首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New mutations in TK2 gene associated with mitochondrial DNA depletion   总被引:3,自引:0,他引:3  
Mitochondrial deoxyribonucleic acid depletion syndromes are autosomal recessive disorders characterized by a reduction of the amount of mitochondrial deoxyribonucleic acid, which impairs the synthesis of respiratory chain complexes. Mutations in the deoxyguanosine kinase and polymerase gamma genes have been identified in hepatocerebral forms, whereas thymidine kinase 2 gene mutations have been found in patients with isolated myopathy, encephalomyopathy, or spinal muscular atrophy. Mutations in the gene encoding the beta subunit of the adenosine diphosphate-forming succinyl-coenzyme A synthetase have also been reported in a family. In this report, the clinical, molecular, morphologic, and biochemical features of five children from two independent families with an infantile encephalomyopathy are characterized. The affected children manifested muscle mitochondrial deoxyribonucleic acid depletion and three novel thymidine kinase 2 gene mutations. They consist of a homozygous substitution resulting in Ala to Val change at the highly conserved position 181 of thymidine kinase in the first family, and two heterozygous substitutions in the second family: a Cys to Trp change at residue 108 and a Leu to Pro change at residue 257 of the enzyme. Common clinical features associated with these TK2 mutations are a normal early developmental phase followed by psychomotor regression, encephalopathy often with epileptic seizures, and myopathy with features of a progressive dystrophic process.  相似文献   

2.
Alterations in mitochondrial dynamics (fission, fusion, and movement) are implicated in many neurodegenerative diseases, from rare genetic disorders such as Charcot-Marie-Tooth disease, to common conditions including Alzheimer's disease. However, the relationship between altered mitochondrial dynamics and neurodegeneration is incompletely understood. Here we show that disease associated MFN2 proteins suppressed both mitochondrial fusion and transport, and produced classic features of segmental axonal degeneration without cell body death, including neurofilament filled swellings, loss of calcium homeostasis, and accumulation of reactive oxygen species. By contrast, depletion of Opa1 suppressed mitochondrial fusion while sparing transport, and did not induce axonal degeneration. Axon degeneration induced by mutant MFN2 proteins correlated with the disruption of the proper mitochondrial positioning within axons, rather than loss of overall mitochondrial movement, or global mitochondrial dysfunction. We also found that augmenting expression of MFN1 rescued the axonal degeneration caused by MFN2 mutants, suggesting a possible therapeutic strategy for Charcot-Marie-Tooth disease. These experiments provide evidence that the ability of mitochondria to sense energy requirements and localize properly within axons is key to maintaining axonal integrity, and may be a common pathway by which disruptions in axonal transport contribute to neurodegeneration.  相似文献   

3.
4.
Alpers' syndrome is a fatal neurogenetic disorder first described more than 70 years ago. It is an autosomal recessive, developmental mitochondrial DNA depletion disorder characterized by deficiency in mitochondrial DNA polymerase gamma (POLG) catalytic activity, refractory seizures, neurodegeneration, and liver disease. In two unrelated pedigrees of Alpers' syndrome, each affected child was found to carry a homozygous mutation in exon 17 of the POLG locus that led to a Glu873Stop mutation just upstream of the polymerase domain of the protein. In addition, each affected child was heterozygous for the G1681A mutation in exon 7 that led to an Ala467Thr substitution in POLG, within the linker region of the protein.  相似文献   

5.
BACKGROUND: Autosomal recessive mutations in deoxyguanosine kinase (DGUOK) have been identified in the hepatocerebral form of mitochondrial DNA (mtDNA) depletion syndrome. OBJECTIVES: To describe the clinical spectrum of DGUOK-related mtDNA depletion syndrome in 6 children and to summarize the literature. RESULTS: We identified pathogenic mutations in DGUOK in 6 children with the hepatocerebral form of mtDNA depletion syndrome. We describe the clinical, neuroradiologic, histologic, and genetic features in these children. All children showed severe hepatopathy, while involvement of other organs (skeletal muscle and brain) was variable. We identified 5 novel mutations (1 of them in 2 children) and 2 previously described mutations. Three different mutations affected the initial methionine, suggesting a mutational hot spot. One of our patients underwent liver transplantation; pathologic findings revealed (in addition to diffuse hepatopathy) a hepatocellular carcinoma, implying a possible link between mtDNA depletion syndrome and tumorigenesis. CONCLUSION: We studied 12 children with infantile hepatoencephalopathies and mtDNA depletion syndrome and found pathogenic DGUOK mutations in 6, suggesting that this gene defect is a frequent but not an exclusive cause of the hepatic form of mtDNA depletion syndrome.  相似文献   

