首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anticholinesterase effects of huperzine A,E2020,and tacrine in rats   总被引:17,自引:3,他引:14  
目的:比较石杉碱甲、E2020和他克林对大鼠胆碱酯酶的抑制作用.方法:比色法测定大鼠各脑区的AChE及血清中BuChE活力.结果:三药灌胃后对大鼠脑中AChE均产生剂量依赖性抑制.以石杉碱甲作用最强.他克林对BuChE的抑制显著强于E2020和石杉碱甲,其副反应最为明显.单次经口给药后,石杉碱甲对脑内AChE的抑制作用长于E2020和他克林.多次给药后,对胆碱酯酶的抑制作用三药均未有耐受性产生.结论:石杉碱甲是一种高选择性AChE抑制剂,具有口服活性高,作用时程长,副反应小的优点,适于临床应用.  相似文献   

2.
石杉碱甲,E2020和他克林对大鼠胆碱酯酶的抑制作用   总被引:8,自引:0,他引:8  
AIM: To compare the anticholinesterase effects of huperzine A (Hup A), E2020, and tacrine in rats. METHODS: Spectrophotometry was used to determine AChE activity in brain and BuChE activity in serum. RESULTS: Following intragastric gavage, Hup A, E2020, and tacrine all produced dose-dependent inhibitions of brain AChE. Oral Hup A exhibited a higher inhibition than E2020 and tacrine. Tacrine was more effective in inhibiting serum BuChE correlated with severe peripheral adverse effects. The BuChE activity was less affected by Hup A and E2020. After a single oral dose of Hup A, a relatively steady state of AChE inhibition produced, which was longer than that after E2020 and tacrine. No change in the cholinesterase inhibition was seen for the 3 drugs following repeated i.g. medications. CONCLUSION: Hup A i.g. exhibited a higher efficacy, a longer duration of action, and a more selective inhibition on AChE than E2020 and tacrine.  相似文献   

3.
The effects of oral administration of the centrally acting acetylcholinesterase (AChE) inhibitors, donepezil hydrochloride (donepezil: E2020: (±)-2-[(1-benzylpiperidin-4-yl)methyl]-5,6-dimethoxy-indan-1-one monohydrochloride), tacrine (9-amino-1,2,3,4-tetrahydroacridine hydrochloride) and ENA-713 (rivastigmine: (S)-N-ethyl-3-[(1-dimethyl-amino)ethyl]-N-methyl-phenylcarbamate hydrogentartrate), which have been developed for the treatment of Alzheimer's disease, on the extracellular acetylcholine concentration in the hippocampus of rats were evaluated by using a microdialysis technique without adding cholinesterase inhibitor to the perfusion solution. We also compared the inhibition of brain AChE and the brain concentrations of these drugs. Donepezil at 2.5 mg/kg and tacrine at 5 mg/kg showed significant effects for more than 6 h. At these doses, the maximum increases were observed at about 1.5 h after administration of donepezil, and at about 2 h with tacrine, and were 499% and 422% of the pre-level, respectively. ENA-713 produced significant effects at doses of 0.625, 1.25 and 2.5 mg/kg, which lasted for about 1, 2 and 4 h, respectively. The maximum increases produced by these doses at about 0.5 h after administration were 190, 346 and 458% of the pre-level, respectively. The time courses of brain AChE inhibition with donepezil at 2.5 mg/kg, tacrine at 10 mg/kg and ENA-713 at 2.5 mg/kg were mirror images of the extracellular acetylcholine-increasing action at the same doses. The time courses of the brain concentrations of drugs after oral administration of donepezil at 2.5 mg/kg and tacrine at 10 mg/kg were consistent with those of brain AChE inhibition at the same doses, and there was a linear relation between these parameters. Brain concentration of ENA-713 at 2.5 mg/kg was below the limit of quantification at all time points measured. These results suggest that oral administration of donepezil, tacrine and ENA-713 increases acetylcholine concentration in the synaptic cleft of the hippocampus mostly through AChE inhibition, and that donepezil has a more potent activity than tacrine and a longer-lasting effect than ENA-713 on the central cholinergic system.  相似文献   

