首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The toxicity and antitumor activity of the novel organotin compound triethyltin(IV)lupinylsulfide hydrochloride (IST-FS 29), administered by the oral route, have been evaluated against three transplantable murine tumor models: P388 lymphocytic leukemia, B16F10 melanoma and 3LL Lewis lung carcinoma. Mild and reversible signs of acute toxicity such as behavioral symptoms, weight loss and histological alterations were mainly reported at the highest single dose of 28 mg/kg. Conversely, lower concentrations of compound ranging from 7 to 21 mg/kg did not result in major toxic effects, even after repeated dosing. The antitumor activity studies showed that fractionation dosing, rather than single bolus administration, over 1 week, might prove more active and better tolerated by allowing the achievement of the highest therapeutic total dose of IST-FS 29 (42 mg/kg). Indeed, repeated administrations of IST-FS 29 resulted in marked significant improvement of antitumor activity against B16F10 (50% of tumor volume inhibition, p = 0.0003) and, to a greater extent, 3LL (90% of tumor volume inhibition, p = 0.0001) tumors. These results indicate that IST-FS 29 might be a suitable candidate as an orally administrable anticancer drug and support its further development in human tumor xenografts.  相似文献   

2.
Two potent cis-restricted CA-4 analogues 11 and 42 belonging to 2,3-diaryl-5-hydroxycyclopent-2-en-1-one class were evaluated for anticancer and anti angiogenic activity. The compound 42 displayed potent cytotoxic activity (IC50 < 1 μM) against a panel of human cancer cell lines viz PTC, MDA.MB.453, PA1, SKOV3, DU145 and Miapaca2, whereas compound 11 displayed cytotoxicity activity (IC50 < 1 μM) only in Miapaca2. Both the compounds inhibit growth factor stimulated endothelial cell proliferation, migration and capillary tube formation. In all the above parameter compound 42 was superior to 11. Based on the above results compound 42 was assessed for inhibition of vasculature in vivo and showed significant inhibition at 25 mg/kg dose. Further it was evaluated for in vivo anti tumor activity in athymic mice bearing DU145 and SKVO3 tumor xenograft and showed regression in tumor volume (T/C) of 23.8% (CA-4), 50.1% (compound 42) and 23.5% (CA-4), 56% (compound 42) respectively at a dose of 20 mg/kg (i.v.) daily for 14 days.  相似文献   

3.
A series of thiosemicarbazones (TSCs) (bearing a (4)N-azabicyclo[3.2.2]nonane moiety) derived from 3-acylpyridazines, 4-acetylpyrimidines, and 2-acetylpyrazines (1-8) were synthesized as potential antitumor agents. TSCs 1-8 exhibited potent cytotoxic activity against human acute lymphoblastic leukemia CCRF-CEM cells (IC(50) = 0.05-0.77 microM) and colon adenocarcinoma HT-29 cells (IC(50) = 0.011-2.22 microM). Copper II complexes of TSCs 1-8 showed significant improvement in cytotoxic activity against HT-29 cells (IC(50) = 0.004-1.51 microM) by a factor of 3. However, complexation of ligands 1, 2, 4, and 6 with Fe(II) results in lowering of cytotoxic activity by a factor of approximately 7. In clonogenic assays involving human tumor cells of different tumor origins, compounds 5, 7, 8, and their copper complexes 5Cu(II), 7Cu(II), and 8Cu(II) exhibited remarkable cytotoxic activities with mean IC(50) values of 6, 0.18, 1, 1, 0.37, and 0.37 nM, respectively. In particular, the compounds were highly effective against human colon carcinoma and large and small cell lung carcinoma cells. The TSC derivative 5 was evaluated in vivo in nude mice bearing LXFL 529 human large cell lung carcinoma cells. With respect to antitumor activity, application of 30 mg/kg/d resulted in moderate inhibition (42%) of tumor growth. No effect on tumor growth was observed at a dose of 10 mg/kg/d. However, a dose of 40 or 60 mg/kg/d resulted in 50 and 75% death, respectively, in the treated mice, indicating the high toxicity of these compounds. Using human liver microsomes, compound 5 was found to be rapidly and highly metabolized in vitro. In actual fact, only 2% of the unmetabolized compound could be detected in the incubation medium after 5 min. The IC(50) for cell proliferation (0.006-0.022 microM) elicited by these compounds is much lower than that of the inhibition of [(14)C]cytidine incorporation into DNA (0.18-3.32 microM). These compounds are also noncell cycle specific agents. Interestingly, compounds 5, 5Cu(II), and 8 were found to be potent inducers of apoptosis in Burkitt's lymphoma cells.  相似文献   