6.
Mitochondrial DNA depletion syndromes are a heterogeneous group of childhood neurological disorders characterised by a quantitative abnormality of mitochondrial DNA. We describe two siblings who presented at 8 months and 14 months with myopathy, which rapidly progressed and resulted in death by respiratory failure at age 14 and 18 months, respectively. Muscle biopsy revealed marked respiratory chain defects, with real-time PCR confirming a dramatic depletion of mitochondrial DNA. Sequencing of the thymidine kinase 2 (TK2) gene revealed two, novel heterozygous mutations (p.Q87X and p.N100S) with parental DNA analysis confirming the transmission of mutated alleles.  相似文献   

7.
BACKGROUND: Mitochondrial DNA depletion syndrome is an autosomal recessive disorder characterized by decreased mitochondrial DNA copy numbers in affected tissues. It has been linked to 4 genes involved in deoxyribonucleotide triphosphate metabolism: thymidine kinase 2 (TK2), deoxyguanosine kinase (DGUOK), polymerase gamma (POLG), and SUCLA2, the gene encoding the beta-subunit of the adenosine diphosphate-forming succinyl coenzyme A synthetase ligase. OBJECTIVE: To highlight the variability in the clinical spectrum of TK2-related mitochondrial DNA depletion syndrome. DESIGN: Review of patients and the literature. SETTING: Tertiary care university. PATIENTS: Four patients with mitochondrial DNA depletion syndrome and mutations in the TK2 gene. MAIN OUTCOME MEASURES: Definition of clinical variability. RESULTS: Patient 1 had evidence of lower motoneuron disease and was initially diagnosed as having spinal muscular atrophy type 3. Patient 2, who is alive and ambulatory at age 9 years, presented at age 2 years with a slowly progressive mitochondrial myopathy. Patient 3 had a more severe myopathy, with onset in infancy and death at age 6 years of respiratory failure. Patient 4 had a rapidly progressive congenital myopathy with rigid spine syndrome and he died at age 19 months. CONCLUSION: The clinical spectrum of TK2 mutations is not limited to severe infantile myopathy with motor regression and early death but includes spinal muscular atrophy type 3-like presentation, rigid spine syndrome, and subacute myopathy without motor regression and with longer survival.  相似文献   

8.
We describe the clinical, morphological and genetic findings in two siblings with the myopathic form of mitochondrial DNA depletion syndrome (MIM 251880). Sequencing of the thymidine kinase-2 gene revealed two heterozygous missense mutations, a C-->T mutation at nucleotide 191 resulting in a change of threonine to methionine at residue 64 in exon 3, and a C-->T mutation at nucleotide 547 resulting in an arginine to tryptophan amino acid change at residue 183 in exon 8. Both mutations changed highly conserved residues in the gene and neither one has been described previously. This report extends the phenotypic expression of mutations in the thymidine kinase-2 gene.  相似文献   

9.
10.
OBJECTIVE: To document novel homozygous mutations in the gene for deoxyguanosine kinase (DGK) in 3 children with mitochondrial DNA depletion. DESIGN: Clinical features included liver failure, hypotonia, and nystagmus in 2 siblings, and liver cirrhosis, optic dysplasia, nystagmus, and microcephaly in the third patient. We sequenced the whole coding region of the DGK gene. RESULTS: We identified 2 novel homozygous mutations, G352A and C269T, that lead to truncated proteins. CONCLUSION: These data confirm that DGK mutations typically affect the liver and brain.  相似文献   

11.

Background and aims

Mitofusin 1 (MFN1) and MFN2 are outer mitochondrial membrane fusogenic proteins regulating mitochondrial network morphology. MFN2 mutations cause Charcot-Marie-Tooth type 2A (CMT2A), an axonal neuropathy characterized by mitochondrial fusion defects, which in the case of a GTPase domain mutant, were rescued following wild-type MFN1/2 (MFN1/2WT) overexpression. In this study, we compared the therapeutic efficiency between MFN1WT and MFN2WT overexpression in correcting mitochondrial defects induced by the novel MFN2K357T mutation located in the highly conserved R3 region.