4.
Cholinesterase inhibitors: new roles and therapeutic alternatives.   总被引:11,自引:0,他引:11  
An important aspect of brain cholinesterase function is related to enzymatic differences. The brain of mammals contains two major forms of cholinesterases: acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The two forms differ genetically, structurally and for their kinetics. Butyrylcholine is not a physiological substrate in mammalian brain which makes the function of BuChE of difficult interpretation. In human brain, BuChE is found in neurons and glial cells as well as in neuritic plaques and tangles in Alzheimer disease (AD) patients. While AChE activity decreases progressively in the brain of AD patients, BuChE activity shows some increase. In order to study the function of BuChE, we perfused intracortically the rat brain with a selective BuChE inhibitor and found that extracellular acetylcholine increased 15 fold from 5 to 75nM concentrations with little cholinergic side effects in the animal. Based on these data and on clinical data showing a relation between CSF BuChE inhibition and cognitive function in AD patients, we postulated that two pools of cholinesterases may be present in brain, the first mainly neuronal and AChE dependent and the second mainly glial and BuChE dependent. The two pools show different kinetic properties with regard to regulation of ACh concentration in brain and can be separated with selective inhibitors. Within particular conditions, such as in mice nullizygote for AChE or in AD patients at advanced stages of the disease, BuChE may replace AChE in hydrolyzing brain acetylcholine. Based on the changes of ChE activity in the brain of AD patients, a rational indication of selective BuChEI (or of mixed double function inhibitors) is the treatment of advanced cases. A second novel aspect of ChEI therapy is the emerging of new indications which include various forms of dementia such as dementia with Lewy Bodies, Down Syndrome, vascular dementia and Parkinson Dementia. Clinical results demonstrate examples of versatility of cholinergic enhancement.  相似文献   

5.
This study was designed to compare the in vitro inhibitory effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) of donepezil and some other cholinesterase (ChE) inhibitors which have been developed for the treatment of Alzheimer's disease. The carbamate derivatives physostigmine and rivastigmine needed preincubation to exhibit appropriate anti-ChE activity. The maximum ChE inhibition by physostigmine developed within 30-60 min, while the inhibitory effect of rivastigmine on AChE and BuChE activities reached its peak after 48 and 6 h, respectively. The order of inhibitory potency (IC50) towards AChE activity under optimal assay conditions for each ChE inhibitor was: physostigmine (0.67 nM) > rivastigmine (4.3 nM) > donepezil (6.7 nM) > TAK-147 (12 nM) > tacrine (77 nM) > ipidacrine (270 nM). The benzylpiperidine derivatives donepezil and TAK-147 showed high selectivity for AChE over BuChE. The carbamate derivatives showed moderate selectivity, while the 4-aminopyridine derivatives tacrine and ipidacrine showed no selectivity. The inhibitory potency of these ChE inhibitors towards AChE activity may illustrate their potential in vivo activity.  相似文献   

6.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder of the elderly, characterised by widespread loss of central cholinergic function. The only symptomatic treatment proven effective to date is the use of cholinesterase (ChE) inhibitors to augment surviving cholinergic activity. ChE inhibitors act on the enzymes that hydrolyse acetylcholine (ACh) following synaptic release. In the healthy brain, acetylcholinesterase (AChE) predominates (80%) and butyrylcholinesterase (BuChE) is considered to play a minor role in regulating brain ACh levels. In the AD brain, BuChE activity rises while AChE activity remains unchanged or declines. Therefore both enzymes are likely to have involvement in regulating ACh levels and represent legitimate therapeutic targets to ameliorate the cholinergic deficit. The two enzymes differ in location, substrate specificity and kinetics. Recent evidence suggests that BuChE may also have a role in the aetiology and progression of AD beyond regulation of synaptic ACh levels. Experimental evidence from the use of agents with enhanced selectivity for BuChE (cymserine, MF-8622) and ChE inhibitors such as rivastigmine, which have a dual inhibitory action on both AChE and BuChE, indicate potential therapeutic benefits of inhibiting both AChE and BuChE in AD and related dementias. The development of specific BuChE inhibitors and the continued use of ChE inhibitors with the ability to inhibit BuChE in addition to AChE should lead to improved clinical outcomes.  相似文献   

