首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Biogenic amine levels in the mid-term human fetus   总被引:1,自引:0,他引:1  
Spectrophotofluorometric assays were used to measure concentrations of DA, NA, 5-HT and 5-HIAA present in extracts of brain tissue and CSF taken from midterm gestational fetuses of both sexes. The presence of biogenic amines was demonstrated in fetuses as early as 10.5 weeks gestation. In the hypothalamus, the concentrations (expressed in ng/100 mg tissue) ranged from 10.2 to 62.2 for NA, 11.6 to 258.8 for DA, 7.6 to 38.6 for 5-HT and 56.6 to 114.1 for 5-HIAA. Concentrations of DA and 5-HT were found to be significantly (P less than 0.05) higher in the hypothalamus than in the cortex, but those of NA and 5-HIAA were similar in both areas. No sex difference was observed. The concentrations of biogenic amines in the CSF (expressed in ng/ml) were 63.1-286.7 for NA, 43.2-108.1 for DA, 30.9-87.5 for 5-HT and 8.0-42.8 for 5-HIAA.  相似文献   

2.
The effects of predictable and unpredictable shock on concentrations of serotonin (5-hydroxytryptamine, 5-HT), 5-hydroxyindoleacetic acid (5-HIAA), tryptophan (TP) and noradrenaline (NA) have been studied in 7 regions of rat brain. Two separate experiments have been carried out determining these substances both at 30 min and 2 h after the stress session. Unpredictable shock depleted NA levels in all brain regions except the striatum. However, at 2 h poststress NA in these regions increased significantly in comparison with both controls and predictably shocked rats. Predictable shock also decreased NA in locus coeruleus, brainstem and hypothalamus, which was not observed 2 h later. Both predictable and unpredictable shock decreased 5-HT in brainstem and hypothalamus. At 2 h poststress, 5-HT levels in these regions were still decreased in predictably shocked rats, but had attained control values in unpredictably shocked rats. 5-HT metabolism expressed as the 5-HIAA/5-HT ratio, was significantly increased 30 min after predictable shock in all regions except the locus coeruleus and hippocampus. Unpredictable shock produced a much more marked increase in 5-HIAA/5-HT ratio. At 2 h poststress 5-HT metabolism returned to control values in most of the brain regions of predictably shocked animals, but it remained high after unpredictable shock. The activation of serotonergic metabolism following each type of shock is different according to the nucleus in which the 5-HT nerve endings originate. Only slight increases in tryptophan were observed after both types of shock. Our results suggest that unpredictable shock is perceived as a more anxiogenic situation and that under this condition both 5-HT and NA levels are more effectively normalized with time.  相似文献   

3.
Endogenous levels of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were determined by high-performance liquid chromatography (HPLC) in specific regions of the pigeon central nervous system (CNS). High endogenous 5-HT levels in the visual wulst and brainstem and medium 5-HT content in the optic lobes were found. The cerebellum and retina showed low endogenous 5-HT levels. Similar endogenous 5-HIAA levels were measured in the visual wulst, optic lobes and brainstem, whereas the 5-HIAA content of the cerebellum and retina was significantly lower. The effects of para-chloroamphetamine (p-CA) and 5,7-dihydroxytryptamine (5,7-DHT) on the 5-HT and 5-HIAA content of the same regions were studied. Six days after p-CA treatment, the 5-HT content of the visual wulst, optic lobes, brainstem and the 5-HIAA content of the optic lobes and cerebellum markedly decreased. Nine days after 5,7-DHT administration, the 5-HT and 5-HIAA content of the visual wulst and optic lobes was significantly reduced. At longer survival times, serotonergic systems were differentially affected depending on both the neurotoxin treatment and the specific brain regions examined. The 5-HT content of the pigeon retina was not modified by p-CA treatment, whereas 5,7-DHT intravitreally injected caused a pronounced 5-HT depletion. Our results demonstrate that selective neurotoxins for serotonergic systems can provide a useful denervation tool for the study of serotonergic function in the pigeon CNS.  相似文献   

