首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the wealth of research investigating the serial reaction time (SRT) learning abilities of people with Parkinson's disease (PD), the role of the basal ganglia in implicit sequence learning remains largely unclear. The present research sought to examine the ability of people with PD to implicitly learn simultaneously operating sequences and integrate patterned information from each sequence dimension. Using a version of the SRT which reduced motor demands, the present experiment investigated the implicit learning of a spatial sequence, a stimulus-response sequence, and an integrated spatial/stimulus-response sequence, all of which are usually confounded in the standard SRT task. Whereas both PD and control groups demonstrated robust learning for the individual spatial and response sequences, only control participants evidenced learning for the integrated sequence. Further, unlike implicit learning for the spatial and object sequences, impaired integrated sequence acquisition was specifically related to the severity of patients' PD symptomatology. The implicit learning deficits of PD patients are discussed with regard to the role played by the basal ganglia in integrative sequence learning in the SRT.  相似文献   

2.
Evidence suggests that patients suffering from Parkinson's Disease (PD) demonstrate less sequence learning in the serial reaction time (SRT) task devised by Nissen and Bullemer (1987). One of the problems with this task is that it is motor intensive and, given the motor difficulties which characterize Parkinson's disease (e.g., tremor, impaired facility of movement, rigidity, and loss of postural reflexes), allows the possibility that patients with PD are capable of sequence learning but are simply unable to demonstrate this through a decrease in reaction time over trials. The present study examined the performance of patients with PD and healthy controls, matched for verbal fluency, on a verbal version of the SRT task where the standard button-pressing response was replaced by a spoken response. Thirteen nondementing patients with PD and 11 healthy controls were administered the SRT task. The PD group demonstrated less sequence learning than the controls and this was independent of age and severity of illness. The results add support to those studies which have found impaired sequence learning using the standard form of the SRT task.  相似文献   

3.
We investigated the acquisition of sequence movements in Parkinson's disease (PD) by means of the serial reaction time (SRT) task. To this end, we used a sample of PD patients that fell within the same stage of the disease. Sixteen PD patients and 16 age-, sex- and education-matched control subjects performed the SRT task with a first-order conditional (FOC) sequence and with a second-order conditional (SOC) sequence. The results showed that the group of PD patients could be divided into two distinct subgroups: a fast PD patient subgroup (n=11) and a slow PD patient subgroup (n=5). FOC and SOC sequence learning in faster PD patients proved to be highly comparable to the group of controls. In contrast, learning of FOC and SOC sequences was severely impaired in slower PD patients. Since slow PD patients also scored lower on measures of cognitive functioning than faster PD patients, we assume that the deficits in SRT learning of the former reflect some more general cognitive impairment. This indicates that SRT performance can provide additional information about the cognitive abilities of PD patients, and accordingly may contribute to disease screening.  相似文献   

4.
The purpose of the study was to test the hypothesis that Huntington's disease (HD) is associated with impairment of procedural learning. We identified 13 patients with mild to moderate HD whose manual performance was still sufficiently intact to assess learning on the serial reaction time (SRT) task. Twelve age-matched neurologically normal control subjects were studied as well. The SRT task was a four-choice reaction time task in which the stimuli followed a sequence (10 items in length) which repeated itself 10 times during each of the first four blocks of trials. During the fifth block of trials, the stimuli were random. Learning was manifested by a reduction in response latency over the first four blocks and an increase in response latency in the fifth (random) block. Learning in this task has been demonstrated in other amnesics of other etiologies. The HD patients were significantly impaired on sequence-specific learning, using the log-transformed reaction time data (P less than 0.004). In addition, in an individual-by-individual analysis, five of the HD patients and none of the control subjects failed to show sequence-specific learning, a difference in proportions that was significant (P less than 0.04). No feature of the standard cognitive or motor assessment of the HD patients was associated with efficacy of procedural learning. HD, including patients with mild disease, was associated with a deficit in procedural learning, consistent with the hypothesis that the striatum plays a critical role in supporting procedural learning.  相似文献   

