首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
计算机辅助脊柱手术导航及其应用进展   总被引:3,自引:0,他引:3  
计算机辅助脊柱手术导航系统(computeraidedsurgerynavigationsystem,CSSNS)是将脊柱三维定位系统、计算机医学图像处理以及三维可视化相结合,辅助医生完成日益复杂的脊柱外科手术和纷繁复杂的内固定操作。其具有创伤小、精度高、辐射少等优点,是脊柱外科中一种方兴未艾的新技术。1手术导航系统的原理及组成1.1手术导航系统的设计原理手术导航系统的原理源于全球卫星定位系统(globalpositioningsystem,GPS)。利用导航系统术前获取脊柱局部CT、MRI、DSA和SPECT等多模医学图像,进行配准和融合后形成二维或三维可视图像。这时的多模图…  相似文献   

2.
计算机辅助脊柱外科手术的应用现状及进展   总被引:3,自引:0,他引:3  
计算机辅助手术(computer aided surgery,or computer assisted surgery,CAS),也称为计算机导航手术、影像导航手术(image-guid edsurgery,IGS),是近十年来脊柱外科迅速发展的一个领域。随着导航系统软硬件技术水平的提高,以及临床实践的反复论证,其直观、客观、精准的优势日益突出,但由于其成本高、使用复杂,尚未能在临床广泛应用。本文将就CAS的临床应用情况和技术进展进行综述。  相似文献   

3.
目的探讨计算机辅助导航技术(computer aided surgery navigation system,CASNS)在脊柱外科手术中的应用价值。方法 2006年2月至2007年6月采用CASNS和传统解剖标志辨认法辅助"C"型臂X线机定位行椎弓根螺钉植入术,各分别治疗15例脊柱伤包括脊柱骨折、脊柱侧凸、颈椎肿瘤及退变患者。术后通过CT等影像学检查判断两组内固定术的植钉准确性。结果 CASNS组共植入椎弓根螺钉125枚,其中优114枚(91.2%),良10枚(8.0%),差1枚(0.8%),优良率为99.2%;徒手植钉组共植入椎弓根螺钉129枚,其中优78枚(60.5%),良32枚(24.8%),差19枚(14.7%),优良率为85.3%。结论应用CASNS行脊柱伤椎弓根螺钉植入的准确性明显优于传统解剖标志辨认法辅助"C"型臂X线机定位法,CASNS显著提高脊柱外科手术的安全性及矫正效果,在脊柱外科手术中具有极高的应用价值。  相似文献   

4.
计算机导航在脊柱外科手术应用实验和临床研究   总被引:7,自引:0,他引:7  
目的探讨计算机导航技术在脊柱外科中的应用价值。方法自2002年12月将红外线主动诱导计算机导航系统应用于脊柱外科,进行了相关的实验和临床研究。实验研究采用40具成人颈椎标本,分别采用盲法、透视法、透视导航法、CT三维导航法和Iso—C术中三维导航法进行下颈椎椎弓根螺钉植入。术后通过大体解剖观察评价植钉的准确性。同时对163例采用不同导航方式(包括透视导航、CT三维导航和Iso—C术中三维导航)辅助下脊柱外科手术进行回顾性分析,通过术后影像学检查判断内固定术的植钉准确性。结果实验研究共植入螺钉398枚。盲法组平均手术时间27min;优29枚(36.3%),良21枚(26.3%),差30枚(37.5%)。透视法组平均手术时间112min;优35枚(44.9%),良29枚(37.2%),差14枚(17.9%)。透视导航法组平均手术时间69min;优34枚(42.5%),良36枚(45.0%),差10枚(12.5%)。CT三维导航法组平均手术时间98min;优70枚(87.5%),良10枚(12.5%),无差的螺钉。Iso—C术中三维导航法组平均手术时间91min;优72枚(90%),良8枚(10%),无差的螺钉。临床病例中,透视导航组共272枚螺钉,优243枚(89.3%),良29枚(10.7%)。CT导航组共571枚螺钉,优485枚(84.9%),良82枚(14.4%),差4枚(0.7%,均发生于早期颈椎手术病例)。Iso—C术中三维导航组共142枚螺钉,优136枚(95.8%),良6枚(4.2%,5枚为颈椎,1枚为腰椎)。结论正确应用计算机导航系统能显著提高脊柱外科手术的安全性。三种导航方法各有优缺点,Iso—C术中三维导航技术具有良好的应用前景并有可能逐渐替代其他两种导航技术。  相似文献   

