首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Galanin is a peptide normally expressed at low levels both in sensory and in sympathetic neurons. It is strongly upregulated after peripheral nerve lesions, and it has been proposed that nerve growth factor (NGF) plays a role in this regulation. In the present study the effect of both sciatic nerve transection and lumbar sympathectomy on galanin in lumbar dorsal root ganglia (DRGs) was examined in mice overexpressing NGF (NGFOE) in the skin under the keratin promoter. The superior cervical ganglia (SCG) were also studied. In the DRG pericellular baskets containing tyrosine hydroxylase- (TH) and galanin-like immunoreactivity (LI) were found, mostly in the same fibers. Galanin-positive baskets were also found in the trigeminal ganglia. However, only single neuropeptide Y (NPY)-positive baskets were observed within the DRGs. No marked difference in number of galanin-positive neurons was seen between wild-type and NGFOE mice. After sciatic nerve transection galanin was upregulated in DRG neurons to about the same extent in NGFOE mice as in wild-type mice. Galanin-, but not TH-LIs decreased in the pericellular baskets. After lumbar sympathectomy both galanin- and TH-immunoreactive baskets disappeared, suggesting a sympathetic origin. In the SCG the very low galanin mRNA levels were strongly increased after lesion of the carotid nerves, both in wild-type and in NGFOE mice. However, whereas NPY mRNA levels decreased in the SCG after axotomy in the wild-type mice, there was a distinct increase in the NGFOE mice. Our results show that high NGF levels in skin induce formation of pericellular baskets in DRGs expressing galanin- and TH-LI and that galanin in these baskets is strongly influenced by peripheral axotomy. However, overexpression of NGF did not markedly influence galanin expression in DRG neurons, neither normally nor after nerve lesions. Finally, expression of NPY in sympathetic ganglia is differently regulated in NGFOE compared to wild-type mice.  相似文献   

2.
Using double-labeling techniques for both in situ hybridization and immunohistochemistry some peptides and peptide receptors were studied quantitatively in a sensory and a sympathetic ganglion after axotomy. In the lumbar 5 dorsal root ganglion (DRG) normally no neuropeptide Y- and only a few galanin-positive cell bodies are seen. Following complete transection of the sciatic nerve around 60% of all neuropeptide Y (NPY) neuron profiles (NPs) were galanin positive (+) and 33-44% of all galanin NPs were NPY(+). A good agreement between immunohistochemistry and in situ hybridization was observed for NPY and galanin. NPY Y1- and Y2-receptor (R) mRNAs were found in around 40% of all NPY mRNA(+) NPs, and more than half of the Y1-R mRNA(+) NPs and two-thirds of the Y2-R mRNA(+) NPs were NPY(+). In addition, more than one-third of the galanin mRNA-containing NPs showed colocalization with NPY receptor mRNAs and up to 70% of the Y2-R mRNA(+) NPs also expressed galanin mRNA. In the control superior cervical ganglion (SCG) 10% of the NPY(+) NPs were Y2-R mRNA(+), and 85% of the Y2-R(+) NPs were NPY mRNA(+), and the corresponding percentages after axotomy were around 35 and 45%, respectively. Following axotomy of the carotid nerves around half of all NPY(+) NPs were galanin(+), and conversely around 50% of all galanin NPs were NPY(+) at the mRNA level, whereas much lower percentages (15 and 9%, respectively) were observed with immunohistochemistry. These results demonstrate that double-labeling procedures are valid tools to quantitatively evaluate coexistence situations in sensory and sympathetic ganglia, showing a high degree of coexistence for NPY and galanin in axotomized neurons both in the lumbar 5 DRG and in the SCG. However, the immunohistochemical analysis in the SCG demonstrated much lower numbers of peptide-positive neurons than seen with in situ hybridization, suggesting that the latter technique is more sensitive. The fact that a considerable number of neurons express NPY together with Y1- and/or Y2-Rs indicates that both receptors may act as autoreceptors, the Y1-R presumably at the level of the cell body and the Y2-R on nerve terminals in the dorsal horn and/or the periphery. The present results also show that in both sensory and sympathetic neurons there is a strong upregulation of the Y2-R after nerve injury, suggesting a possible role in trophic and regenerative events.  相似文献   