5.
A high prevalence of deficits in explicit learning has been reported for schizophrenic patients, but it is less clear whether these patients are impaired in implicit learning. Deficits in implicit learning indicative of a fronto-striatal dysfunction have been reported using a serial reaction-time task (SRT), but the impact of typical neuroleptic medication and chronicity remains controversial. The present study compared 37 patients with first-episode schizophrenia treated with atypical neuroleptics and 37 healthy matched control participants on two sequence learning tasks: a modified SRT for implicit sequence learning and a serial generation task (SGT) for explicit sequence learning. The two tasks were designed to be procedurally equivalent, in order to provide better comparability between implicit and explicit performance. Although unaffected in global cognitive functioning, schizophrenic patients were significantly impaired in implicit and explicit sequence learning. Deficient sequence learning in schizophrenic patients was neither related to psychopathology nor to chlorpromazine equivalent daily dosage. As performance was impaired even though patients were exclusively treated with atypical neuroleptics, the present findings concur with converging evidence of a sequence learning deficit inherent in schizophrenia. This deficit would be consistent with a fronto-striatal dysfunction and might constitute a crucial factor for the acquisition of new information.  相似文献   

6.
The defining feature of Developmental Coordination Disorder (DCD) is the marked impairment in the development of motor coordination (DSM-IV-TR, American Psychiatric Association, 2000). In the current study, we focused on one core aspect of motor coordination: learning to correctly sequence movements. We investigated the procedural, visuo-motor sequence learning abilities of 18 children with DCD and 20 matched typically developing (TD) children, by means of the serial reaction time (SRT) task. Reaction time measurements yielded two important findings. Overall, DCD children demonstrated general learning of visuo-motor task demands comparable to that of TD children but failed to learn the visuo-motor sequence. Interestingly, a sequence recall test, administered after the SRT task, indicated some awareness of the repeating sequence pattern. This suggests that the sequence learning problems of DCD children might be located at the stage of motor planning rather than sequence acquisition.  相似文献   

7.
Procedural deficit hypothesis claims that language deficit in children with specific language impairment is affiliated to sequence learning problems. However, studies did not explore on aspects of grammar vulnerable to sequence learning deficits. The present study makes predictions for aspects of grammar that could be sensitive to procedural deficits based on core ideas of procedural deficit hypothesis. The hypothesis for the present study was that the grammatical operations that require greater sequencing abilities (such as inflectional operations) would be more affected in children with language impairment. Further, the influence of sequencing difficulties would be even greater in agglutinating inflectional languages. An adapted serial reaction time task for sequence learning measurements along with grammatical tasks on derivation, inflection, and sentence complexity were examined on typically developing and language impaired children. Results were in favor of procedural deficit hypothesis and its close relation to non-adjacent grammatical operations. The findings were discussed using procedural deficits, declarative compensatory mechanism, and statistical learning deficits.  相似文献   

8.
Studies of reaction time in Parkinson's disease (PD) have suggested a selective deficit in simple reaction time (SRT), compared with choice reaction time (CRT). This finding has been interpreted as a deficit in motor preprogramming but could involve other factors, such as attentional focussing and stimulus predictability. Moreover, not all studies show the same selective deficit, possibly because of differences in patient selection and treatment effects. The neurochemical basis of RT deficits in PD remains unclear. Accordingly, the contribution of cognitive factors to impaired RT was assessed in a large group of PD patients, including early untreated cases, and performance was examined in relation to clinical variables and the effect of treatment in longitudinal study. Motor output was constant in both SRT and CRT tasks. In the SRT task, all stimuli required a response; in the CRT task, subjects were required to respond to only one of the two possible stimuli. Attentional focussing on SRT was examined by variation of the interval between cue and stimulus; effects of stimulus uncertainty were evaluated from a comparison of SRT and CRT; temporal predictability of the stimulus was examined from a comparison of conditions in which the interval between warning signal and imperative stimulus was constant or variable. The PD patients showed similar deficits in SRT and CRT, but normal effects of cue-stimulus interval and temporal predictability. Reaction time correlated with measures of global cognitive capacity and frontal-lobe function, as well as motor disability. Treatment had no effect on SRT or CRT, despite clinical benefit. These findings indicate that RT deficits in PD are not due to impaired attentional focussing or stimulus predictability but are compatible with a deficit in higher-order processes concerned with the orientation of both cognitive and motor responses to a stimulus. These processes are not substantially dopamine-dependent but may be served by non-dopaminergic neurotransmission.  相似文献   

