首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Human parathyroid hormone 1-34 reverses bone loss in ovariectomized mice.   总被引:3,自引:0,他引:3  
The experimental work characterizing the anabolic effect of parathyroid hormone (PTH) in bone has been performed in nonmurine ovariectomized (OVX) animals, mainly rats. A major drawback of these animal models is their inaccessibility to genetic manipulations such as gene knockout and overexpression. Therefore, this study on PTH anabolic activity was carried out in OVX mice that can be manipulated genetically in future studies. Adult Swiss-Webster mice were OVX, and after the fifth postoperative week were treated intermittently with human PTH(1-34) [hPTH(1-34)] or vehicle for 4 weeks. Femoral bones were evaluated by microcomputed tomography (microCT) followed by histomorphometry. A tight correlation was observed between trabecular density (BV/TV) determinations made by both methods. The BV/TV showed >60% loss in the distal metaphysis in 5-week and 9-week post-OVX, non-PTH-treated animals. PTH induced a approximately 35% recovery of this loss and a approximately 40% reversal of the associated decreases in trabecular number (Tb.N) and connectivity. PTH also caused a shift from single to double calcein-labeled trabecular surfaces, a significant enhancement in the mineralizing perimeter and a respective 2- and 3-fold stimulation of the mineral appositional rate (MAR) and bone formation rate (BFR). Diaphyseal endosteal cortical MAR and thickness also were increased with a high correlation between these parameters. These data show that OVX osteoporotic mice respond to PTH by increased osteoblast activity and the consequent restoration of trabecular network. The Swiss-Webster mouse model will be useful in future studies investigating molecular mechanisms involved in the pathogenesis and treatment of osteoporosis, including the mechanisms of action of known and future bone antiresorptive and anabolic agents.  相似文献   

2.
Introduction The study was designed to compare the bone anabolic effects of basic fibroblast growth factor (bFGF), a selective agonist for prostaglandin E receptor subtype EP4, and parathyroid hormone (PTH) in aged ovariectomized (OVX) rats with severe cancellous osteopenia. Methods Groups of aged OVX rats were maintained untreated for 1 year postovariectomy (15 months of age) to develop severe tibial cancellous osteopenia. These animals were then treated with bFGF or the EP4 agonist (EP4) for 3 weeks. Other groups of aged OVX rats were treated with EP4 or PTH alone for 11 weeks, or sequentially with bFGF or EP4 for 3 weeks followed by PTH for 8 weeks. Cancellous and cortical bone histomorphometry were performed in the right proximal tibial metaphysis and tibial diaphysis respectively. Results Treatment with bFGF for 3 weeks markedly increased serum osteocalcin, osteoid volume, and osteoblast and osteoid surfaces to a greater extent than EP4. Basic FGF, but not EP4 or PTH, induced formation of osteoid islands within bone marrow. EP4 stimulated cancellous bone turnover, but failed to restore lost cancellous bone in the severely osteopenic proximal tibia after 11 weeks of treatment. In contrast, EP4, much like PTH, increased cortical bone mass in the tibial diaphysis by stimulating both periosteal and endocortical bone formation. Treatment of aged OVX rats with PTH alone tended to partially reverse the severe tibial cancellous osteopenia, whereas sequential treatment with bFGF and PTH increased tibial cancellous bone mass to near the level of vehicle-treated control rats. These findings indicate that bFGF had the strongest stimulatory effect on cancellous bone formation, and was the only anabolic agent to induce formation of osteoid islands within the bone marrow of the severely osteopenic proximal tibia. Therefore, bFGF may be more effective for the reversal of severe cancellous osteopenia. PTH and EP4 increased cortical bone mass to nearly the same extent, but cancellous bone mass was greater by two-fold in PTH-treated OVX rats than in EP4-treated OVX rats. Conclusion These findings in aged OVX rats suggest that PTH is more efficacious than EP4 for augmentation of cancellous bone in the severely osteopenic, estrogen-deplete skeleton.  相似文献   

3.
目的观察重组人甲状旁腺素(1-34)与雌激素单用和联用对去卵巢大鼠骨代谢的影响。方法选用雌性4月龄SD大鼠45只,随机分为5组:①假手术(Sham)8只;②去卵巢(OVX)9只;③雌激素治疗组(OVX E)10只:OVX2个月后给予苯甲酸雌二醇治疗6w;④PTH治疗组(OVX PTH)9只:OVX2个月后给予rhPTH(1-34)治疗6w;⑤雌激素与PTH联合治疗组(OVX E PTH)9只:OVX2个月后给予rhPTH(1-34)和E2联合治疗6w。观察各组大鼠胫骨近端松质骨骨小梁形态计量学参数,椎体生物力学指标及部分血清骨生化代谢指标。结果雌激素治疗组和PTH治疗组的骨静态参数均表现为骨量增加;雌激素治疗组的骨形成参数和骨吸收参数降低;PTH治疗组的骨形成指标明显升高,而骨吸收指标虽较Sham高,但较OVX组有所降低;E2与PTH联合治疗组与单用E2组和单用PTH组比较,骨量明显提高,骨转换率参数介于单用E2和单用PTH组之间。3个治疗组的生物力学指标较OVX组均有明显提高,其中E2与PTH联合治疗组改善最明显。结论雌激素和PTH可使去卵巢大鼠松质骨骨量增加和改善生物力学性能,两者联合治疗有协同作用。  相似文献   