5.
近年来脊柱外科手术得到了很大发展,但脊柱解剖结构复杂,毗邻重要血管神经,手术难度和风险性很高.同时脊柱手术趋向微创化、精准化,迫切需要更安全有效的技术措施辅助手术.自上世纪90年代以来,计算机辅助骨科手术(computer-assisted orthopedic surgery,CAOS)应运而生,旨在通过手术过程中应用机器人设备或者定位导航系统,从而提高术野的可视度和手术精度.自Nolte等[1]应用计算机辅助微创导航手术系统实施了第1例腰椎椎弓根螺钉内固定术后,计算机辅助手术导航系统逐渐发展,并在脊柱外科手术中广泛应用[2~7].计算机辅助手术导航系统又称图像引导手术导航系统(image-guided surgical navigation system)、图像引导外科手术(image-guided surgery)等.本文将近年来计算机辅助手术导航系统在脊柱外科手术中的应用进展综述如下.  相似文献   

6.
计算机辅助骨科手术(Computer assisted orthopedics surgery,CAOS)即利用各种影像设备如CT、MRI、PET、DSA、US等结合导航系统,对人体骨骼解剖结构及手术器械进行显示和定位,通过计算机制订手术计划,在术中进行操作干预的一项技术.最早应用于神经外科领域的立体定位,肿瘤切除化疗等.其最大的优势是:简化了手术操作,缩短了手术时间,减少了手术创伤,减弱了术中放射线的照射,使骨科手术变得更安全、更准确、更微创。  相似文献   

7.
近年来脊柱外科手术得到了巨大的发展,但脊柱外科解剖结构复杂,毗邻重要血管神经,手术难度和风险性很高,同时脊柱手术趋向微创化精准化,迫切需要新的方法提高手术安全性和降低并发症。20世纪90年代初,导航技术开始被应用到脊柱手术中,旨在提高术野的可视度和手术精度。目前导航系统已经广泛应用到脊柱外科的各个方面,如椎弓根螺钉置入、人工椎间盘置换、脊柱肿瘤手术摘除等。本文将近年来脊柱外科手术导航的应用现状及研究进展综述如下。  相似文献   

8.
计算机辅助手术,也称为计算机导航手术,利用卫星导航原理,通过各种方法 获得图像信息,结合立体定位系统.对人体肌肉骨骼解剖结构进行显示和定位,从而在骨科手术过程中实现无框架立体定位.根据导航的技术原理,导航系统主要包括基于术前CT扫描的三维导航和基于术中C型臂X线荧光透视的二维导航.另外,将术前CT和术中X线或B超进行配准也是研究热点.国内导航研究相对较晚、水平较低.目前,CT导航和X光透视导航是两种最主要的脊柱外科手术导航技术,但各自都存在一定的不足.计算机辅助导航技术是提高手术成功率的有效手段和重要保障.但以目前导航技术的现状来看,还需要继续展开更加深入的研究.  相似文献   

9.
[目的]探讨计算机辅助导航技术在脊柱侧凸手术中的应用价值。[方法]自2006年2月起将计算机辅助导航技术应用于脊柱侧凸外科手术,进行相关的临床研究。分别采用计算机辅助导航技术行椎弓根螺钉植入及传统的解剖标志辨认法辅助X线定位进行椎弓根螺钉植入术,术后通过CT等影像学检查判断两组内固定术的植钉准确性。[结果]10例脊柱侧凸病例共植入椎弓根螺钉114枚。其中5例采用计算机辅助导航手术系统辅助下行椎弓根螺钉植入手术,共植入椎弓根螺钉61枚,其中优56枚(91.8%),良5枚(8.2%),无差的螺钉;另5例采用传统的解剖标志辨认法辅助术中X线定位进行椎弓根螺钉植入术,共植入椎弓根螺钉53枚,其中优30枚(56.6%),良12枚(22.6%),差11枚(20.8%)。[结论]应用计算机辅助导航技术行脊柱侧凸椎弓根螺钉植入准确性明显优于传统的解剖标志辨认法辅助术中X线定位法,计算机辅助导航技术能显著提高脊柱侧凸外科手术的安全性及矫正效果,对脊柱侧凸手术具有极高的应用价值。  相似文献   