9.
A current model proposes that memory consists of two functionally separate systems that have different neurological substrates. Declarative memory appears to be dependent on the diencephalic medial temporal lobe system whereas some speculate that the basal ganglia may be a neurological substrate for procedural memory. This study tested the role of the basal ganglia in regulating different types of procedural skills by comparing performance on a motor and a visuoperceptual skill learning task. Twenty Parkinson's (PD) patients and 20 normal control subjects performed two procedural learning tasks (rotary pursuit and mirror reading) and one declarative learning task (paired associates) over 3 days. The results showed that PD patients were not impaired on mirror reading or paired associate learning. On rotary pursuit, performance levels on day 1 were similar between groups, but the PD group showed less improvement across days than controls. However, only patients with more advanced symptoms of PD showed impaired rotary pursuit learning, and this could not be attributed directly to deficits in primary motor or general cognitive function. These findings suggest that the underlying processes/procedures for procedural learning are specific to the task, and are supported by different neuroanatomical systems.  相似文献   

10.
Abstract

A current model proposes that memory consists of two functionally separate systems that have different neurological substrates. Declarative memory appears to be dependent on the diencephalic medial temporal lobe system whereas some speculate that the basal ganglia may be a neurological substrate for procedural memory. This study tested the role of the basal ganglia in regulating different types of procedural skills by comparing performance on a motor and a visuoperceptual skill learning task. Twenty Parkinson's (PD) patients and 20 normal control subjects performed two procedural learning tasks (rotary pursuit and mirror reading) and one declarative learning task (paired associates) over 3 days. The results showed that PD patients were not impaired on mirror reading or paired associate learning. On rotary pursuit, performance levels on day 1 were similar between groups, but the PD group showed less improvement across days than controls. However, only patients with more advanced symptoms of PD showed impaired rotary pursuit learning, and this could not be attributed directly to deficits in primary motor or general cognitive function. These findings suggest that the underlying processes/procedures for procedural learning are specific to the task, and are supported by different neuroanatomical systems.  相似文献   

11.
Using functional magnetic resonance imaging (fMRI), we examined the distribution of cerebral activations related to implicitly learning a series of fixed stimulus-response combinations. In a novel - bimanual - variant of the Serial Reaction Time task (SRT), simultaneous finger movements of the two hands were made in response to pairs of visual stimuli that were presented in a fixed order (Double SRT). Paired stimulus presentation prevented explicit sequence knowledge occurring during task practice, which implied that a dual task paradigm could be avoided. Extensive prescanning training on randomly ordered stimulus pairs allowed us to focus on the acquisition of implicit sequence knowledge. Activation specifically related to the acquisition of fixed sequence knowledge was highly significant in the right ventrolateral prefrontal cortex. The medial prefrontal and right ventral premotor cortex were more indirectly related with such procedural learning. We conclude that this set of activations reflects a stage of implicit sequence learning constituted by components of (i) spatial working memory (right ventral prefrontal cortex), (ii) response monitoring and selection (medial prefrontal cortex), and (iii) facilitated linkage of visuospatial cues to compatible responses (right ventral premotor). Comparing the random-order stimulus-response actions with fixed sequences showed activations in dorsal premotor and posterior parietal cortices, consistent with a dorsal pathway dominance in real-time visuomotor control. The relative long time during which performance improves in the DoSRT provides an opportunity for future study of various stages in both general skill and fixed sequence learning.  相似文献   

12.
Implicit (unconscious/incidental) and explicit (conscious/intentional) learning are considered to have distinct neural substrates. It is proposed that implicit learning is mediated by the basal ganglia (BG), while explicit learning has been linked to the medial temporal lobes (MTL). To test such a dissociation we investigated implicit and explicit sequence learning in Parkinson's disease (PD), a disorder characterized by striatal dysfunction. We studied both implicit and explicit learning of a 12-item sequence of target locations in 13 PD patients and 15 age-matched controls. In the implicit sequence learning task all participants completed 10 blocks of a probabilistic serial reaction time (SRT) task in which they were exposed to the sequence without explicit knowledge of it. Participants also completed between 1 and 10 blocks of an explicit sequence learning task in which the sequence was learned deliberately by trial-and-error. Both implicit and explicit sequence learning were significantly impaired in PD patients compared to controls. The results indicate that, in addition to playing a role in implicit sequence learning, the BG and its frontal projections are also involved in explicit sequence learning.  相似文献   