7.
Summary

Alzheimer's disease (AD) is a progressive neurodegenerative disorder of the elderly, characterised by widespread loss central cholinergic function. The only symptomatic treatment proven effective, to date is the use of cholinesterase (ChE) inhibitors to augment surviving cholinergic activity. ChE inhibitors act on the enzymes that hydrolyse acetylcholine (ACh) following synaptic release. In the healthy brain, acetylcholinesterase (AChE) predominates (80%) and butyrylcholinesterase (BuChE) is considered to play a minor role in regulating brain ACh levels. In the AD brain, BuChE activity rises while AChE activity remains unchanged or declines. Therefore both enzymes are likely to have involvement in regulating ACh levels and represent legitimate therapeutic targets to ameliorate the cholinergic deficit. The two enzymes differ in location, substrate specificity and kinetics. Recent evidence suggests that BuChE may also have a role in the aetiology and progression of AD beyond regulation of synaptic ACh levels. Experimental evidence from the use of agents with enhanced selectivity for BuChE (cymserine, MF-8622) and ChE inhibitors such as rivastigmine, which have a dual inhibitory action on both AChE and BuChE, indicate potential therapeutic benefits of inhibiting both AChE and BuChE in AD and related dementias. The development of specific BuChE inhibitors and the continued use of ChE inhibitors with the ability to inhibit BuChE in addition to AChE should lead to improved clinical outcomes.  相似文献   

8.
石杉碱乙的抗胆碱酯酶作用   总被引:6,自引:0,他引:6  
目的:测试石杉碱乙的抗胆碱酯酶作用并与他克林进行比较,方法:比色法用于测定胆碱酶活性。结果:石杉碱乙和他克林对BuChE和AChE抑制的IC50值的比率分别为65.8和0.54,石杉碱乙对乙酰胆碱酯酶有更强的选择性抑制作用。石杉碱乙灌胃对脑内AChE的抑制作用明业强于他克林,而他克林对BuChE的抑制作用强于石杉碱乙,并有严重副反应,单次灌胃石杉碱乙在4小时内对脑内AChE产生较对稳定的抑制作用,  相似文献   

9.
Donepezil hydrochloride (donepezil: E2020: (+/-)-2-[(1-benzylpiperidin-4-yl)methyl]-5,6-dimethoxy-indan-1-one monohydrochloride)) is a centrally acting acetylcholinesterase inhibitor developed for the treatment of Alzheimer's disease. In the present study, its inhibitory effect on the activity of cholinesterase ex vivo was evaluated in the brain, plasma, erythrocytes, heart, small intestine, liver and pectoral muscle of young adult as well as aged rats, in comparison with that of tacrine (9-amino-1,2,3,4-tetrahydroacridine hydrochloride). In aged animals, cholinesterase activity in heart, small intestine and pectoral muscle was lower, whereas that in plasma and liver was higher than in young rats. Both groups showed the highest levels in the brain. Donepezil, at doses of 1.25, 2.5 and 5 mg/kg, p.o., inhibited brain, plasma, erythrocyte, liver and pectoral muscle cholinesterase activity in young rats in a dose-dependent manner but had less effect on cholinesterase activity in heart and small intestine. In aged animals, inhibition of cholinesterase activity in the brain, erythrocytes and pectoral muscle by donepezil was more potent than that in young animals. Tacrine, at doses of 5, 10 and 20 mg/kg, p.o., dose-dependently inhibited cholinesterase activity in all tissues of both young and aged animals, but most potently in heart, small intestine and liver. The inhibition of cholinesterase activity by tacrine in the brain, plasma, erythrocytes, heart and liver was more potent in aged rats than in tissues of young rats. Brain and plasma concentrations of unchanged donepezil and tacrine were measured in the same animals as used for the cholinesterase inhibition study. Brain and plasma concentrations of donepezil and tacrine were higher in aged than in young animals. It is concluded that the inhibitory effects of donepezil and tacrine on cholinesterase activity are greater in aged than in young rats, owing to differences in the tissue concentrations of these compounds between young and aged animals. It is also suggested that the effect of donepezil on cholinesterase activity is more tissue-selective than that of tacrine.  相似文献   