3.
Using double-labeling techniques for both in situ hybridization and immunohistochemistry some peptides and peptide receptors were studied quantitatively in a sensory and a sympathetic ganglion after axotomy. In the lumbar 5 dorsal root ganglion (DRG) normally no neuropeptide Y- and only a few galanin-positive cell bodies are seen. Following complete transection of the sciatic nerve around 60% of all neuropeptide Y (NPY) neuron profiles (NPs) were galanin positive (+) and 33–44% of all galanin NPs were NPY+. A good agreement between immunohistochemistry and in situ hybridization was observed for NPY and galanin. NPY Y1- and Y2-receptor (R) mRNAs were found in around 40% of all NPY mRNA+ NPs, and more than half of the Y1-R mRNA+ NPs and two-thirds of the Y2-R mRNA+ NPs were NPY+. In addition, more than one-third of the galanin mRNA-containing NPs showed colocalization with NPY receptor mRNAs and up to 70% of the Y2-R mRNA+ NPs also expressed galanin mRNA. In the control superior cervical ganglion (SCG) 10% of the NPY+ NPs were Y2-R mRNA+, and 85% of the Y2-R+ NPs were NPY mRNA+, and the corresponding percentages after axotomy were around 35 and 45%, respectively. Following axotomy of the carotid nerves around half of all NPY+ NPs were galanin+, and conversely around 50% of all galanin NPs were NPY+ at the mRNA level, whereas much lower percentages (15 and 9%, respectively) were observed with immunohistochemistry. These results demonstrate that double-labeling procedures are valid tools to quantitatively evaluate coexistence situations in sensory and sympathetic ganglia, showing a high degree of coexistence for NPY and galanin in axotomized neurons both in the lumbar 5 DRG and in the SCG. However, the immunohistochemical analysis in the SCG demonstrated much lower numbers of peptide-positive neurons than seen with in situ hybridization, suggesting that the latter technique is more sensitive. The fact that a considerable number of neurons express NPY together with Y1- and/or Y2-Rs indicates that both receptors may act as autoreceptors, the Y1-R presumably at the level of the cell body and the Y2-R on nerve terminals in the dorsal horn and/or the periphery. The present results also show that in both sensory and sympathetic neurons there is a strong upregulation of the Y2-R after nerve injury, suggesting a possible role in trophic and regenerative events.  相似文献   

4.
5.
Using in situ hybridization, the expression of the mRNA for a neuropeptide Y (NPY) receptor, was studied in lumbar (L) 4 and 5 dorsal root ganglia (DRGs) of normal rats and at various intervals after unilateral sciatic nerve transection. Twenty percent of all normal DRG neurons were NPY receptor mRNA-positive, and the majority of these neurons were of the small type, with only a few labelled medium-sized and large neurons. In L5 normal ganglia NPY receptor mRNA colocalized with substance P, calcitonin gene-related peptide and galanin mRNAs in small neurons, but not in medium-sized or large neurons containing these peptides. NPY receptor mRNA was not observed in somatostatin or nitric oxide synthase mRNA-positive neurons. Sciatic nerve transection induced a marked decrease in NPY receptor mRNA levels. However, in parallel there was a transient increase in the number of NPY receptor mRNA-positive small neuron profiles, but the intensity of labelling was mostly very low, although a few strongly labelled, small neuron profiles were also encountered. In addition, axotomy caused a marked increase in the number of NPY receptor mRNA-positive large neuron profiles in the ipsilateral DRGs, and they constituted 15–20% of counted DRG neuron profiles and 45–65% of counted large neuron profiles, 7–28 days after axotomy. In L5 DRGs, ipsilateral to the axotomy, NPY receptor mRNA colocalized with NPY mRNA in many large and some medium-sized neuron profiles, with galanin mRNA in some small, medium-sized and large neuron profiles and with vasoactive intestinal polypeptide mRNA in some small and medium-sized neuron profiles and a few large profiles. Occasionally, NPY receptor mRNA was observed in nitric oxide synthase mRNA-positive small neurons. In the dorsal horn, NPY receptor mRNA-positive small neurons were concentrated in lamina II at L4 and L5 levels, and were scattered in deeper laminae. No marked changes were observed ipsilateral to the axotomy. No NPY receptor mRNA-positive cells were found in the normal rat gracile nucleus, or in this nucleus after axotomy. These results show that a NPY receptor may be a prejunctional receptor in primary afferent neurons and play a role in the modulation of somatosensatory information, both in normal and lesioned primary afferent DRG cells. However, axotomy induced a distinct shift in NPY receptor mRNA expression from small to large neurons, indicating that sensitivity to NPY is switched from one modality to another. Thus, not only several sensory neuropeptides, as shown in previous studies, but at least also one of the peptide receptors change their expression dramatically in response to axotomy, suggesting complex adaptive responses.  相似文献   