4.
Tanii H  Zang X  Saito N  Saijoh K 《Brain research》2000,887(2):454-459
Nitriles are a class of compounds with potential relevance to human health. Allylnitrile, one of nitriles, induces persistent behavioral abnormalities in mice. To explore what type of neuronal system is involved in these behavioral abnormalities, five neuronal markers, gamma-aminobutyric acid (GABA), tyrosine hydroxylase, serotonin, the serotonin transporter and choline acetyltransferase were immunohistochemically examined within various brain structures in allylnitrile and vehicle-treated mice. Allylnitrile induced changes in the immunolabelling of GABA in the medial habenula, interpeduncular nucleus, substantia nigra, dorsal raphe nucleus and median raphe nucleus; the amount of immunolabelling decreased in all of these brain structures except the medial habenula at 2 days postdosing, and increased in all of these structures at 14 days postdosing. Allylnitrile also induced changes in the amount of immunolabelling of tyrosine hydroxylase in the arcuate nucleus, substantia nigra pars compacta, locus coeruleus and caudoventrolateral reticular nucleus at either 2 or 14 days postdosing, depending on the structures. No immunohistochemical change was seen for serotonin, serotonin transporter and choline acetyltransferase. The present results suggest that the GABAergic systems through the medial habenula-interpeduncular nucleus-ascending raphe nuclei relay and through the substantia nigra may be involved in allylnitrile-induced behavioral abnormalities.  相似文献   

5.
The effects of R(+)-8-hydroxy-dipropylaminotetralin (8-OHDPAT) administration into the dorsal raphe nucleus (DRN) or bilaterally into the dorsal hippocampus (HIP) on fear behavior in a modified version of the light-dark transitions test and regional brain monoamines (NA, DA, 5-HT) and their metabolites (MHPG, DOPAC, 5-HIAA) in the hypothalamus, midbrain central gray matter, amygdala, hippocampus and pons were examined. The experiments were performed on 36 male, 3-month old Wistar rats. Administration of 8-OHDPAT (200 ng) into the DRN reduced time out from the illuminated part of the chamber and time of motionless behavior in the illuminated part, increased the number of returns from the dark to illuminated part and number of head dipping from the dark to illuminated part without effect on time of motionless behavior in the dark part and on time of locomotor activity in the illuminated as well as in dark part of the chamber. HPLC analysis showed reduction of 5-HT content in the midbrain and amygdala, reduction of 5-HIAA content in pons, increased 5-HIAA/5-HT ratio in the hippocampus and increased DOPAC/DA ratio in the hypothalamus, midbrain, hippocampus and pons without affecting the MHPG/NA ratio and NA content. The administration of 8-OHDPAT (100 ng per site) into the HIP reduced time out from the illuminated part of chamber, time of locomotor activity in the illuminated part and head dipping from the dark to illuminated part without effect on the number of returns from the dark to illuminated part, time of locomotor activity in the dark part and time of motionless in the illuminated as well as in the dark part of chamber. HPLC analysis showed reduction of NA content in the hypothalamus, amygdala and pons, increased the MHPG content in all the investigated structures, increased MHPG/NA ratio in all the investigated structures except the hypothalamus. Dopamine content decreased in the hypothalamus and amygdala, and DOPAC/DA ratio increased in the amygdala and hippocampus. Concentrations of 5-HT, 5-HIAA and 5-HIAA/5-HT ratio were unchanged. The results obtained indicate that 8-OHDPAT acting on the pre-synaptic 5-HT1A receptors decreases fear behavior and acting on 5-HT1A post-synaptic receptors increases fear behavior in the light-dark transitions test. The neurochemical base of anxiolytic and anxiogenic effects evoked by 8-OHDPAT is being discussed.  相似文献   