10.
Pregnant Sprague-Dawley rats (14-18 days of gestation) were treated with a single cutaneous subclinical dose(s) of 10 mg kg(-1) (15% of LD(50)) of methyl parathion (O,O-dimethyl O-4-nitrophenyl phosphorothioate) and 65 mg kg(-1) (15% of LD(50)) of diazinon (O,O)-diethyl O-2-isopropyl-6-methylpyrimidinyl phosphorothioate, and their combination. Animals were sacrificed at 1, 2, 4, 12, 24, 48, 72, and 96 h after dosing. Inhibition of maternal and fetal cholinesterase enzyme activity has been determined. Methyl parathion significantly inhibited maternal and fetal brain acetylcholinesterase (AChE) and plasma butyrylcholinesterase (BuChE) activity within 24 h after dosing. Diazinon and a mixture of methyl parathion and diazinon caused lesser inhibition compared with methyl parathion alone. Recovery of maternal and fetal brain AChE activity was in the order of diazinon > combination of diazinon and methyl parathion > methyl parathion 96 h after dosing. Although fetal plasma BuChE activity recovered to 100% of control within 96 h of application, maternal BuChE activity remained inhibited to 55% and 32% of control 96 h after application of methyl parathion and a mixture of methyl parathion and diazinon, respectively. Following a single dermal dose of methyl parathion, the activity of maternal liver BuChE was 63% of control 2 h after dosing, whereas inhibition of placental AChE or BuChE activity occurred 12 and 1 h following a single dose of methyl parathion, corresponding to activities of 63% and 54% of control, respectively. Diazinon, alone or in combination with methyl parathion, did not inhibit significantly the maternal liver BuChE or placental AChE and BuChE activity. The results suggest that dermal application of a single dose of methyl parathion and diazinon, alone or in combination, has an easy access into maternal and fetal tissues, resulting in inhibition of cholinesterase enzymes. The lower inhibitory effect of the combination of methyl parathion and diazinon might be due to competition of diazinon with methyl parathion for cytochrome P-450 enzymes, resulting in formation of the potent cholinesterase inhibitor methyl paraoxon. The faster recovery of fetal cholinesterase enzymes is attributed to the rapid de novo synthesis of cholinesterase fetal tissues compared with the mother.  相似文献   

11.
One of the most consistent changes associated with Alzheimer's disease (AD) is a deficit in central cholinergic neurotransmission. Donepezil hydrochloride (DPZ), a novel class of cholinesterase (ChE) inhibitors, inhibits degradation of acetylcholine (ACh) and activates central cholinergic system. In in vitro studies, DPZ more selectively inhibited acetylcholinesterase (IC50: 6.7 nM) than butyrylcholinesterase (IC50: 7400 nM), while tacrine inhibited both acetylcholinesterase (IC50: 77 nM) and butyrylcholinesterase (IC50: 69 nM). After oral dosing, DPZ (ID50: 2.6 mg/kg) inhibited brain ChE dose-dependently without any remarkable effect on ChE in the heart and small intestine, whereas tacrine (ID50: 9.5 mg/kg) inhibited ChE equally in the brain and peripheral tissues. Brain microdialysis revealed that DPZ (2.5 mg/kg) enhanced extracellular ACh concentrations in the cerebral cortex and hippocampus in rats. In behavioral studies, DPZ counteracted both the deficit in passive avoidance induced by lesioning of the nucleus basalis magnocellularis (0.125-1.0 mg/kg) and the impairment in acquisition of a hidden-platform water maze task after lesioning of the medial septum in rats (0.5 mg/kg). DPZ also inhibited the scopolamine-induced impairment of radial maze performance (0.5 mg/kg). Placebo-controlled clinical studies of 12- and 24-week treatments of DPZ (5 mg, 10 mg/day) clearly showed an improvement in cognitive scores of probable AD patients.  相似文献   

12.
Targeting acetylcholinesterase and butyrylcholinesterase in dementia   总被引:4,自引:0,他引:4  
The cholinesterase inhibitors (ChE-Is) attenuate the cholinergic deficit underlying the cognitive and neuropsychiatric dysfunctions in patients with AD. Inhibition of brain acetylcholinesterase (AChE) has been the major therapeutic target of ChE-I treatment strategies for Alzheimer's disease (AD). AChE-positive neurons project diffusely to the cortex, modulating cortical processing and responses to new and relevant stimuli. Butyrylcholinesterase (BuChE)-positive neurons project specifically to the frontal cortex, and may have roles in attention, executive function, emotional memory and behaviour. Furthermore, BuChE activity progressively increases as the severity of dementia advances, while AChE activity declines. Therefore, inhibition of BuChE may provide additional benefits. The two cholinesterase (ChE) enzymes that metabolize acetylcholine (ACh) differ significantly in substrate specificity, enzyme kinetics, expression and activity in different brain regions, and complexity of gene regulation. In addition, recent evidence suggests that AChE and BuChE may have roles beyond 'classical' co-regulatory esterase functions in terminating ACh-mediated neurotransmission. 'Non-classical' roles in modulating the activity of other proteins, regional cerebral blood flow, tau phosphorylation, and the amyloid cascade may affect rates of AD progression. If these additional mechanisms are demonstrated to underlie clinically meaningful effects, modification of the over-simplistic cholinergic hypothesis in AD that is limited to symptomatic treatment, ignoring the potential of cholinergic therapies to modify the disease process, may be appropriate. The specificity of ChE inhibitory activity, up-regulation of AChE activity and changes in the composition of AChE molecular forms over time, selectivity for AD-relevant ChE molecular forms, brain vs. peripheral selectivity, and pharmacokinetic profile may be important determinants of the acute and long-term efficacy, safety and tolerability profiles of the different ChE-Is. This review focuses on new evidence for the roles of BuChE and AChE in symptom generation and rate of underlying disease progression in dementia, and argues that it may be appropriate to re-evaluate the place of ChE-Is in the treatment of dementia.  相似文献   