4.
This study showed that 13-chlorine-3,15-dioxy-gibberellic acid methyl ester (GA-13315), a gibberellin derivative, possessed high antitumor and antiangiogenic activity in vitro and in vivo. Cytotoxicity assays showed that GA-13315 was a potential and efficient antitumor compound, with inhibitory concentration 50 (IC50) values ranging from 0.13 to 30.28 μg/ml in 12 human tumor cell lines, and it showed moderate toxicity to peripheral blood mononuclear cells with an IC50 value of 14.2 μg/ml. Administration of 0.5 or 2.5 mg/kg GA-13315 for 23 days significantly inhibited tumor growth of human non-small cell lung tumor (A549) xenografts, with relative growth rates ranging from 29.91% to 35.05%. Acute toxicity was determined in ICR mice, and the lethal dose 50 (LD50) was 4.19 g/kg after intragastric administration. The high antitumor potency of GA-13315 occurred in parallel with its antiangiogenic activity. In vitro, GA-13315 inhibited recombinant human epithelial growth factor-induced chemotactic motility and capillary-like tube formation of primary cultured human endothelial cells. Furthermore, GA-13315 decreased the factor VIII+ microvessel density and vascular endothelial growth factor expression in A549 tumors, indicating its antiangiogenic efficacy in vivo. These results indicate that the antiangiogenic activity of GA-13315 contributes to its anticancer properties. Further studies are needed to investigate the use of GA-13315 as an anticancer drug.  相似文献   

5.
A series of ten chloroalkyl 1H-benz[de]isoquinoline-1,3-diones (naphthalimides) were synthesized and evaluated for antitumor activity. Amongst them, new compounds 2d and 2i carrying a 6-NO2 substituent in the aromatic portion of the molecule possessed significant antineoplastic activity. The most active compound 2i had elicited significant cytotoxicity in 15 human tumor cell lines namely Leukemia: MOLT-4, HL-60; Lymphoma: U-937; Colon: 502713, HT-29, SW-620, HCT-15, COLO-205; Liver: Hep-2; Prostate DU-145, PC-3; Breast: MCF-7; Neuroblastoma: IMR-32, SK-N-SH and Ovary: OVCAR-5 out of the 17 cell lines screened. Flow cytometric analysis performed to study the effect of compound 2i on the progression of cell cycle of MOLT-4 cells, revealed rise in sub-G1 fraction and concomitant accumulation of cells in S and G2/M phases, indicating apoptosis, mitotic arrest and/or delay in exit of daughter cells from mitotic cycle respectively. It also induced caspase-mediated apoptosis of MOLT-4 cells in a dose dependant manner. Light and electron microscopic studies revealed characteristic morphology of apoptotic MOLT-4 cells after in vitro treatment with 10 μM concentration of the compound. Apoptosis induction was also observed in HL-60 cells by compounds 2d and 2i to an extent much greater than camptothecin and cis-platin at 10 μM concentration. Both the compounds have shown minimal suppressive effect on human PBMC having high IC50 values of 3,582 and 1,536 μM respectively. These compounds inhibited DNA and RNA synthesis in murine ascites Sarcoma-180 tumor cells in vitro at 8 μM concentration. Above results indicate promising chemotherapeutic potential of the key compound 2i.  相似文献   