Methods

Constructs expressing either MFN2K357T, MFN2WT, or MFN1WT under the ubiquitous chicken β-actin hybrid (CBh) promoter were generated. Flag or myc tag was used for their detection. Differentiated SH-SY5Y cells were single transfected with MFN1WT, MFN2WT, or MFN2K357T, as well as double transfected with MFN2K357T/MFN2WT or MFN2K357T/MFN1WT.

Results

SH-SY5Y cells transfected with MFN2K357T exhibited severe perinuclear mitochondrial clustering with axon-like processes devoid of mitochondria. Single transfection with MFN1WT resulted in a more interconnected mitochondrial network than transfection with MFN2WT, accompanied by mitochondrial clusters. Double transfection of MFN2K357T with either MFN1WT or MFN2WT resolved the mutant-induced mitochondrial clusters and led to detectable mitochondria throughout the axon-like processes. MFN1WT showed higher efficacy than MFN2WT in rescuing these defects.

Interpretation

These results further demonstrate the higher potential of MFN1WT over MFN2WT overexpression to rescue CMT2A-induced mitochondrial network abnormalities due to mutations outside the GTPase domain. This higher phenotypic rescue conferred by MFN1WT, possibly due to its higher mitochondrial fusogenic ability, may be applied to different CMT2A cases regardless of the MFN2 mutation type.  相似文献   

12.
13.
Mitochondrial DNA depletion syndrome is a clinically heterogeneous group of disorders characterized by a reduction in mitochondrial DNA copy number. The recent discovery of mutations in the deoxyguanosine kinase (dGK) gene in patients with the hepatocerebral form of mitochondrial DNA depletion syndrome prompted us to screen 21 patients to determine the frequency of dGK mutations, further characterize the clinical spectrum, and correlate genotypes with phenotypes. We detected mutations in three patients (14%). One patient had a homozygous GATT duplication (nucleotides 763-766), and another had a homozygous GT deletion (nucleotides 609-610); both mutations lead to truncated proteins. The third patient was a compound heterozygote for two missense mutations (R142K and E227K) that affect critical residues of the protein. These mutations were associated with variable phenotypes, and their low frequencies suggests that dGK is not the only gene responsible for mitochondrial DNA depletion in liver. The patient with the missense mutations had isolated liver failure and responded well to liver transplantation, which may be a therapeutic option in selected cases.  相似文献   

14.
15.
Human brains represent only 2%of body mass,but their high relative metabolic activity accounts for~20%of total body adenosine triphosphate(ATP)consumption.ATP generated by neuronal mitochondria fuels nerve signaling and homeostatic repair.In the peripheral nervous system,which has greater capacity for regeneration after physical,toxic or genetic injury than the central nervous system,ATP also powers actin polymerization/depolymerization for growth cone formation and axon extension.Mitochondrial ATP generation is therefore a central component of neuronal functioning in the central and peripheral nervous systems.  相似文献   

16.
Mitochondrial DNA depletion syndrome due to mutations in the RRM2B gene   总被引:3,自引:0,他引:3  
Mitochondrial DNA depletion syndrome (MDS) is characterized by a reduction in mtDNA copy number and has been associated with mutations in eight nuclear genes, including enzymes involved in mitochondrial nucleotide metabolism (POLG, TK2, DGUOK, SUCLA2, SUCLG1, PEO1) and MPV17. Recently, mutations in the RRM2B gene, encoding the p53-controlled ribonucleotide reductase subunit, have been described in seven infants from four families, who presented with various combinations of hypotonia, tubulopathy, seizures, respiratory distress, diarrhea, and lactic acidosis. All children died before 4 months of age. We sequenced the RRM2B gene in three unrelated cases with unexplained severe mtDNA depletion. The first patient developed intractable diarrhea, profound weakness, respiratory distress, and died at 3 months. The other two unrelated patients had a much milder phenotype and are still alive at ages 27 and 36 months. All three patients had lactic acidosis and severe depletion of mtDNA in muscle. Muscle histochemistry showed RRF and COX deficiency. Sequencing the RRM2B gene revealed three missense mutations and two single nucleotide deletions in exons 6, 8, and 9, confirming that RRM2B mutations are important causes of MDS and that the clinical phenotype is heterogeneous and not invariably fatal in infancy.  相似文献   