6.
The trunk neural crest of vertebrate embryos gives rise to dorsal root ganglion (DRG) sensory neurons and autonomic sympathetic neurons, among other derivatives. We have examined the development of DRG and sympathetic neurons during development in the zebrafish. We found that sensory neurons differentiate rapidly and that their overt neuronal differentiation significantly precedes that of sympathetic neurons in the trunk. Sympathetic neurons in different regions differentiate at different times. The most rostral population, which we call the cervical ganglion, differentiates several days before trunk sympathetic neurons. After undergoing overt neuronal differentiation, sympathetic neurons subsequently express the adrenergic differentiation markers dopamine beta-hydroxylase and tyrosine hydroxylase. A second population of adrenergic nonneuronal cells initially localized with cervical sympathetic neurons appears to represent adrenal chromaffin cells. In more mature fish, these cells were present in clusters within the kidneys. Individual DRG and sympathetic ganglia initially contain few neurons. However, the number of neurons in DRG and sympathetic ganglia increases continuously at least up to 4 weeks of age. Analysis of phosphohistone H3 expression and bromodeoxyuridine incorporation studies suggests that the increases in DRG and sympathetic ganglion neuronal cell number are due wholly or in part to the division of neuronal cells within the ganglia.  相似文献   

7.
Synthesis of leukemia inhibitory factor (LIF) is increased in lesioned peripheral nerves and it is thought that this may cause increased expression of galanin (GAL) in axotomized dorsal root ganglia (DRG) neurons and also to promote axonal regeneration. We therefore compared effects of LIF and nerve growth factor (NGF) on galanin expression and axonal growth using cultured intact DRGs of adult mice. In control lumbar DRGs cultured for 3 days, only 16% of neurons were immunoreactive for GAL, but this was increased to 38% in preparations cultured with LIF. NGF by itself had no effect on GAL expression, but the proportion of GAL-positive neurons in cultures incubated with LIF and NGF together (22%) was less than that observed in DRGs cultured with LIF alone. Similar results were obtained using thoracic DRGs. In collagen gels, NGF caused marked increases in the numbers and lengths of outgrowing axons as observed in previous studies. In contrast, LIF did not stimulate axonal outgrowth but increased the proportions of axons which were immunoreactive for GAL. The results indicate that expression of LIF in lesioned nerves may affect expression of neuropeptides such GAL rather than stimulating axonal regeneration.  相似文献   

8.
Peripheral neurons begin to express galanin after axotomy. When neurons in the superior cervical ganglion were axotomized near (about 2 mm) from the ganglion, galanin-like immunoreactivity (IR) was maximal within 72 h. Axotomy of neurons in the middle and inferior cervical ganglion complex (MICG), which could be performed 2 cm from the ganglia, led to an additional galanin increase 7 and 14 days later. This second increase was not accompanied by changes in galanin mRNA or the number of galanin-immunostained neurons. Galanin-IR was detectable in a postganglionic trunk of the MICG 2 days after axotomy. At this time, immunoreactive fibers were only seen near the lesion site, while later they were found throughout the trunk. The data suggest that galanin is actively transported toward the site of nerve crush/transection and that the second increase in galanin-IR found in the MICG may be due to a saturation of the axonal transport system.  相似文献   

9.
Dahlin LB  Stenberg L  Kanje M 《Neuroreport》2003,14(3):359-362
Galanin is probably involved in nociceptive sensory processing in spinal cord. We investigated whether a common injury, peripheral nerve compression, induced up-regulation of galanin (immunocytochemistry) in sensory neurons in rats 6 or 14 days post-injury and compared the response with other nerve injuries. Sciatic nerve compression increased the number of galanin positive sensory neurons as compared to uninjured and contralateral dorsal root ganglia. Complete transection was more efficient than a partial transection and a slight compression injury as an inducer of galanin. Mainly small diameter sensory neurons became positive but also some large diameter neurons. We conclude that nerve compression up-regulates galanin in sensory neurons. The extent of the induction could be related to the severity of nerve injury.  相似文献   