6.
The antitumor activity of 5-(5′,6′-benzocoumaro-3′-yl)methylaminouracil (BCMU) and its liposomal medicinal form was studied in comparison to 5-fluorouracil (5-FU), a well-known antitumor drug widely used in oncological practice. The half-lethal dose of BCMU is 14.8 ± 4.2 mg/kg, while the optimum effective dose of the drug is 6 mg/kg. In this dose, BCMU combines low toxicity with significant antitumor activity, which is manifested by increased tumor growth inhibition (TGI) at a 19% increase in the lifetime (LT) of experimental animals. The antitumor activity of the liposomal form of BCMU is quantitatively and qualitatively superior to that of the nonmodified compound and 5-FU, which is manifested by the most pronounced TGI value and by a significant LT increase. __________ Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 40, No. 6, pp. 6–7, June, 2006.  相似文献   

7.
Background MKC-1 is an oral cell-cycle inhibitor with broad antitumor activity in preclinical models. Clinical studies demonstrated modest antitumor activity using intermittent dosing schedule, however additional preclinical data suggested continuous dosing could be efficacious with additional effects against the mTor/AKT pathway. The primary objectives were to determine the maximum tolerated dose (MTD) and response of continuous MKC-1. Secondary objectives included characterizing the dose limiting toxicities (DLTs) and pharmacokinetics (PK). Methods Patients with solid malignancies were eligible, if they had measurable disease, ECOG PS ≤1, and adequate organ function. Exclusions included brain metastases and inability to receive oral drug. MKC-1 was dosed twice daily, continuously in 28-day cycles. Other medications were eliminated if there were possible drug interactions. Doses were assigned using a TITE-CRM algorithm following enrollment of the first 3 pts. Disease response was assessed every 8 weeks. Results Between 5/08–9/09, 24 patients enrolled (15 M/9 F, median 58 years, range 44–77). Patients 1–3 received 120 mg/d of MKC-1; patients 4–24 were dosed per the TITE-CRM algorithm: 150 mg [n = 1], 180 [2], 200 [1], 230 [1], 260 [5], 290 [6], 320 [5]. The median time on drug was 8 weeks (range 4–28). The only DLT occurred at 320 mg (grade 3 fatigue). Stable disease occurred at 150 mg/d (28 weeks; RCC) and 320 mg/d (16 weeks; breast, parotid). Escalation halted at 320 mg/d. Day 28 pharmacokinetics indicated absorption and active metabolites. Conclusion Continuous MKC-1 was well-tolerated; there were no RECIST responses, although clinical benefit occurred in 3/24 pts. Dose escalation stopped at 320 mg/d, and this is the MTD as defined by the CRM dose escalation algorithm; this cumulative dose/cycle exceeds that determined from intermittent dosing studies. A TITE-CRM allowed for rapid dose escalation and was able to account for late toxicities with continuous dosing via a modified algorithm.  相似文献   

8.
Extract of Boesenbergia pandurata (Kaempferia pandurata) (Zingiberaceae) has been used as a replacement for K. rotunda, the main ingredient of a popular traditional tonic called “jamu” especially for women in Indonesia. From our previous study, ethanolic extract of B. pandurata showed strong inhibitory effects on the growth of cancer cells, similar to ethanolic extract of Curcuma longa. C. longa and its bioactive compound, curcumin, have shown potential anticancer activity in in vitro and in vivo studies and have undergone clinical trials. Panduratin A, a chalcone derivative isolated from B. pandurata, was found to inhibit the growth of MCF-7 human breast cancer and HT-29 human colon adenocarcinoma cells with an IC50 of 3.75 and 6.56 μg/ml, respectively. Panduratin A arrested cancer cells labelled with Annexin-V and propidium iodide in the G0/G1 phase and induced apoptosis in a dose-dependent manner. In an animal model study, male Sprague–Dawley rats were fed with AIN diet containing ethanolic extracts prepared from the equivalent of 4% by weight of dried rhizomes of B. pandurata and C. longa. Aberrant crypt foci (ACFs) were induced by two subcutaneous doses (15 mg/kg body weight) of azoxymethane (AOM) 1 week apart. The rats were killed 10 weeks later, and the ACFs were assessed in the colon. At the dose given to rats, it appeared that the extracts were not toxic. Total ACFs were slightly reduced by B. pandurata extract compared to control group but not significantly different. Extract of B. pandurata may have a protective effect against colon cancer but additional studies using different models, such as a breast cancer model, need to be carried out.  相似文献   