6.
The aim of this study was to determine histamine content in the brain and the effect of histamine receptor antagonists on behavior of adult rats lesioned as neonates with the serotonin (5-HT) neurotoxin 5,7-dihydroxytryptamine (5,7-DHT). At 3 days after birth Wistar rats were pretreated with desipramine (20 mg/kg ip) before bilateral icv administration of 5,7-DHT (37.5 μg base on each side) or saline—ascorbic (0.1%) vehicle (control). At 10 week levels of 5-HT and its metabolite 5-hydroxyindole acetic acid (5-HIAA) were determined in frontal cortex, striatum, and hippocampus by an HPLC/ED technique. In the hypothalamus, frontal cortex, hippocampus and medulla oblongata, the level of histamine was analyzed by an immunoenzymatic method. Behavioral observations (locomotion, exploratory-, oral-, and stereotyped activity) were performed, and effects of DA receptor agonists (SKF 38393, apomorphine) and histamine receptor antagonists S(+)chlorpheniramine (H1), cimetidine (H2), and thioperamide (H3) were determined. We confirmed that 5,7-DHT profoundly reduced contents of 5-HT and 5-HIAA in the brain in adulthood. Histamine content was also reduced in all examined brain regions. Moreover, in 5,7-DHT-lesioned rats the locomotor and oral activity responses to thioperamide were altered, and apomorphine-induced stereotype was intensified. From the above, we conclude that an intact central serotoninergic system modulates histamine H3 receptor antagonist effects on the dopaminergic neurons in rats.  相似文献   

7.
Adult intact, or castrated testosterone propionate (TP, 150 μg/kg) treated male rats, were tested for masculine sexual behavior after having been injected with 5,7-dihydroxytryptamine (5,7-DHT, 4 μg/4 ml) intracerebrally either alone or in combination with systemic treatment with protriptyline, a noradrenaline (NA) re-uptake blocking agent. No changes were found in the sexual behavior of intact rats although the brain 5-HT levels were reduced to about one-third of their normal value. By contrast, there was a marked increase in the proportion of rats showing ejaculation patterns in the castrate + TP group after 5,7-DHT lesion than in the vehicle-injected group.Compared to the control group, the 5,7-DHT group showed a reduced uptake of [3H]5-HT and [3H]NA in the hypothalamus. Also the uptake of [3H]amines in the cerebral cortex was lowered although the difference did not attain statistical significance. A statistically significant relationship was found between the behavioral changes and the reduction of [3H]5-HT uptake in the hypothalamus while no such relationship was found between the NA uptake and the behavioral changes.Tistochemical analysis of the site of the 5,7-DHT injections showed that the unspecific damage (nerve cell loss, glial cell infiltration) involved a somewhat larger area in the 5,7-DHT group than in the controls. These unspecific lesions were, however, located outside the region of the large medial 5-HT bundle.The results support the hypothesis that 5-HT serves as a transmitter in the neural processes underlying masculine sexual behavior and, further, points to one component of the ascending 5-HT projections which innervates inter alia the hypothalamus as being of particular importance in this context.  相似文献   

8.
The aim of this work is to define neurotoxins doses to have efficient and specific depletion of noradrenaline (NA), serotonin (5-HT) neurotransmission in cortex, striatum, hippocampus and hypothalamus of Swiss mice after intraperitoneal administration of, respectively, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4) and para-chlorophenylalanine methyl ester hydrochloride (PCPA). The neurotransmitters concentrations were determined by high performance liquid chromatography with amperometric detection. The minimal single dose necessary to produce a highly significant decrease of NA levels (p<0.01 in comparison with control group) in hypothalamus (-44%), hippocampus (-91%), striatum (-40%) and cortex (-68%) was 50mg/kg but DA and 5-HT levels were modified, respectively, in hypothalamus and striatum. Three doses of PCPA 300 mg/kg over 3 consecutive days involve a profound depletion of 5-HT transmission in all discrete brain areas but NA and DA levels were also significantly reduced. In conclusion, DSP-4 has a different efficacy in discrete brain areas with a noradrenergic specificity which is not absolute, PCPA has a similar efficacy in all brain areas but is unspecific of 5-HT transmission.  相似文献   