13.
The purpose of the present study was to explore the possibility of a procedural learning deficit among children with developmental coordination disorder (DCD). We tested 34 children aged 6–12 years with and without DCD using the serial reaction time task, in which the standard keyboard was replaced by a touch screen in order to minimize the impact of perceptuomotor coordination difficulties that characterize this disorder. The results showed that children with DCD succeed as well as control children at the procedural sequence learning task. These findings challenge the hypothesis that a procedural learning impairment underlies the difficulties of DCD children in acquiring and automatizing daily activities. We suggest that the previously reported impairment of children with DCD on the serial reaction time task is not due to a sequence learning deficit per se, but rather due to methodological factors such as the response mode used in these studies.  相似文献   

14.
Smith JG  McDowall J 《Brain research》2006,1067(1):216-228
Although there is strong evidence that human category learning is mediated by qualitatively distinct systems, the neural substrates of procedural category learning remain largely unclear. The present research sought to investigate the role of the basal ganglia in the acquisition of categorical knowledge via an examination of the ability of people with Parkinson's disease (PD) to learn an artificial grammar (AG) system in a format akin to habit learning tasks such as probabilistic classification learning. Eighteen nondemented patients with PD were compared with 22 matched controls on a task modified so that participants' grammar learning depended on making use of feedback provided on each trial. Results showed that patients with PD exhibited abnormal AG learning, with the deficit more pronounced early in the task. Impaired categorisation performance in patients was not related to declarative knowledge obtained during the test and was independent of frontal functioning. The findings presented here indicate that prior inconsistencies across category learning tasks in PD performance may be explained, at least in part, by whether the task necessitates the formation of associations between stimulus cues and categorical responses, and support the hypothesis that the basal ganglia play a specific role in procedural learning in complex feedback-based categorisation tasks.  相似文献   

15.
In general, declarative learning is associated with the activation of the medial temporal lobes (MTL), while the basal ganglia (BG) are considered the substrate for procedural learning. More recently it has been demonstrated the distinction of these systems may not be as absolute as previously thought and that not only the explicit or implicit nature of the memory task alone is important for the distinction of MTL or BG systems. Nevertheless, patients with BG dysfunction - such as patients with Parkinson's disease (PD) or Huntington's disease (HD) - are considered to be impaired at implicit learning. However, a more recent study demonstrated that one implicit learning task, probabilistic classification learning (examples include the weather prediction (WPT) and Mr. Potato Head tasks) is only impaired in PD when it involves learning with corrective feedback (FB) but not when it involves learning in a paired associate (PA) manner, without feedback. Therefore, it has been argued that the presence of feedback rather than the implicit nature of these tasks determines whether or not the BG are recruited. As patients with HD as well as those with PD, have also been shown to be impaired on the standard FB based version of probabilistic classification learning, the question remains as to whether or not there is a similar selective deficit in FB but not PA based probabilistic classification learning in HD. 18 patients with early HD and 18 healthy controls completed FB and PA versions of the WPT task. Relative to controls, HD patients were selectively impaired at WPT learning with feedback. These findings are consistent with previous evidence from studies of probabilistic classification learning in PD. Unlike PD, selective deficits in WPT learning in HD cannot be attributed to the effects of dopaminergic medication and must be directly related to BG dysfunction; for instance even in early HD, only 50% of the neurons in the medial head of caudate remain. We conclude that the striatum is important for WPT learning with feedback. Our findings are consistent with imaging evidence showing recruitment of the caudate during FB based WPT learning, while the MTL is associated with PA based learning.  相似文献   

16.
It is assumed that learning on the Serial Reaction Time (SRT) task is related to learning involved in social skill development affected in autism, but this assumption has hardly been investigated. We have therefore examined associations between SRT task learning and social impairment measured by the Social Responsiveness Scale in 72 autistic and non-autistic adults. Results revealed a positive correlation between deterministic sequence learning, putatively involving explicit learning, and social impairment in autistic adults but not in non-autistic adults. No correlations with probabilistic learning were found. These results suggest that the type of learning that helps autistic adults during a deterministic SRT task hinders them during social development, and call for further investigating the ecological validity of the SRT task.  相似文献   

