confined to str. oriens of CA3 and CA1 and the dentate hilus (CA4). Individual dentate granule cells and hippocampal pyramidal cells were injected with lucifer yellow and HRP, revealing great stability of the dendritic patterns of these cells in the culture condition. The same was found for the axonal branching and termination of HRP-filled mossy fibers arising from an HRP-injected granule cell. The preservation of organotypic afferent patterns in the cultures was also shown by Timm staining of the terminal distribution of the mossy fiber system. Mossy fiber terminals, with characteristic ultrastructural features verified in the electron microscope, were thus found in the hilus (CA4) and along the CA3 pyramidal cell layer onto the CA3-CA1 transition. Depending on the amount of dentate tissue relative to CA3 the terminals could stop before reaching CA1 (small fascia dentata) or take up additional intra and infrapyramidal locations along CA3 (small CA3). In cultures with a gap in the CA3 pyramidal cell layer some mossy fiber terminals were found in contact with the CA3 pyramidal cells beyond the gap. In all cultures there was an aberrant projection of supragranular mossy fibers. This projection is analogous to the one known from lesion and transplant studies to form in the absence of the entorhinal perforant path input to the dentate molecular layer. Also, in accordance with these studies the Timm staining pattern of the outer parts of the dentate molecular layer and the entire molecular layer of the hippocampus was altered corresponding to the spread of afferents normally confined to the inner zone of the dentate and str. radiatum of CA3 and CA1. Possibly as a consequence of the lack of normal targets for projections from CA1, this subfield contained an unusually dense Timm staining suggestive of autoinnervation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Danzer SC  He X  McNamara JO 《Hippocampus》2004,14(3):345-355
The present work tested the hypothesis that the anatomic and developmental patterns of status epilepticus-induced increases of brain-derived neurotrophic factor (BDNF) protein coincided with status epilepticus-induced increases of phospho-Trk immunoreactivity, a measure of TrkB receptor activation, in rat hippocampus. In P22 rats, robust increases of phospho-Trk immunoreactivity were detected in the mossy fiber pathway of the hippocampus one day following kainate-induced status epilepticus. Conversely, no change in phospho-Trk immunoreactivity was detected in P8 or P14 rats. In P17 rats, intermediate levels of increased phospho-Trk immunoreactivity were detected, again in the mossy fiber pathway. Like phospho-Trk immunoreactivity, marked increases of BDNF immunoreactivity were detected in the mossy fiber pathway of P22 but not P14 rats. Dissociations were found in P17 rats following status epilepticus in that striking increases of BDNF, but not phospho-Trk immunoreactivity were detected. Immunoprecipitation and Western blot analyses of hippocampal extracts after status epilepticus showed increased phospho-TrkB, but not TrkB immunoreactivity in P22 rats, thereby confirming and extending the immunohistochemical findings. While most of the findings support the hypothesis, important dissociations among individual animals at P17 were identified. Together the findings are consistent with the proposal that status epilepticus-induced increase of BDNF content in the mossy fibers is necessary, but not sufficient, to effect activation of TrkB, as revealed by phospho-Trk immunoreactivity. Furthermore, these results provide the first characterization of seizure-induced increases in BDNF protein and TrkB receptor activation in developing animals.  相似文献   

17.
The axons of the dentate granule cells, the hippocampal mossy fibers, sprout "backward" into the dentate molecular layer when this is heavily denervated. Using the combined Golgi-electron microscopy (EM) technique we now demonstrate that these aberrant supragranular mossy fibers at least in part terminate on granule cell dendrites. Sprouting of mossy fibers into the dentate molecular layer was induced in adult rats by simultaneous surgical removal of the commissural and entorhinal afferents to the fascia dentata. After at least 7 weeks survival, the presence of mossy fiber terminals in the inner part of the dentate molecular layer was demonstrated by light microscopy. In the electron microscope the mossy fiber terminals were identified by their unique structural characteristics, namely, the unusually large size of the terminals, the dense packing of clear synaptic vesicles with a few dense core vesicles intermingled, the presence of asymmetric synaptic contacts with spines and desmosome-like contacts with dendritic shafts, and the continuity with a thin unmyelinated preterminal axon. Golgi-stained granule cells were first identified in the light microscope, and then, after deimpregnation, the same cells were examined in the electron microscope. In ultrathin, serial sections lesion-induced mossy fiber terminals were found in synaptic contact with spines on proximal dendritic segments of such identified Golgi-impregnated granule cells. From this we conclude that the aberrant, supragranular mossy fibers can innervate dendrites of the parent cell group, the dentate granule cells. The results, moreover, provide an example of reactive synaptogenesis where both the sprouted afferents and its postsynaptic element have been identified.  相似文献   

18.
Target cell specificity of synaptic connections in the hippocampus.   总被引:1,自引:0,他引:1  
M Frotscher 《Hippocampus》1991,1(2):123-130
A major question of neurobiological research is how precise connections between neurons are formed and maintained. In the hippocampus, afferent fiber systems are known to terminate in a laminated fashion. Previous studies have indicated that this lamination is largely due to spatiotemporal constraints during ontogenetic development. In this commentary, recent fine structural studies on the target cell specificity of the various hippocampal afferents are discussed. It becomes obvious that some afferent fibers establish synapses with all available target cells, whereas other afferents are restricted to distinct types of neurons. A high degree of neuronal specificity is found in the hippocampal and dentate axo-axonic cells, which are restricted not only to specific types of target cells (pyramidal neurons and granule cells, respectively) but also to distinct portions of the target cell's membrane (the axon initial segment). Altogether, these data indicate that there are different levels of target cell specificity in the hippocampus. It is suggested that specific molecular interactions between pre- and postsynaptic elements, in addition to spatial and temporal factors, play a role in the formation and stabilization of the various synaptic connections of the hippocampal formation.  相似文献   

19.
Recent evidence indicates that NADPH-diaphorase (NADPH-d) and nitric oxide synthase (NOS) can be induced in cerebellar afferent neurons following mechanical, thermal, or chemical damage to the cerebellar cortex (Saxon and Beitz [1994] Neuroreport 5:809–812). The present study reports on the induction of NADPH-d/NOS in neurons of the brainstem trigeminal complex (BVC). Three groups of rats were used: Group I received a unilateral glass micropipette lesion into the vermal/paravermal region of the cerebellar cortex, group II received a concurrent injection of fluoro-gold along with the pipette lesion, and in group III the cerebellar cortex on one side was aspirated. Following survival times of 7–120 days, animals were processed for NADPH-d histochemistry. All three groups showed projection-specific induction of NADPH-d in different regions of the brainstem trigeminal complex. Induced neurons were distributed throughout the ipsilateral subnucleus interpolaris, principal trigeminal nucleus, and intertrigeminal nucleus. Subnucleus oralis contained a small number of induced neurons localized to the ipsilateral dorsomedial portion of the subnucleus. Projection-specific induction was confirmed by the presence of neurons double-labeled for NADPH-d and Fluoro-Gold. Although the functional consequences of NADPH-d/NOS induction remain to be elucidated, the induction of these enzymes in precerebellar neurons suggests that nitric oxide may play a role in the neuronal response to target specific lesions. © 1996 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号