9.
The time course of degeneration and regeneration of serotonin (5-HT) fibers in the rat hypothalamus was studied with 5-HT immunocytochemistry and [3H]5-HT uptake following unilateral injections of 5,7-dihydroxytryptamine (5,7-DHT) into the dorsolateral hypothalamus. Within 3 days of the lesion, 5-HT fibers in the ipsilateral hypothalamus were swollen and darkly stained for 5-HT. In the contralateral hypothalamus few swollen fibers were apparent and these were generally restricted to the area adjacent to the fornix. Swollen 5-HT fibers were evident in the ipsilateral hypothalamus 3-19 days post-lesion in the medial forebrain bundle (MFB) during which time there was a gradual decrease in their density. In the medial and periventricular areas of the ipsilateral hypothalamus there were essentially no 5-HT fibers 7-30 days post-lesion. Sprouting 5-HT fibers were observed 12-19 days post-lesion. Thirty days post-lesion the density of 5-HT fibers in the MFB appeared normal; however, medial and periventricular areas remained denervated. Fifty days post-lesion there was an apparent bilateral hyperinnervation in the lateral and dorsomedial hypothalamic areas of 5,7-DHT-injected animals as compared to sham-injected animals. The morphological data were paralleled by changes in [3H]5-HT uptake. Seven days post-lesion specific high affinity uptake was reduced to 27% of sham in the ipsilateral hypothalamus and to 53% of sham in the contralateral hypothalamus. By 50 days post-lesion, specific high affinity uptake of [3H]5-HT was 141% of sham in the ipsilateral hypothalamus and 96% of sham in the contralateral hypothalamus.  相似文献   

10.
Effect of thiamine deficiency on brain serotonin turnover   总被引:1,自引:0,他引:1  
Serotonin turnover has been investigated in regional brain areas of rats made thiamine deficient by pyrithiamine (PT). Following intracisternal injection of [14C]5-hydroxytryptamine ([14C]5-HT), a marked increase in the accumulation of [14C]5-hydroxyindoleacetic acid ([14C]5-HIAA) was found in the medulla-pons, hypothalamus and cerebral cortex. [14C]5-HT levels were normal in all of the brain areas except the cerebral cortex which had an increase of 58%. The ratio of [14C]5-HIAA/[14C]5-HT was significantly increased in every brain region of PT-treated rats except the cerebral cortex. Part of this increase in [14C]5-HIAA was shown to be due to impairment of active transport of this 5-HT metabolite out of the brain. However, increased 5-HT synthesis in the cerebellum, hypothalamus, striatum, hippocampus and cerebral cortex was demonstrated by measurement of 5-HT accumulation after inhibition of brain monoamine oxidase. PT-induced increase in endogenous 5-HIAA in the medulla-pons occurred simultaneously with the onset of neurological signs and both parameters were reversible by thiamine administration. These results suggest that acute thiamine deficiency, induced by PT, both increases brain 5-HT synthesis and impairs 5-HIAA efflux from the brain. There is a close correlation between neurological manifestations and changes in brain 5-HT metabolism in acute thiamine deficiency.  相似文献   

11.
Using HPLC we studied the effects of new substances with antiparkinsonian activities, viz., himantane and cycloprolylglycine (CPG), on the contents of monoamines and their metabolites in the brain structures of Wistar rats under conditions of the inhibition of tyrosine and tryptophan hydroxylases. It was shown that 70 min after administration himantane induces a significant decrease in the level of noradrenaline in the nucleus accumbens (NA) and striatum. At 70 min after administration of CPG, we observed an increase in the DOPAC/DA ratio in the NA and the level of 5-HIAA in the striatum. At 24 h after CPG administration, we observed an increase in the HVA content and HVA/DA ratio in the hypothalamus and striatum. We found a decrease in 5-HIAA in all brain structures we studied at 24 h after administration of CPG, which was absent at 70 min after injection of the substance; the magnitude of 5-HIAA/5-HT decreased in the hypothalamus, nucleus accumbens, and hippocampus. Our results suggest that both substances we studied influence serotonergic transmission by inhibition of the MAO B enzyme.  相似文献   