9.
A series of novel isolongifoleno[7,8‐d]thiazolo[3,2‐a]pyrimidine derivatives ( 4a – 4x ) were synthesized from isolongifolanone according fragment‐based design strategy, and their anticancer activity against human aortic smooth muscle cells (HASMC), human breast cancer (MCF‐7) cells, human cervical cancer (HeLa) cells, and human liver cancer (HepG2) cells were investigated. Results of the anticancer activity illustrated that most of the compounds showed potent antitumor activity and compound 4i proved to be the most active derivative with IC50 values of 0.33 ± 0.24 (for MCF‐7 cells), 0.52 ± 0.13 (for HeLa cells), and 3.09 ± 0.11 μM (for HepG2 cells), respectively. Moreover, we assessed the effects of 4i on cell apoptosis, cell cycle distribution, mitochondrial membrane potential, and reactive oxygen species (ROS) generation. The results indicated that compound 4i altered mitochondrial membrane potential and produced ROS leading to cell apoptosis of MCF‐7 cells in a dose‐dependent manner, however, without affecting cell cycle progression. These findings suggested that 4i was an effective compound and provided a promising candidate for anticancer drugs.  相似文献   

10.
Background ES-285 (Spisulosine) is a novel marine compound with antitumor activity in preclinical studies. A phase I study was performed in patients with advanced solid tumors to determine the maximum tolerated dose (MTD), establish a safety profile, and to evaluate pharmacokinetics and efficacy of the drug. Patients and methods Thirty patients from two centers were treated with a three-hour ES-285 intravenous infusion for five consecutive days, every 3 weeks. Eleven dose levels were explored. Results No dose-limiting toxicity (DLT) occurred from 2 to 81 mg/m2/day. Three patients had DLT, one each at dose levels 160, 120 and 100 mg/m2/day; all had grade 4 transaminase increases, one of whom (160 mg/m2/day) had concomitant grade 4 hepatitis and grade 3 bilirubin elevation. The MTD of this regimen was not reached due to early termination of the ES-285 phase I program, but was considered to be 80 to 100 mg/m2/day. Other toxicities included mild to moderate asthenia, nausea, vomiting, anemia, lymphopenia, and injection site reaction. Pharmacokinetic analyses showed dose proportionality on Days 1 and 5, a wide distribution and a long half-life. Seven patients (five with colorectal cancer) had stable disease (1.2–4.1 months), lasting for more than 3 months in three patients. Conclusions Liver enzyme elevations were dose limiting for ES-285 in this administration schedule. Low antitumor activity was observed.  相似文献   

11.
Background Plinabulin (NPI-2358) is a vascular disrupting agent (VDA) that destabilizes tumor vascular endothelial cell architecture resulting in selective collapse of established tumor vasculature producing anti-tumor activity alone or in combination with cytotoxic agents. The objective of this study was to assess the recommended Phase 2 dose (RP2D) of plinabulin combined with docetaxel. Patients and Methods Patients received 75 mg/m2 docetaxel on day 1 and plinabulin on days 1 and 8 intravenously in 21 day cycles. Plinabulin was escalated from the biologically effective dose (BED) of 13.5 mg/m2 to the standard single agent dose of 30 mg/m2 using a “3+3” design. Results Thirteen patients were enrolled. Adverse events were consistent with those of both agents alone. Fatigue, pain, nausea, diarrhea and vomiting were the most common events. One dose limiting toxicity of nausea, vomiting, dehydration and neutropenia occurred. The RP2D was 30 mg/m2 of plinabulin with 75 mg/m2 docetaxel. Pharmacokinetics did not indicate drug-drug interactions. Of the 8 patients with NSCLC evaluable for response, 2 achieved a partial response and 4 demonstrated lesser decreases in tumor measurements. Conclusions The combination of full doses of plinabulin and docetaxel is tolerable. With encouraging antitumor activity, this supported further development of this combination.  相似文献   