13.
The effects of the centrally acting cholinesterase (ChE) inhibitors, tetrahydroaminoacridine (THA) and E2020 (1-benzyl-4-[(5,6-dimethoxy-l-indanon)-2-yl] methylpiperidine hydrochloride), potential drugs for the treatment of senile dementia, on the basal extracellular acetylcholine (ACh) concentration in the hippocampus of freely moving rats, were determined using a microdialysis technique without the use of a ChE inhibitor in the perfusion fluid and a sensitive RIA. The mean (±SEM) basal ACh content in the perfusate was 103.1 ± 3.6 fmol/sample collected over 30 min when microdialysis probes with a length of 3 mm dialysis membrane were used. The content of ACh decreased to an almost undetectable level upon perfusion of magnesium, suggesting that, in the present study, most of the ACh detected in the perfusates was due to cholinergic neuronal activity. THA (1.65 mg/kg, i.p.) produced an insignificant increase in the extracellular ACh concentration, but a dose of 5 mg/kg, i.p. caused a prolonged and significant 5.5-fold increase from the control value. E2020 (0.65 and 2 mg/kg, i.p.) produced significant, prolonged and dose-dependent increases (4 and 12 times the control value, respectively), the peak effect occurring within 1 h. Perfusion with 10 mol/l physostigmine produced an about 30-fold increase of ACh output, suggesting that the basal extracellular ACh concentration is highly dependent on ChE activity. When ChE was inhibited locally by perfusion with physostigmine, THA (5 mg/kg) produced a transient and, at its maximum, a 1.42-fold increase in extracellular ACh concentration. These results demonstrate that the basal, physiological, extracellular ACh concentration in the hippocampus of freely moving rats can be determined using a microdialysis technique and a sensitive RIA, and suggest that THA and E 2020 increase ACh concentration in the synaptic cleft of the hippocampus in a dose-dependent manner mostly through ChE inhibition. Correspondence to: K. Kawashima at the above address  相似文献   

14.
Pregnant Sprague-Dawley rats (14-18 d of gestation) were treated with either a single dermal subclinical dose of 30 mg/kg (15% of dermal LD50) chlorpyrifos (O,O-diethyl-O-[3,5,6-trichloro-2-pyridinyl] phosphorothioate) or a single dermal subclinical dose of 10 mg/kg (15% of dermal LD50) methyl parathion (O,O-dimethyl O-4-nitrophenyl phosphorothioate) or the two in combination. Chlorpyrifos inhibited maternal and fetal brain acetylcholinesterase (AChE) activity within 24 h of dosing, (48% and 67% of control activity, respectively). Following application of methyl parathion, peak inhibition of maternal and fetal brain AChE activity occurred at 48 h and 24 h after dosing (17% and 48% of control activity, respectively). A combination of chlorpyrifos and methyl parathion produced peak inhibition of maternal and fetal brain AChE activity at 24 h postdosing (35% and 73% of control activity, respectively). Maternal and fetal brain AChE activity recovered to various degrees of percentage of control 96 h after dosing. Application of methyl parathion or chlorpyrifos alone or in combination significantly inhibited maternal plasma butyrylcholinesterase (BuChE) activity. No significant inhibition of fetal plasma BuChE activity was detected. Peak inhibition of maternal liver BuChE occurred 24 h after application of methyl parathion or chlorpyrifos alone or in combination (64%, 80%, and 61% of control activity, respectively). Significant inhibition of placental AChE occurred within 24 h after application of methyl parathion or chlorpyrifos alone or in combination. The results suggest that methyl parathion and chlorpyrifos, alone or in combination, were rapidly distributed in maternal and fetal tissues, resulting in rapid inhibition of cholinesterase enzyme activities. The lower inhibitory effect of the combination could be due to competition between chlorpyrifos and methyl parathion for cytochrome P-450 enzymes, resulting in inhibition of the formation of the potent cholinesterase inhibitor oxon forms. The faster recovery of fetal plasma BuChE is attributed to the de novo synthesis of cholinesterase by fetal tissues compared to maternal tissues.  相似文献   