10.
Transgenic over-expression of galanin in injured primary sensory neurons   总被引:2,自引:0,他引:2  
The 29 amino acid neuropeptide galanin is normally expressed in < 5% of sensory neurons in the adult dorsal root ganglia. After nerve transection (axotomy), the galanin content of the dorsal root ganglia rises 120-fold and the peptide is then expressed in > 50% of neurons. Published data suggest that galanin plays a role in the modulation of pain processing and may be involved in the regeneration of sensory neurons. Here we describe the initial characterisation of a new line of transgenic mice that selectively over-express galanin in the dorsal root ganglia in an inducible manner following axotomy of the sciatic nerve, but not in the uninjured state. Results of acute thermal or mechanosensory pain tests are normal in intact transgenic animals when compared to wild-type controls. The generation of these novel transgenic animals will be most useful as genetic tools to further elucidate the role played by galanin in the adaptive response of the peripheral nervous system to injury.  相似文献   

11.
This study demonstrates the localization and regulation of a novel neuropeptide of 33 amino acids, secretoneurin (SN), in the rat superior cervical ganglion. Gel filtration chromatography of ganglion proteins followed by a specific radioimmunoassay revealed that SN is the predominant cleavage product of secretogranin II, a member of the chromogranin/secretogranin protein family, in adult ganglia. SN was detected within the majority of nerve endings surrounding postganglionic neurons that were identified by the presence of synaptophysin and, in part, colocalized leu-encephalin. Applying immuno-electronmicroscopy, SN was localized to large dense core vesicles of neuronal and small intensely fluorescent (SIF) cells. In situ hybridization revealed the presence of secretogranin II mRNA in postganglionic neurons and, to a lesser extent, in SIF cells. One week after transection of the postganglionic branches SN levels were not significantly altered; however, a decrease of secretogranin II mRNA was observed in postganglionic neurons but not in SIF cells. After decentralization of the ganglion, SN-immunoreactive nerve terminals disappeared and intraganglionic SN levels were reduced by 70%, indicating the preganglionic origin of SN-positive nerve fibres and varicosities. Secretogranin II mRNA was slightly reduced under this condition. Combined axotomy and decentralization further diminished intraganglionic secretogranin II mRNA, although peptide levels increased significantly above control values under these conditions. Double-labelling immunofluorescence with antibodies against the somatodendritic marker microtubule-associated protein 2 (MAP2) revealed that the increase in SN immunoreactivity was due to an accumulation of SN in axonal processes of postganglionic neurons. SN immunoreactivity was also detected in dissociated neonatal superior cervical ganglion cultures and increased significantly upon treatment with nerve growth factor, the survival and differentiation factor of sympathetic neurons during perinatal development. Co-culture with non-neuronal cells or addition of leukaemia inhibitory factor, a cytokine known to stimulate synthesis of various peptides after nerve transection, did not influence SN immunoreactivity. Therefore, since no fixed relationship between SN and any of the known neuropeptides or neurotransmitters expressed in sympathetic neurons was observed, the expression of this novel peptide appears to be independently regulated.  相似文献   