12.
Methyl-2-benzimidazolecarbamate(carbendazim, FB642) is an anticancer agentthat induces apoptosis of cancer cells. Invitro, FB642 demonstrated potent antitumoractivity against both the murine B16melanoma (IC50 = 8.5 m) andhuman HT-29 colon carcinoma(IC50 = 9.5 m) cell lines. FB642was also highly active against both murinetumor models and human tumor xenografts atvarying doses and schedules. In the murineB16 melanoma model, T/C values > 200 wereobserved. In the human tumor xenograft,FB642 produced tumor growth inhibition ofgreater than 58% in five of the sevenxenograft models evaluated. Partial andcomplete tumor shrinkage was noted withFB642 against the MCF-7 breast tumor model.Pharmacokinetic studies in ratsdemonstrated that oral absorption of FB642was variable and may be saturated at the2000 mg/kg dose level since higher dosesfailed to produce a further increase in thearea under the time concentration curve. Toxicity of FB642 in vivo appeared to bedose-dependent. Lower doses in the range of2000–3000 mg/kg were better tolerated,while still preserving antitumor activity. Evaluation of FB642 in phase I clinicaltrials of adult patients with advancedmalignancies is currently ongoing.  相似文献   

13.
The methanol extract of the flowers of artichoke (Cynara cardunculus) exhibited remarkable antitumor activity in an in vivo two-stage carcinogenesis test in mice, using 7,12-dimethylbenz[a]anthracene as an initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as a promoter. From the active fraction of the methanol extract, four triterpene alcohols and their corresponding acetates were isolated and identified. These compounds were evaluated for their inhibitory effects on TPA-induced inflammation (1 μg/ear) in mice and showed marked anti-inflammatory effects, with a 50% inhibitory dose of 0.50–0.91 μmol/ear.  相似文献   

14.
Ten new N‐substituted‐3,5‐bis(arylidene)‐4‐piperidone derivatives (series 1 and 2 ) were synthesized and subsequently evaluated against human carcinoma cell lines SW1990, MIA PaCa‐2, PG‐BE1, NCI‐H460, and SK‐BR‐3 for cytotoxic activity by the CCK‐8 method, and their fluorescent properties were investigated as well. The compounds were confirmed to display greater cytotoxic activity to the neoplastic cells, and approximately 50% of the IC50 values were lower than 5 μm . In particular, compounds 1a , 1c , 1d, and 1e bearing 3‐bromophenyl groups were revealed as the most active antitumor drug candidates and had the average IC50 values of 1.94, 1.11, 1.16, and 0.817 μm , respectively. Furthermore, their fluorescent properties were interesting and might contribute to the visualization of their distribution in tumor cells. Some possible reasons for the disparity between cytotoxic activity and fluorescent properties in the two series of compounds were explored. This study revealed high potential of these molecules for further development as fluorescent cytotoxic and antitumor agents.  相似文献   

15.
We developed a novel water-soluble camptothecin analogue, CKD602, and evaluated the inhibition of topoisomerase I and the antitumor activities against mammalian tumor cells and human tumor xenografts. CKD602 was a nanomolar inhibitor of the topoisomerase I enzyme in the cleavable complex assay. CKD602 was found to be 3 times and slightly more potent than topotecan and camptothecin as inhibitors of topoisomerase, respectively. In tumor cell cytotoxicity, CKD602 was more potent than topotecan in 14 out of 26 human cancer cell lines tested, while it was comparable to camptothecin. CKD602 was tested for thein vivo antitumor activity against the human tumor xenograft models. CKD602 was able to induce regression of established HT-29, WIDR and CX-1 colon tumors, LX-1 lung tumor, MX-1 breast tumor and SKOV-3 ovarian tumor as much as 80, 94, 76, 67, 87% and 88%, respectively, with comparable body weight changes to those of topotecan. Also the therapeutic margin (R/Emax: maximum tolerance dose/ED58) of CKD602 was significantly higher than that of topotecan by 4 times. Efficacy was determined at the maximal tolerated dose levels using schedule dependent i.p. administration in mice bearing L1210 leukemia. On a Q4d×4 (every 4 day for 4 doses) schedule, the maximum tolerated dose (MTD) was 25 mg/kg per administration, which caused great weight loss and lethality in <5% tumor bearing mouse. This schedule brought significant increase in life span (ILS), 212%, with 33% of long-term survivals. The ex vivo antitumor activity of CKD602 was compared with that of topotecan and the mean antitumor index (ATI) values recorded for CKD602 were significantly higher than that noted for topotecan. From these results, CKD602 warrants further clinical investigations as a potent inhibitor of topoisomerase I.  相似文献   