10.
计算机辅助手术(computer-assisted surgery,CAS)是综合当今先进的成像设备(如CT,MRI)、计算机技术、空间定位技术等进行图像三维重建及融合。术前充分评估患者的情况,规划手术路径、方案,模拟手术,术中追踪手术器械,引导手术,确定手术范围,从而使外科手术更精确、安全、微创的综合性技术。计算机辅助手术在骨科的应用称为计算机辅助骨科手术(computer-assisted orthopaedic surgery,CAOS)。CAOS技术从20世纪90年代初在欧洲和北美问世以来发展十分迅速。笔者就其在脊柱外科的应用情况做一综述如下.  相似文献   

11.
目的:提出一种正颌外科手术数字化定位方法。方法:根据计算机模拟结果设计基于分离骨段表面特征与空间位置关系的定位板,通过快速成型技术完成数字化定位板的制造,进行模型验证。结果:设计制作出SSRO骨表面划线和定位模板,骨表面定位板可以较为精确的对各骨段间定位,在三维方向贴合良好。结论:骨表面定位板提高了术后骨段间的精确性,是一种较为方便易行的正颌外科辅助定位方法,为进一步研究颌骨的定位分析打下基础。  相似文献   

12.
To develop the new surgical fields of minimally invasive surgery, noninvasive surgery, virtual reality microsurgery, telesurgery, fetal surgery and others in the next century, it is necessary to use various advanced technologies; surgical robots, three-dimensional medical images etc. based on computer technology. Therefore, this new surgical field is called Computer Aided Surgery (CAS). Three-dimensional medical images provide the most recognizable information for medical doctors and the most advanced visualization for surgeons. Surgical robots function as advanced hands for surgeons, but do not perform the same actions as surgeons wielding scissors or scalpel. The advanced vision and hands available to surgeons are creating a new surgical environment. The philosophy behind the development of surgical robots is to assist surgeons in difficult procedures and extend the greatest possible help to patients with incurable disease.  相似文献   

13.
Langlotz F 《Injury》2004,35(Z1):S-A17-23
Computer aided orthopedic surgery (CAOS) systems are becoming more and more frequently used in operating rooms all over the world. While their clinical benefit is no longer doubted, there is considerable potential for using these devices incorrectly At best, mishandling of a CAOS system may lead to prolonged operating times. In the worst case scenario, incorrect navigational feedback is provided, which carries the potential risk of endangering the patient or resulting in an unacceptable surgical outcome. From an economical point of view only the optimal performance of a navigation system will probably justify its significant investment costs. This article summarizes some of the major pitfalls that may occur during surgical navigation. It is structured to reflect different types of CAOS systems, and it presents guidelines on how to avoid most of the problems. In general, a surgeon who wants to apply this technology needs to be very familiar with the system that is used. It is essential to know the basics and the limitations of the underlying technical principles. Otherwise, the large potential that modern CAOS systems make available cannot be exploited effectively for the benefit of the patient.  相似文献   