12.
Central serotonergic fiber systems of the rat were selectively lesioned by intraventricular injection of the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT). At various times thereafter, the sensitivity of rostral cortical neurons to microiontophoretically administered serotonin (5-HT) was compared in groups of lesioned and sham-operated animals pretreated with the 5-HT uptake inhibitor CGP 6085. Twenty-four hours after the injection of 5,7-DHT, at which time the cortical 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) levels were both reduced by 40%, there was no significant difference in the sensitivity of cortical neurons to 5-HT. However, 3 days after such treatment, when the cortical 5-HT and 5-HIAA levels were reduced by 52% and 53% respectively, pronounced supersensitivity to 5-HT was noted. The depressant action of 5-HT on neuronal firing was potentiated with regard to both maximal firing depression and duration of the firing inhibition. A similar potentiation of the 5-HT responses was observed 7 days after lesioning. Supersensitivity thus appears to develop between 1 and 3 days after the injection of 5,7-DHT. Seven days after lesioning, the sensitivity of rostral cortical neurons to gamma-aminobutyric acid was unchanged compared to that observed in sham-operated animals.  相似文献   

13.
The production of submissive behavior in C57BL/6J mice during 10 or 20 days of social confrontations resulted in increases in serotonin (5-HT) content in the amygdala, hippocampus, nucleus caudatus, Al1, A10, A9, and hypothalamus. The level of 5-hydroxyindolacetic acid (5-HIAA) was higher in most structures after 20 daily encounters compared to animals tested for 10 days. The ratio 5-HIAA/5-HT was increased in the nucleus raphe, accumbens, A9, and hypothalamus in mice displaying submission during 10 and 20 confrontations. The experience of defeats during 10 days accompanied with 5-HT system activation in a number of brain structures (nucleus raphe, accumbens, and A9) produced immunosuppression. With increasing number of confrontations the ratio 5-HIAA/5-HT was decreased in the same structures and a tendency to the immune response elevation appeared.  相似文献   

14.
The concentration of noradrenaline (NA), dopamine (DA), serotonin (5-HT), and their metabolites was measured in hypothalamic and hippocampal brain tissue obtained from non-pregnant, 15- or 20-day pregnant and 4-day postpartum rats. At 20 days of pregnancy, hypothalamic NA and DA concentrations were significantly decreased and their turnover increased relative to postpartum and estrous values, respectively. Hippocampal 3-methoxy-4-hydroxy-phenylglycol (MHPG) levels were significantly decreased at 15 days of pregnancy and 4 days postpartum compared to estrous and 20-day pregnant levels and the MHPG/NA ratio was significantly reduced at 4 days postpartum relative to the estrous value. Hippocampal 5-HT and 5-hydroxyindole-3-acetic acid (5-HIAA) levels were significantly decreased at 15 days of pregnancy while 5-HIAA levels and the 5-HIAA/5-HT ratio were significantly decreased at 20 days of pregnancy. Hippocampal β-adrenergic receptor density was significantly lower at 4 days postpartum than at 15 days of pregnancy. A positive correlation was observed between plasma progesterone and hippocampal β-adrenoceptorKd values, suggesting a possible causal relationship between these two variables. The monoamine and β-adrenoceptor changes which occur during pregnancy may be an important contributing factor in determining the mood changes which occur during pregnancy and postpartum.  相似文献   