16.
The title compound has been designed for antitumor activity based on structural features of related known antitumor gold agents, that is, gold-monophosphine and gold-diphosphine derivatives. It is a gold complex that contains both types of phosphine ligands, thus suggesting a possible synergistic action. The results of a single crystal X-ray structure determination of this molecule show the metal surrounded by 3 P atoms and one Cl anion in a distorted tetrahedral arrangement. The chloro anion, however, is weakly bound to the metal and so the species shows ionic character. The P NMR study, performed in solution, confirms the structural features observed in the solid and, in addition, indicates partial formation of other known gold(I)-diphosphine antitumor agents. The ionic character and strong Au-P bonds of this novel gold(I) species are similar to those of the most active antitumor gold compounds so far studied. The former feature contributes to solubility in biological fluids, and the latter prevents fast biomolecular attack. In addition, the title compound is less lipophilic, a feature recently correlated to lower liver toxicity. The title compound shows in vitro antitumor activity in the two initial National Cancer Institute protocols against human tumors. In the first screening, a unique dose (0.10 mM) of the title compound reduced cell growth of MCF7 (breast cancer), NCI-H460 (lung cancer), and SF-268 (Central Nervous System cancer-CNS) to 5, 8, and 11%, respectively. In the second protocol a 60-cell line panel was analyzed with the title compound concentration in the 0.1 mM-0.01 microM range. The highest activity was for the breast tumor cell line MCF7 with a LC(50) less than 0.01 microM. LC(50) values in the micromolar range were obtained for 29 cell lines. With the exception of leukemia, these micromolar activities were observed in at least one cell line for each subgroup tumor (non small lung, colon, CNS, melanoma, renal, prostate, breast, and ovarian). The leukemia inactivity was unexpected, as all antitumor gold(I) phosphine compounds in the literature described thus far are active. Melanoma was the most sensitive subgroup screened (five out of seven cell lines).  相似文献   

17.
The metabolism of ganoderiol F (GF), a cytotoxic and antitumor triterpene from Ganoderma lucidum, by intestinal bacteria and its pharmacokinetics in rats were investigated by using liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS). GF was converted to ganodermatriol by anaerobic incubation with bacterial mixtures from rats and humans. This metabolite was detected in rat feces, but not in plasma and urine, after oral administration of GF. The fate of GF after oral (p.o.) and intravenous (i.v.) administration to rats was examined in pharmacokinetics studies. Plasma samples pretreated by solid-phase extraction were quantified by HPLC/MS/MS over a GF concentration range of 1.25–100 ng/ml (S/N = 5). The intra- and interday precision (CV%) was below 8% and accuracy was within the range of 95.9–103.6% for all samples. The range of recovery ratios was 89.2–98.2%. After the administration of GF at 0.5 mg/kg i.v., the plasma concentrations of GF quickly declined and the elimination half-life values (t 1/2α and t 1/2β) were about 2.4 and 34.8 min. On the other hand, the elimination half-life values (t 1/2α) after p.o. administration of GF at doses of 20 and 50 mg/kg were 14.4 and 143.3 min for the former, and 18.6 and 114.6 min for the latter. The AUC0–t value was 11.17 (ng/ml) h at a GF dose of 0.5 mg/kg i.v., but 49.4 and 111.6 (ng/ml) h at GF doses of 20 and 50 mg/kg p.o., respectively, indicating that the AUC0–t value is proportional to the administered oral doses. The estimated absolute bioavailability of GF in rats was F = 0.105.  相似文献   