14.
OBJECT: In this article the authors report on a novel, compact device for magnetic resonance (MR) imaging that has been developed for use in a standard neurosurgical operating room. METHODS: The device includes a permanent magnet with a field strength of 0.12 tesla. The poles of the magnet are vertically aligned, with a gap of 25 cm. When not in use the magnet is stored in a shielded cage in a corner of the operating room; it is easily moved into position and attaches to a regular operating table. The magnet is raised for imaging when needed and may be lowered to allow surgery to proceed unencumbered. Surgical navigation with optical and/or magnetic probes is incorporated into the system. Twenty-five patients have undergone removal of intracranial lesions with the aid of this device. Operations included craniotomy for tumor or other lesion in 18 patients and transsphenoidal resection of tumor in seven. The number of scans ranged from two to five per surgery (average 3.4); image quality was excellent in 45%, adequate in 43%, and poor in 12%. In four patients MR imaging revealed additional tumor that was then resected; in five others visual examination of the operative field was inconclusive but complete tumor removal was confirmed on MR imaging. In 21 patients early postoperative diagnostic MR studies corroborated the findings on the final intraoperative MR image. Using a water-covered phantom, the accuracy of the navigational tools was assessed; 120 data points were measured. The accuracy of the magnetic probe averaged 1.3 mm and 2.1 mm in the coronal and axial planes, respectively; the optical probe accuracy was 2.1 mm and 1.8 mm in those planes. CONCLUSIONS: This device provides high-quality intraoperative imaging and accurate surgical navigation with minimal disruption in a standard neurosurgical operating room.  相似文献   

15.
Electromagnetic tracking has great potential for assisting physicians in precision placement of instruments during minimally invasive interventions in the abdomen, since electromagnetic tracking is not limited by the line-of-sight restrictions of optical tracking. A new generation of electromagnetic tracking has recently become available, with sensors small enough to be included in the tips of instruments. To fully exploit the potential of this technology, our research group has been developing a computer aided, image-guided system that uses electromagnetic tracking for visualization of the internal anatomy during abdominal interventions. As registration is a critical component in developing an accurate image-guided system, we present three registration techniques: 1) enhanced paired-point registration (time-stamp match registration and dynamic registration); 2) orientation-based registration; and 3) needle shape-based registration. Respiration compensation is another important issue, particularly in the abdomen, where respiratory motion can make precise targeting difficult. To address this problem, we propose reference tracking and affine transformation methods. Finally, we present our prototype navigation system, which integrates the registration, segmentation, path-planning and navigation functions to provide real-time image guidance in the clinical environment. The methods presented here have been tested with a respiratory phantom specially designed by our group and in swine animal studies under approved protocols. Based on these tests, we conclude that our system can provide quick and accurate localization of tracked instruments in abdominal interventions, and that it offers a user-friendly display for the physician.  相似文献   

16.
我们利用电脑数字图像处理技术,建立了一个服务于正颌外科的电脑辅助设计系统——正颌外科电脑模拟手术系统,对患者的头颅 X 线定位片进行测量,为正位片提供71项点线距离、角度值和比例值,为侧位片提供68项测量值,并作出诊断;对患者的侧面彩色像进行模拟手术,预测疗效,并将手术移动的数据,量化地提出手术方案,提供临床使用。结果可通过激光打印机和视频打印机进行打印,所有操作可在20 min 内完成。  相似文献   

17.
我们利用电脑数字图像处理技术,建立了一个服务于正颌外科的电脑辅助设计系统──正颌外科电脑模拟手术系统,对患者的头颅X线定位片进行测量,为正位片提供71项点线距离、角度值和比例值,为侧位片提供68项测量值,并作出诊断;对患者的侧面彩色像进行模拟手术,预测疗效,并将手术移动的数据,量化地提出手术方案,提供临床使用。结果可通过激光打印机和视频打印机进行打印,所有操作可在20min内完成。  相似文献   

18.
OBJECTIVE: We report on two years of clinical experience with a frameless Computer Aided Surgery system developed in Bern, Switzerland. MATERIAL AND METHODS: Our navigation system is based on a preoperative computer-tomography (CT) scan (without markers) and an intraoperative optical tracking of head movements and of the surgical instruments. Using landmark and surface-based registration, the skull can be accurately correlated to the CT images. The three-dimensional positions of the surgical instruments, as well as the endoscopic images, are displayed in real time on a monitor. RESULTS: In the last two years, 109 computer-aided interventions have been successfully performed: 89 on the anterior skull base/paranasal sinuses, 15 on the lateral skull base, and 5 minimally invasive procedures on other locations in the skull. No complications occurred. The practical accuracy on the cadaver skull is between 0.5 mm and 1.2 mm, and the clinical accuracy is between 0. 5 mm and 2 mm. CONCLUSIONS: Our navigation system has proven its accuracy and usability. Surgeons feel very comfortable with the increased safety provided by the unequivocal identification of important anatomical structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号