15.
The effect of intracerebral injections of 5,7-dihydroxytryptamine (5,7-DHT) and 6-hydroxydopamine (6-OHDA) on the serotonin (5-HT)-immunoreactive (IR) cell bodies 11 and fibers in the adult rat hypothalamus was studied with 5-HT immunocytochemistry. In rats pretreated with pargyline and l-tryptophan, 5-HT-IR cells were seen in the ventromedial part of the dorsomedial nucleus (DMN) and 5-HT-IR fibers in all hypothalamic areas. In the ventrolateral part of the DMN the 5-HT-IR fibers were of a much finer type than those seen in other hypothalamic areas. Five days after unilateral injection of 5,7-DHT into the dorsolateral hypothalamus, the 5-HT-IR cells were absent from the DMN, and there was a decrease in the number of 5-HT-IR fibers throughout the hypothalamus ipsilateral to the injection. Contralateral to the injection there was evidence of selective 5-HT fiber degeneration but the 5-HT-IR cells and the group of fine fibers in the ventrolateral DMN remained. Unilateral injection of 6-OHDA into the dorsolateral hypothalamus had no effect on the 5-HT-IR fibers or cell bodies in the hypothalamus.Twelve days after unilateral injection of 5,7-DHT into the rostral midbrain, the majority of 5-HT-IR fibers in the ipsilateral hypothalamus had disappeared. The 5-HT-IR cell bodies in the DMN and the group of fine 5-HT-IR fibers in the ventrolateral DMN remained on both sides of the hypothalamus. These results support our previous finding of a group of 5-HT-IR cell bodies in the ventromedial DMN of the hypothalamus, and suggest that these cells innervate the ventrolateral part of the same nucleus. Evidence that these cells constitute a new 5-HT cell group, B-10, is discussed.  相似文献   

16.
The production of submissive behavior in C57BL/6J mice during 10 or 20 days of social confrontations resulted in increases in serotonin (5-HT) content in the amygdala, hippocampus, nucleus caudatus, Al1, A10, A9, and hypothalamus. The level of 5-hydroxyindolacetic acid (5-HIAA) was higher in most structures after 20 daily encounters compared to animals tested for 10 days. The ratio 5-HIAA/5-HT was increased in the nucleus raphe, accumbens, A9, and hypothalamus in mice displaying submission during 10 and 20 confrontations. The experience of defeats during 10 days accompanied with 5-HT system activation in a number of brain structures (nucleus raphe, accumbens, and A9) produced immunosuppression. With increasing number of confrontations the ratio 5-HIAA/5-HT was decreased in the same structures and a tendency to the immune response elevation appeared.  相似文献   

17.
The brains from 12 schizophrenic patients were investigated post-mortem for their content of noradrenaline (NA), dopamine (DA), 5-hydroxytryptamine (5-HT), homovanillic acid (HVA), and 5-hydroxyindolacetic acid (5-HIAA). Six of the schizophrenics had been lobotomized 25--30 years prior to death. A control group matched for age was collected in the autopsy room. The concentrations of NA, DA, and HVA in different parts of the brain from the schizophrenic group did not differ from those of the controls. 5-HT was determined in 11 nuclei or areas of the brain. The schizophrenic group had lower mean values compared with the controls, and in the hypothalamus, medulla oblongata, and hippocampus the difference was at a significant level. 5-HIAA was determined in six areas of the brain but only in a few cases. There was a trend towards lower means of 5-HIAA in the schizophrenics. Cause of death, medication, food intake, age, time between death and autopsy, time the corpses have lain in room temperature, and dissection technique are discussed in relation to these findings. These variables have to be kept under careful control before changes can be claimed as having pathogenetic importance for schizophrenia or for the progressing dementia in this disease.  相似文献   