18.
A series of O(6)-allyl- and O(6)-(2-oxoalkyl)guanines were synthesized and evaluated, in comparison with the corresponding O(6)-alkylguanines, as potential inhibitors of the DNA-repair protein O(6)-alkylguanine-DNA alkyltransferase (AGT). Simple O(6)-alkyl- and O(6)-cycloalkylguanines were weak AGT inactivators compared with O(6)-allylguanine (IC(50) = 8.5 +/- 0.6 microM) with IC(50) values ranging from 100 to 1000 microM. The introduction of substituents at C-2 of the allyl group of O(6)-allylguanine reduced activity compared with the parent compound, while analogous compounds in the O(6)-(2-oxoalkyl)guanine series exhibited very poor activity (150-1000 microM). O(6)-Cycloalkenylguanines proved to be excellent AGT inactivators, with 1-cyclobutenylmethylguanine (IC(50) = 0.55 +/- 0.02 microM) and 1-cyclopentenylmethylguanine (IC(50) = 0.39 +/- 0.04 microM) exhibiting potency approaching that of the benchmark AGT inhibitor O(6)-benzylguanine (IC(50) = 0.18 +/- 0.02 microM). 1-Cyclopentenylmethylguanine also inactivated AGT in intact HT29 human colorectal carcinoma cells (IC(50) = 0.20 +/- 0.07 microM) and potentiated the cytotoxicity of the monomethylating antitumor agent Temozolomide by approximately 3- and 10-fold, respectively, in the HT29 and Colo205 tumor cell lines. The observation that four mutant AGT enzymes resistant to O(6)-benzylguanine also proved strongly cross-resistant to 1-cyclopentenylmethylguanine indicates that the O(6)-substituent of each compound makes similar binding interactions within the active site of AGT.  相似文献   

19.
A series of (E,Z)‐1‐(dihydrobenzofuran‐5‐yl)‐3‐phenyl‐2‐(1,2,4‐triazol‐1‐yl)‐2‐propen‐1‐ones ( C1 – C35 ) were designed and synthesized, and the structures of compounds (Z)‐ C27 and (Z)‐ C29 were confirmed by single‐crystal X‐ray diffraction. The antitumor activities of these novel compounds against cervical cancer (HeLa), lung cancer (A549), and breast cancer (MCF‐7) cell lines were evaluated in vitro. Majority of the title compounds exhibited strong antitumor activities and were much more promising than the positive control Taxol, which were also accompanied by lower cytotoxicity to normal cells. In particular, compounds (E,Z)‐ C24 exhibited the most consistent potent activities against three neoplastic cells with IC50 values ranging from 3.2 to 7.1 μm . Further researches demonstrated that compounds (E,Z)‐ C24 could induce cell apoptosis and arrest cell cycle at the G2/M and S phases. Meanwhile, the structure–activity relationship between the configurations and cytotoxicity of the compounds was also investigated.  相似文献   

20.
In a series of studies on the search for new antitumor and antimetastatic substances from the natural medicinal plants of the Umbelliferae family, we previously reported that chalcone derivatives isolated from Angelica keisekei roots have antitumor and antimetastatic activities. In the present study, we examined the effects of a chromone glucoside cnidimoside A isolated from Cnidium japonicum whole plants on tumor growth and tumor metastasis in colon 26-bearing mice. Cnidimoside A (50 mg/kg, twice daily) significantly inhibited tumor growth and final tumor weight compared to the growth in vehicle-treated colon 26-bearing mice (control). Furthermore, the number of mice with abdominal invasion of tumors was also reduced by orally administered cnidimoside A (50 mg/kg, twice daily). In this study, the CD8+ T Cell- and interferon (IFN)-γ-positive cell numbers in the small intestine in the colon 26-bearing mice were significantly reduced compared with those in the normal mice, but the natural killer (NK)-positive cell number did not differ significantly between the normal and colon 26-bearing mice. The CD8+ T-, NK and IFN-γ-positive cell numbers in the small intestine were significantly increased by orally administered cnidimoside A (50 mg/kg, twice daily) compared to those in vehicle-treated colon 26-bearing mice. In conclusion, it seems likely that the antitumor and antimetastatic actions of cnidimoside A may be partly associated with the stimulation of immune response in the small intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号