17.
We studied muscle biopsies from 3 children with a mitochondrial myopathy characterized histochemically by the presence of ragged-red fibers (RRF) and various numbers of cytochrome c oxidase (COX)-negative fibers. We quantitated the absolute amounts of total mitochondrial DNA (mtDNA) in isolated normal COX-positive muscle fibers and in COX-negative RRF. There was severe mtDNA depletion in all fibers from the two most severe cases. In the third case mtDNA depletion could not be established with conventional diagnostic tools, but it was documented in single COX-negative fibers; COX-positive fibers showed the same amounts of mtDNA as fibers from aged-matched controls. Our observations indicate that mtDNA single-fiber PCR quantitation is a highly sensitive and specific method for diagnosing cases with focal mtDNA depletion. This method also allows one to correlate amounts of mtDNA with histochemical phenotypes in individual fibers from patients and age-matched controls, thereby providing important information about the functional role of residual mtDNA. © 1998 John Wiley & Sons, Inc. Muscle Nerve 21: 1374–1381, 1998  相似文献   

18.
The mitochondrial DNA depletion syndromes (MDS) are autosomal recessive disorders with a decreased mitochondrial DNA copy number. Mutations in thymidine kinase 2 (TK2) have been responsible for the myopathic form of MDS. We describe a child with congenital muscle weakness who had a progressive mitochondrial myopathy associated with extensive fibro-fatty replacement of myofibers resembling muscular dystrophy. MDS was suspected based upon findings in the initial muscle biopsy. Sequence analysis of the TK2 gene revealed two novel heterozygous mutations: the frame shift mutation, c.255_c.258delAGAA, and the heterozygous missense mutation, c.515G>A, (p.R172Q). This report extends the phenotype and genotype of TK2 defects.  相似文献   

19.
Novel mitochondrial DNA mutations in Parkinson's disease   总被引:2,自引:0,他引:2  
Summary. Despite the recent discovery of several chromosomal gene mutations in familial Parkinson's disease (PD) the genetic background for idiopathic PD remains to be elusive. Since the discovery of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) action on dopaminergic neuronal cells and the specific decrease of mitochondrial complex I activity in substantia nigra of PD patients mitochondrial biochemistry and genetics emerged to become Pandora's box in the pathogenesis of PD. One approach was to establish the potential role of defective mitochondrial DNA (mtDNA). As complex I genes are the most vulnerable part of mtDNA we analyzed the mitochondrial MTND1 and MTND2 genes of 10 substantia nigra and 85 platelet samples from PD patients. We were uneventful to detect heteroplasmic base changes even applying techniques able to visualize mutations with low percentage of heteroplasmy but here we report novel homoplasmic base changes. These results add further evidence that there are no inherited disease specific mtDNA mutations, hence individual homoplasmic mutations or very low grade heteroplasmic mutations in the vicinity of mitochondrial metabolism and oxidative stress may contribute to selective neuronal vulnerability in PD. Received February 4, 2002; accepted February 27, 2002  相似文献   

20.
Wong LJ 《Muscle & nerve》2007,36(3):279-293
More than 200 disease-related mitochondrial DNA (mtDNA) point mutations have been reported in the Mitomap (http://www.mitomap.org) database. These mutations can be divided into two groups: mutations affecting mitochondrial protein synthesis, including mutations in tRNA and rRNA genes; and mutations in protein-encoding genes (mRNAs). This review focuses on mutations in mitochondrial genes that encode proteins. These mutations are involved in a broad spectrum of human diseases, including a variety of multisystem disorders as well as more tissue-specific diseases such as isolated myopathy and Leber hereditary optic neuropathy (LHON). Because the mitochondrial genome contains a large number of apparently neutral polymorphisms that have little pathogenic significance, along with secondary homoplasmic mutations that do not have primary disease-causing effect, the pathogenic role of all newly discovered mutations must be rigorously established. A scoring system has been applied to evaluate the pathogenicity of the mutations in mtDNA protein-encoding genes and to review the predominant clinical features and the molecular characteristics of mutations in each mtDNA-encoded respiratory chain complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号