15.

Objectives:

The brain of mammals contains two major form of cholinesterase enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The dual inhibition of these enzymes is considered as a promising strategy for the treatment of neurological disorder such as Alzheimer''s disease (AD), senile dementia, ataxia, and myasthenia gravis. The present study was undertaken to explore the anticholinesterase inhibition property of allicin.

Materials and Methods:

An assessment of cholinesterase inhibition was carried out by Ellman''s assay.

Results:

The present study demonstrates allicin, a major ingredient of crushed garlic (Allium sativum L.) inhibited both AChE and BuChE enzymes in a concentration-dependent manner. For allicin, the IC50 concentration was 0.01 mg/mL (61.62 μM) for AChE and 0.05 ± 0.018 mg/mL (308.12 μM) for BuChE enzymes.

Conclusions:

Allicin shows a potential to ameliorate the decline of cognitive function and memory loss associated with AD by inhibiting cholinesterase enzymes and upregulate the levels of acetylcholine (ACh) in the brain. It can be used as a new lead to target AChE and BuChE to upregulate the level of ACh which will be useful in alleviating the symptoms associated with AD.KEY WORDS: Acetylcholinesterase, allicin, Alzheimer''s diseases, butyrylcholinesterase  相似文献   

16.
The effect of oral tacrine administration on cortical and hippocampal extracellular acetylcholine (ACh) levels has been investigated by a microdialysis technique, coupled to a HPLC method, in 6- and 22–24-month-old rats. In order to assess whether the increase in extracellular ACh levels was associated with an improvement in the age-related cognitive impairment, the object recognition and step-trough passive avoidance tests were carried out in the treated rats. The extracellular ACh levels measured in the cortex and hippocampus of aged rats without cholinesterase inhibitor in the perfusion Ringer solution were 39 and 54% lower, respectively, than in the young rats. At the dose of 3 mg kg−1, tacrine brought about a three- to four-fold increase in extracellular ACh levels, both in young and aged rats, which peaked 60–80 min after administration and disappeared within the next 60 min. At the same dose, tacrine caused a twofold increase in extracellular ACh levels in the hippocampus of young rats and a sixfold increase in aged rats. The absolute ACh levels at the peak in aged rats were not significantly different from those of young rats. In the object recognition test, aging rats were unable to discriminate between the familiar and novel object. Discrimination was restored by the administration of tacrine at the dose of 1 and 3 mg kg−1, but not 0.3 mg kg−1given 30 min before the first trial. Tacrine (3 mg kg−1p.o.) administered to aging rats before the training trial significantly improved the acquisition of the passive avoidance conditioned response. Our findings demonstrate that tacrine increased both cortical and hippocampal extracellular ACh levels and improved behavioural functions in aged rats.  相似文献   

17.
Starting from the 3-[2-(1-benzylpiperidin-4-yl)ethylamino]-6-phenylpyridazine 1, we performed the design, the synthesis, and the structure-activity relationships of a series of pyridazine analogues acting as AChE inhibitors. Structural modifications were achieved on four different parts of compound 1 and led to the following observations: (i) introduction of a lipophilic environment in the C-5 position of the pyridazine ring is favorable for the AChE-inhibitory activity and the AChE/BuChE selectivity; (ii) substitution and various replacements of the C-6 phenyl group are possible and led to equivalent or slightly more active derivatives; (iii) isosteric replacements or modifications of the benzylpiperidine moiety are detrimental to the activity. Among all derivatives prepared, the indenopyridazine derivative 4g was found to be the more potent inhibitor with an IC(50) of 10 nM on electric eel AChE. Compared to compound 1, this represents a 12-fold increase in potency. Moreover, 3-[2-(1-benzylpiperidin-4-yl)ethylamino]-5-methyl-6-phenylpyridazine 4c, which showed an IC(50) of 21 nM, is 100-times more selective for human AChE (human BuChE/AChE ratio of 24) than the reference compound tacrine.  相似文献   