18.
This study examines the age-associated changes in noradrenaline (NA), dopamine (DA), 3,4-dihydroxyphenyl-acetic acid (DOPAC), serotonin (5-HT) and 5-hydroxy-3-indoleacetic acid (5-HIAA) in different brain areas of rats. DA and DOPAC concentrations in striatum increased at third month of age, remaining without significant variations until 12th month of age, and decreasing in 24-month-old rats. DA concentration dropped in hippocampus, amygdala and brainstem of 24-month-old-rats, whereas DOPAC levels decreased only in hippocampus. These changes suggest an age-dependent deficit of the dopaminergic system, presumably related to a reduced number/activity of DA nigrostriatal and mesolimbic neurons. An age-induced decline in NA content was found in the pons-medulla, the area containing NA neuronal bodies. Concentrations of 5-HT were reduced with aging in frontal cortex, showing a tendency to decrease in all brain areas examined. The increased 5-HIAA/5-HT ratio found in frontal cortex, amygdala and striatum suggests an age-related decreased synthesis and an accelerated 5-HT metabolism. The 5-HIAA content decreased in brainstem of the oldest rats. These findings point to a selective impairment of nigrostriatal and mesolimbic DA in aging rats, whereas reductions in NA were restricted to cell bodies region and 5-HT showed changes of different extent in areas of terminals and neuronal cell bodies.  相似文献   

19.
Ethylcholine aziridinium (AF64A) has been proposed as a specific cholinergic neurotoxin. In earlier studies, using AF64A, we reported that slow infusion of 1-2 nmol of this compound into each lateral ventricle of Sprague-Dawley rats resulted in small, and transient decreases in noradrenaline (NA) and serotonin (5-HT) levels in the hippocampus, while inducing a permanent and significant cholinergic hypofunction in the same brain region. The experiments described in this paper were designed to test the hypothesis that such noradrenergic and serotonergic changes after small doses of AF64A are secondary to the changes observed in cholinergic neurons. Levels of NA, and of 5-HT and its metabolite 5-hydroxyindole acetic acid (5-HIAA) were measured concurrently with levels of acetylcholine (ACh), in various brain regions of rats in which the effect of AF64A was attenuated, and in respective control animals. The effect of AF64A was diminished by inhibiting the interaction of AF64A with the high affinity transport site for choline (HAChT). This was achieved using hemicholinium-3 (HC-3), which does not cross the blood-brain barrier, and A-4 (a bis 4-methylpiperidine analog of HC-3), which is centrally active following its peripheral administration. A-4 (20 or 40 mg/kg i.p.) or HC-3 (10 micrograms/ventricle) had no effect on ACh, NA, 5-HT or 5-HIAA levels in saline-treated rats. However, all treatments significantly attenuated the decrease in ACh content produced by AF64A pretreatment. Transient decreases in NA, 5-HT and 5-HIAA contents after AF64A treatment were prevented or reduced by prior treatment with A-4 or HC-3. These results indicate that changes in noradrenergic and serotonergic neurons following AF64A administration are not due to non-specific toxicity of AF64A, but may be the result of adaptation of these neurons to withdrawal of cholinergic input, which would normally inhibit the release of NA and 5-HT. These results also indicate that AF64A can be used to produce specific lesions of hippocampal cholinergic nerve terminals.  相似文献   

20.
The relationship between serotonin (5-HT) levels and [3H]5-HT binding in discrete hypothalamic areas was examined in separate groups of animals at various times, following unilateral intrahypothalamic injection of 5,7-dihydroxytryptamine (5,7-DHT). Seven days post-5,7-DHT lesion, 5-HT levels were significantly decreased in both the ipsilateral and contralateral ventromedial and dorsomedial hypothalamic nuclei (VMN, DMN). In the lateral hypothalamic area (LHA), 5-HT levels were significantly decreased only ipsilaterally. Fifty days postlesion, 5-HT levels in the ipsilateral VMN remained significantly below sham, while the DMN and LHA returned to sham values. Seven days after 5,7-DHT there was a significant increase in [3H]5-HT labeling densities in the ipsilateral and contralateral ventromedial hypothalamic area as well as in the ipsilateral LHA. In contrast, in the dorsomedial hypothalamic area there was no increase in [3H]5-HT binding. Fifty days postlesion, no significant differences in [3H]5-HT binding between 5,7-DHT and sham were observed in any areas examined. This data provides further evidence for the regeneration of 5-HT fibers in the hypothalamus and demonstrates that the relationship between [3H]5-HT binding and 5-HT levels varies from one hypothalamic area to another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号