12.
Neuropeptides and neurotrophin receptors are regulated in primary sensory neurons in response to axonal injury, and axonal lesions are characteristic stigmata of aging primary sensory neurons. We have therefore examined the expression of neuropeptides and neurotrophin receptor mRNAs in 30-month-old (median survival age) Sprague-Dawley rats to see if similar adaptive mechanisms operate in senescence. The content of neuropeptides was examined with immunohistochemistry (IHC) and in situ hybridization (ISH), and the cellular mRNA expression of neurotrophin receptors was studied with ISH. All of the aged rats had symptoms of hind limb incapacity (posterior paralysis), but fore limbs did not seem affected. The size-distribution of neuronal profiles in cervical and lumbar dorsal root ganglia (DRGs) was similar in aged and young adult (2–3 months old) rats. In aged rats, the DRG neurons showed an increase in both immunolabelling and mRNA content of neuropeptide tyrosine (NPY), as well as an increased cellular expression of galanin mRNA. In the same animals, there were decreased cellular levels of calcitonin gene-related peptide (CGRP; IHC and ISH) and substance P (SP; IHC and ISH), while the difference in neuronal somatostatin (IHC and ISH) was small. The distribution of neuropeptide immunoreactivities in the dorsal horn of the corresponding spinal cord segments revealed a decreased labelling for CGRP-, SP-, and somatostatin-like immunoreactivities (LI) in the aged rats at both cervical and lumbar levels. NPY- and galanin-LI had a similar distribution in aged and young adult rats. NPY-immunoreactive fibers were also encountered in the dorsal column of aged but not young adult rats. ISH revealed that most of the primary sensory neurons express mRNA for the p75 low-affinity neurotrophin receptor (p75-LANR) and that there was no discernible difference between young adult and aged rats. The labelling intensity for mRNA encoding high-affinity tyrosine kinase receptors (TrkA, TrkB, and TrkC) was decreased in aged rat DRG neurons, while the percentage of neuronal profiles expressing mRNA for TrkA/B/C was similar in young adult and aged rats. The changed pattern of neuropeptide expression in primary sensory neurons of aged rats resembled that seen in young adult rats subjected to axonal injury of peripheral sensory nerves and may, thus, indicate aging-related lesions of sensory fibers. Since NPY is primarily present in large and galanin in small DRG neurons, the stronger effect on NPY as compared to galanin expression may indicate that aging preferentially affects neurons associated with mechanoreception (Aα and Aβ fibers) as compared to nociceptive units (A and C fibers). Furthermore, the observed changes in neuropeptide expression were most pronounced in lumbar DRGs, that harbors the sensory neurons supplying the affected hindlimbs of the rats. © 1996 Wiley-Liss, Inc.  相似文献   

13.
Axotomy of superior cervical (sympathetic) ganglia (SCG) results in increased neuropeptide gene expression. In vitro, neuropeptide gene expression is similarly increased by exposure to the inflammatory cytokine interleukin-1 (IL-1). The effect of IL-1 in vitro has been shown to be mediated by leukemia inhibitory factor (LIF). Since IL-1 regulates neuropeptide expression via LIF in vitro, we asked whether axotomy in vivo produces an increase in LIF mRNA, and whether that increase is regulated by IL-1 activity. Within 6 h following axotomy, ganglionic LIF mRNA is substantially elevated. Moreover, axotomy produces a rapid and transient increase in intraganglionic IL-1β mRNA, followed rapidly by an increase in ICAM-1 mRNA, thereby suggesting a local source of IL-1 activity. Pretreatment with the anti-inflammatory agent dexamethasone (DEX) reduces the increases of both IL-1β and LIF mRNAs following axotomy. mRNA encoding the specific signal-transducing Type I IL-1 receptor is present in unlesioned SCG in vivo, and increases following axotomy. Local application of IL-1β in vivo induces LIF mRNA even in uninjured ganglia, though not to the extent seen with axotomy. DEX treatment blocks this IL-1β-mediated increase in LIF mRNA. Therefore, DEX blocks the induction of LIF mRNA by inhibiting both the production of IL-1 and its action on LIF gene expression. Axotomy of a homozygous IL-1 receptor type I gene knockout mouse leads to a delayed and/or diminished induction of LIF mRNA in SCG, but does not prevent LIF mRNA expression. We conclude that while IL-1 is likely to be involved in the cascade of gene expression that follows axotomy, it alone is not sufficient to mediate the full induction of LIF mRNA by axotomy.  相似文献   

14.
Using immunohistochemistry and in situ hybridization, we studied changes in expression of some neuropeptides in large and medium-sized neurons in lumbar 4 and 5 rat dorsal root ganglia projecting to the gracile nucleus, in response to peripheral axotomy. Fourteen days after unilateral sciatic nerve transection, many large neurons and some medium-sized neurons in ipsilateral dorsal root ganglia were strongly neuropeptide Y-positive. Galanin-, vasoactive intestinal polypeptide (VIP)- and peptide histidine-isoleucine (PHI)-like immunoreactivities coexisted with neuropeptide Y-like immunoreactivity in some of these neurons. After axotomy numerous large and medium-sized cells contained neuropeptide Y mRNA in the ipsilateral ganglia, whereas no hybridization was seen in the contralateral or control ganglia. Cross-sectioned, large neuropeptide Y-positive fibres were observed in a somatotopically appropriate zone within the ipsilateral gracile fasciculus. A dense network of neuropeptide Y-immunoreactive, large nerve fibres and terminals was seen in the ipsilateral gracile nucleus. A small number of galanin- and VIP/PHI-like immunoreactive nerve fibres and terminals were also observed in adjacent sections. Neuropeptide Y-like immunoreactivity colocalized with galanin- or VIP/PHI-like immunoreactivity in some nerve fibres. None of these neuropeptide immunoreactivities could be detected in nerve fibres and terminals in the control or contralateral gracile nucleus. These findings suggest that neuropeptides, in addition to their role in small dorsal root ganglion neurons, may have a function in large and medium-sized dorsal root ganglion neurons projecting to laminae III and IV in the dorsal horn as well as to the gracile nuclei, as a part of their response to peripheral axotomy.  相似文献   