18.
目的:考察新型胆碱酯酶抑制剂Meserine对胆碱酯酶活性及东莨菪碱(Scopolamine)诱导的胆碱能障碍痴呆模型小鼠学习记忆的影响。方法:选取小鼠脑匀浆、血浆、人源重组AChE(rHuAChE)为体外酶源,测定Meserine抑制AChE/BuChE的活性、选择性及酶动力学。通过鼻腔给药后检测脑部AChE活性和ACh浓度评价Meserine对小鼠脑内胆碱能系统的调节。选用避暗及水迷宫实验考察Meserine对痴呆模型小鼠学习记忆功能的影响。结果:Meserine对AChE和BuChE都具有较好的抑制活性,IC50分别为(65.2±3.2)nmol/L和(86.7±4.9)nmol/L,并对rHuAChE呈现非竞争性抑制。经鼻给药Meserine可显著抑制脑内AChE活性、升高ACh水平,且二者变化的时程具有一致性,给药15min后,AChE抑制活性最强(26.9%),ACh浓度最高(1269.0ng/g)。行为学实验结果显示,经鼻给药Meserine(10μg/kg)能显著改善东莨菪碱诱导的痴呆模型小鼠的工作记忆及空间学习能力,较模型组具有统计学差异(P〈0.OlVS东莨菪碱组)。结论:上述结果提示Meserine为强效非竞争性胆碱酯酶抑制剂,经鼻给药Meserine可通过调节脑内胆碱能系统有效改善东莨菪碱诱导的痴呆模型小鼠的学习记忆功能。  相似文献   

19.
Pregnant Sprague-Dawley rats (14-18 days of gestation) were treated with a single dose of 50 mg/kg (61% of oral LD50 in female rats) of chlorpyrifos ( 0,0-diethyl- 0-3,5,6-trichloro-2-pyridyl phosphorothioate) by oral gavage. Animals treated on day 18 of gestation were sacrificed at 1, 2, 4, 12 h after dosing. Animals treated on days 17, 16, 15, and 14 of gestation were sacrificed at 24, 48, 72, and 96 h after dosing, respectively. Maternal and fetal brain acetylcholinesterase (AchE) and plasma butyrylcholinesterase (BuChE) activities were significantly inhibited 1 h after treatment. Activity of fetal brain AChE and plasma BuChE recovered faster than that of the maternal enzymes. Peak inhibition of maternal spinal cord AChE and BuChE activities occurred 2 h and 1 h after dosing, respectively. Maternal spinal cord BuChE activity was totally recovered by 96 h compared to the partial recovery of spinal cord AChE activity. Maternal liver BuChE activity was significantly decreased within 1 h of dosing. The individual molecular forms (10S and 4S) of maternal and fetal brain AChE and BuChE activities were significantly decreased 1 h after treatment. Recovery of both forms of fetal brain AChE activity was much faster than the maternal forms. Activity of the 10S form of maternal control brain AChE was significantly higher than in the fetus control. The rapid recovery of cholinesterase enzymes in the fetus is attributed to the de novo synthesis of AChE enzymes in the fetus compared to the mother.  相似文献   

20.
After sarin inhalation exposure of rats pretreated with equine serum butyrylcholinesterase (EqBuChE), cholinesterase activities of the whole blood, acetylcholinesterase (AChE) in erythrocytes, pontomedullar area, frontal cortex, and striatum of the brain, and plasma butyrylcholinesterase (BuChE) were determined. Using different doses of EqBuChE as a pretreatment (intraperitoneal injection), dose-dependent increases in plasma BuChE activity and no changes in the erythrocyte and brain AChE activities were demonstrated. Decreases in plasma BuChE activity and red blood cells (RBC) and brain AChE activities were observed in control rats after sarin inhalation exposure without EqBuChE pretreatment. In rats pretreated with EqBuChE, this inhibition was lower compared with control animals not only in the blood but also in the brain structures studied. These results demonstrate protective effects of EqBuChE pretreatment in rats intoxicated with sublethal concentrations of sarin by inhalation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号