17.
Vulnerability for schizophrenia is related, in part, to genetic predisposition. The identification of pathophysiological abnormalities associated with the disorder that are also present in unaffected family members of individuals with schizophrenia may assist in delineating the genetic contributions to vulnerability for schizophrenia. Previous functional Magnetic Resonance Imaging (fMRI) investigations of procedural learning in patients with schizophrenia identified reduced activity in the frontal cortex, basal ganglia, and parietal cortex during performance of the serial reaction time (SRT) task suggesting that abnormal function of these regions may relate to genetic vulnerability for schizophrenia. In order to examine this hypothesis, 12 unaffected siblings of patients and 15 controls underwent fMRI during performance of the SRT task. Unaffected siblings demonstrated normal performance on the SRT task. However, compared to controls unaffected siblings demonstrated less activity in regions of the frontal and parietal lobes and, to a lesser extent, basal ganglia, during procedural learning. Interestingly, unaffected siblings demonstrated greater activity in regions of the frontal cortex during the control condition compared to the procedural learning condition of the SRT task, an idiosyncratic pattern that was also observed in patient groups but not control subjects of two prior imaging studies. The findings support previous investigations suggesting that altered cerebral neurophysiology during performance of cognitive tasks may be related to genetic vulnerability for schizophrenia. Identification of genes related to the function of cerebral regions such as the prefrontal cortex, parietal lobe, and basal ganglia may assist in delineating the genetic contributions to schizophrenia.  相似文献   

18.
This study examined retention of procedural learning, using the serial reaction time (SRT) task, over a 1- or 2-week delay in Alzheimer's disease (AD) patients and elderly control (EC) subjects. The SRT task is a four-choice reaction-time task consisting of blocks of 100 trials. A 10-item repeating sequence was embedded in the first four blocks of trials in session one and the first two blocks of session two. Sequence-specific learning was assessed in session one by comparing reaction time (RT) in the fourth block with a repeating sequence to a fifth block in session one in which the stimuli were randomly arranged. After excluding subjects with deficient session one learning, there were eight AD patients and 14 EC subjects who showed robust sequence-specific learning in session one. In these subjects, retention of sequence-specific learning over the 1- to 2-week delay was examined. The AD patients and EC subjects showed an equivalent change in RT across sessions, and all the AD patients lacked any declarative knowledge of the repeating sequence within the task. Individually, two of the eight AD patients appeared to deviate substantially from the others and from the EC subjects in their excess slowing of RT across sessions. Since six AD patients did show retention similar to the EC subjects, it is concluded that at least some AD patients show normal retention of implicitly acquired knowledge over a long delay. Preserved retention in some of the AD patients implies that it is mediated by brain structures that are not affected by the Alzheimer neuropathological process.  相似文献   

19.
Abstract

This study examined retention of procedural learning, using the serial reaction time (SRT) task, over a 1- or 2-week delay in Alzheimer's disease (AD) patients and elderly control (EC) subjects. The SRT task is a four-choice reaction-time task consisting of blocks of 100 trials. A 10-item repeating sequence was embedded in the first four blocks of trials in session one and the first two blocks of session two. Sequence-specific learning was assessed in session one by comparing reaction time (RT) in the fourth block with a repeating sequence to a fifth block in session one in which the stimuli were randomly arranged. After excluding subjects with deficient session one learning, there were eight AD patients and 14 EC subjects who showed robust sequence-specific learning in session one. In these subjects, retention of sequence-specific learning over the 1- to 2-week delay was examined. The AD patients and EC subjects showed an equivalent change in RT across sessions, and all the AD patients lacked any declarative knowledge of the repeating sequence within the task. Individually, two of the eight AD patients appeared to deviate substantially from the others and from the EC subjects in their excess slowing of RT across sessions. Since six AD patients did show retention similar to the EC subjects, it is concluded that at least some AD patients show normal retention of implicitly acquired knowledge over a long delay. Preserved retention in some of the AD patients implies that it is mediated by brain structures that are not affected by the Alzheimer neuropathological process.  相似文献   

20.
A number of studies have investigated procedural learning in dyslexia using serial reaction time (SRT) tasks. Overall, the results have been mixed, with evidence of both impaired and intact learning reported. We undertook a systematic search of studies that examined procedural learning using SRT tasks, and synthesized the data using meta-analysis. A total of 14 studies were identified, representing data from 314 individuals with dyslexia and 317 typically developing control participants. The results indicate that, on average, individuals with dyslexia have worse procedural learning abilities than controls, as indexed by sequence learning on the SRT task. The average weighted standardized mean difference (the effect size) was found to be 0.449 (CI95: .204, .693), and was significant (p < .001). However, moderate levels of heterogeneity were found between study-level effect sizes. Meta-regression analyses indicated that studies with older participants that used SRT tasks with second order conditional sequences, or with older participants that used sequences that were presented a large number of times, were associated with smaller effect sizes. These associations are discussed with respect to compensatory and delayed memory systems in dyslexia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号