15.
Selective motor nerve injury by lumbar 5 ventral root transection (L5 VRT) induces neuropathic pain, but the underlying mechanisms remain unknown. Previously, increased expression and secretion of brain-derived neurotrophic factor (BDNF) had been implicated in injury-induced neuropathic pain in the sensory system. In this study, as a step to examine potential roles of BDNF in L5 VRT-induced neuropathic pain, we investigated BDNF gene and protein expression in adult rats with L5 VRT. L5 VRT induced a dramatic upregulation of BDNF mRNA in intact sensory neurons in the ipsilateral L5 dorsal root ganglia (DRG), in non-neuronal cells in the ipsilateral sciatic nerve, and in motoneurons in the ipsilateral spinal cord. L5 VRT also induced de novo synthesis of BDNF mRNA in spinal dorsal horn neurons and in glial cells in the white matter of the ipsilateral spinal cord. Consistent with the mRNA expression pattern, BDNF protein was also mainly upregulated in all populations of sensory neurons in the ipsilateral L5 DRG and in spinal neurons and glia. Quantitative analysis by ELISA showed that the BDNF content in the DRG and sciatic nerve peaked on day 1 and remained elevated 14 days after L5 VRT. These results suggest that increased BDNF expression in intact primary sensory neurons and spinal cord may be an important factor in the induction of neuropathic pain without axotomy of sensory neurons.  相似文献   

16.
The distribution of dorsal root ganglion (DRG) cell sizes that show changes in preprotachykinin (PPT) gene expression and substance P (SP) levels following axotomy was examined using RNA blot analysis, in situ hybridization histochemistry, and immunocytochemistry. PPT mRNA was induced in medium-sized (1,000–2,000 μm2) and large-sized (>2,000 μm2) cells in the DRG after axotomy. There was a 165% increase in the number of labeled cells after sciatic transection and a 260% increase after spinal nerve transection which results in axotomy of all the cells in the ganglion. The further increase after spinal nerve transection suggests that the induction occurred in axotomized neurons. PPT mRNA label was also present in a reduced number of small (<1,000 μm2) cells after axotomy. SP immunoreactivity was also induced in medium-and large-sized cells and reduced in small-sized cells. Our findings suggest that the expression of the PPT gene and SP is differentially regulated in different subpopulations of DRG neurons after axotomy and is consistent with the hypothesis that tachykinins may be important in both sensory transmission and regeneration. © 1994 Wiley-Liss, Inc.  相似文献   

17.
Phosphatidylinositol 3-kinase (PI3-kinase) enzymes are key signalling molecules in the PC12 and neuronal cell survival pathway and are also involved in the regulation of retrograde axonal transport of nerve growth factor (NGF), with sympathetic neurons more sensitive to the effects of wortmannin/LY294002 than sensory neurons (Bartlett et al. [1997]; Brain Res. 761:257-262; Reynolds et al. [1998] Brain Res. 798:67-74). In this article, we characterized the mRNA expression of PI3-kinase isoforms in mouse sympathetic superior cervical ganglia (SCG) and sensory trigeminal ganglia (TGG) and examined the subcellular locations of immunoreactivity of the PI3-kinase isoforms in mouse cultured SCG and dorsal root ganglion (DRG) neurons. Both the SCG and the TGG express mRNA for the p110alpha, beta, gamma, delta, and vps34p PI3-kinase isoforms, but the TGG and not the SCG express mRNA for the p170 PI3-kinase isoform. In cultured SCG and DRG neurons, p110alpha, beta, and gamma immunoreactivity is in the SCG and DRG growth cones, and predominantly in puncta throughout the growth cone varicosity. However, in the cell bodies immunoreactivity varied, p110alpha is localized predominantly at the plasma membrane, while p110beta and gamma is localized in the perinuclear region of the cells. In addition, unlike other cell types, wortmannin has little effect on actin filament polymerization in either mouse cultured SCG or DRG neurons.  相似文献   

18.
BB rats lose >50% of their islet sympathetic nerve terminals soon after diabetes onset, markedly impairing the glucagon response to activation of these nerves. In this study, we sought evidence that this degree of disease-induced nerve terminal damage affected their neuronal cell bodies. Increased galanin expression was used as a marker of the change of phenotype that occurs in neuronal cell bodies when their axons are severely damaged. The celiac ganglion (CG) was analyzed because it is a major source of the sympathetic nerves that project to the pancreatic islets. But we first needed to determine if damaging nerve terminals could increase galanin expression in this ganglion and, if so, when that expression was maximal. Severe, global nerve terminal damage produced a dramatic increase of CG galanin expression which was maximal 5 days later. We next determined if a global, but partial, nerve terminal loss would also increase galanin expression and found a significant increase of galanin mRNA and its peptide in the CG. Finally, we determined if the disease-induced, partial and islet-selective loss of nerve terminals seen in BB diabetic rats was sufficient to increase galanin: we, again, found a significant increase of galanin mRNA and its peptide in their CG. These increases did not occur in their superior cervical ganglia. We conclude that the selective damage to islet sympathetic nerve terminals seen in BB diabetic rats, rather than the systemic factors of diabetic hyperglycemia or insulin deficiency, causes the increased galanin expression observed in the CG of this animal model of type 1 diabetes.  相似文献   

19.
Expression of the protein products of the immediate-early genes (IEGs), members of the fos, jun and krox families (Jun, Fos, and Krox, resp.) was investigated in the spinal cord and sensory ganglia (DRG) of normal rats; and following transection of, block of axonal transport in, or electrical stimulation of their peripheral axons. The nuclei of many moto- and DRG neurons showed a faint basal immunoreactivity (IR) for Jun proteins, but not for Fos or Krox proteins. There was a strong and selective induction of Jun-IR in moto- and DRG neurons after peripheral nerve transection or crush, or colchicine- or vinblastine-induced block of axonal transport. The Jun-IR induced by nerve transection disappeared after nerve regeneration. In contrast, Jun, Fos and Krox proteins were all induced transynaptically in spinal dorsal horn neurons following electrical stimulation of the C-fibers in the afferent nerves. Thus in differentiated neurons in vivo these IEG proteins can be expressed either independently or concomitantly depending on the type of stimulus.  相似文献   

20.
Sympathectomy has been shown to result in an increased density of fibers immunoreactive for sensory peptides in peripheral targets innervated by both sensory and sympathetic neurons, providing evidence for functional interactions between sympathetic and sensory systems. These findings provided the background for examining the hypothesis that axonal outgrowth is induced from sensory neurons following sympathectomy. We examined the expression of GAP-43 mRNA, a specific marker for axonal outgrowth, in cervical (C3, C7, C8) and thoracic (T1, T2) dorsal root ganglia (DRG) of the rat following bilateral removal of the superior cervical ganglion, to assess whether the described increases in peptidergic afferent fibers reflected axonal outgrowth. In situ hybridization was used with 35S labeled riboprobes complementary to GAP-43 mRNA, and to calcitonin gene-related peptide (CGRP) mRNA, a marker for a major subset of thin-fiber sensory neurons. The density of GAP-43 mRNA nearly doubled by 18 h following sympathectomy and reached a threefold increase by 3 days. By 45 days following surgery, the GAP-43 mRNA level was still nearly twice that of normal animals. CGRP immunoreactivity was also examined: the density of fibers in the iris and cornea of sympathectomized animals was considerably greater from two weeks to 45 days following surgery, than in sham-operated controls. Concomitantly, there was a slight but significant increase in CGRP mRNA expression in T1 and C3 DRG 14 days postsympathectomy. Quantitative computerized image analysis demonstrated that GAP 43 mRNA expression in sympathectomized animals was 1.5 times greater in medium-sized DRG neurons and almost fourfold greater in small DRG neurons than in control rats. These results indicate that sympathetic denervation elicits axonal outgrowth in the population of sensory neurons that give rise to the small unmyelinated and thinly myelinated axons of peripheral nerves. Copyright © 1997 Elsevier Science Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号