4.
Osteoporotic patients treated with antiresorptive or anabolic agents experience an increase in bone mass and a reduction in incident fractures. However, the effects of these medications on bone quality and strength after a prolonged discontinuation of treatment are not known. We evaluated these effects in an osteoporotic rat model. Six‐month‐old ovariectomized (OVX) rats were treated with placebo, alendronate (ALN, 2 µg/kg), parathyroid hormone [PTH(1–34); 20 µg/kg], or raloxifene (RAL, 2 mg/kg) three times a week for 4 months and withdrawn from the treatments for 8 months. Treatment with ALN, PTH, and RAL increased the vertebral trabecular bone volume (BV/TV) by 47%, 53%, and 31%, with corresponding increases in vertebral compression load by 27%, 51%, and 31%, respectively (p < .001). The resulting bone strength was similar to that of the sham‐OVX control group with ALN and RAL and higher (p < .001) with PTH treatment. After 4 months of withdrawal, bone turnover (BFR/BS) remained suppressed in the ALN group versus the OVX controls (p < .001). The vertebral strength was higher than in the OVX group only in ALN‐treated group (p < .05), whereas only the PTH‐treated animals showed a higher maximum load in tibial bending versus the OVX controls (p < .05). The vertebral BV/TV returned to the OVX group level in both the PTH and RAL groups 4 months after withdrawal but remained 25% higher than the OVX controls up to 8 months after withdrawal of ALN (p < .05). Interestingly, cortical bone mineral density increased only with PTH treatment (p < .05) but was not different among the experimental groups after withdrawal. At 8 months after treatment withdrawal, none of the treatment groups was different from the OVX control group for cortical or cancellous bone strength. In summary, both ALN and PTH maintained bone strength (maximum load) 4 months after discontinuation of treatment despite changes in bone mass and bone turnover; however, PTH maintained cortical bone strength, whereas ALN maintained cancellous bone strength. Additional studies on the long‐term effects on bone strength after discontinuation and with combination of osteoporosis medications are needed to improve our treatment of osteoporosis. © 2011 American Society for Bone and Mineral Research.  相似文献   

5.
Most studies that have investigated the anabolic effects of parathyroid hormone (1-84) (PTH) or PTH fragments on the skeleton of ovariectomized (OVX) rats have evaluated the short-term effects of high-dose PTH(1-34) in young animals. This study used densitometry, histomorphometry, and biomechanical testing to evaluate the effects of 12-month daily treatment with low-dose PTH (15 or 30 μg/kg) in rats that were 10 months old at baseline, 4 months after OVX. Bone mineral density (BMD) and bone strength were reduced substantially in control OVX rats. The 15 μg/kg dose of PTH restored BMD to levels similar to those in sham animals within 6 months at the lumbar spine, distal and central femur, and whole body and maintained the BMD gain from 6 to 12 months. The 30 μg/kg dose produced greater effects. Both PTH doses normalized the trabecular bone volume-to-total volume ratio (BV/TV) at lumbar vertebra 3 but not at the proximal tibia (where baseline BV/TV was very low), solely by increasing trabecular thickness. PTH dose-dependently increased bone formation by increasing the mineralizing surface, but only the 30 μg/kg dose increased resorption. PTH increased cortical BMD, area, and thickness, primarily by increasing endocortical bone formation, and restored all measures of bone strength to levels similar to those in sham animals at all skeletal sites. PTH increased bone mass safely; there was no osteoid accumulation, mineralization defect, or marrow fibrosis and there were no abnormal cells. Thus, long-term PTH therapy normalized bone strength in the aged OVX rat, a model of postmenopausal osteoporosis, through increased bone turnover and enhanced formation of both trabecular and cortical bone.  相似文献   

6.
 We compared the effects of intermittent administration of human parathyroid hormone (PTH) (1-34) on tibial cancellous and cortical bone loss in tail-suspended and sciatic neurectomized young rats. Forty-eight 6-week-old male Wistar rats were randomly divided into six groups with eight animals each: age-matched controls (AMC), tail suspension (TS), sciatic neurectomy (NX), AMC + PTH, TS + PTH, and NX + PTH. Fifteen days after the start of the experiment, the proximal tibia and tibial shaft were processed for cancellous and cortical bone histomorphometric analyses, respectively. The reduction of cancellous bone volume (BV/TV) was significantly greater in the TS group than in the NX group, whereas the reduction of percent cortical area (Ct Ar) did not differ significantly between the TS and NX groups. Administration of human PTH to rats in the TS and NX groups increased BV/TV to a level significantly higher than that of the AMC group. Administration of human PTH to rats in the NX group significantly increased percent Ct Ar, but percent Ct Ar of the NX group was still significantly lower than that of the AMC group. Administration of human PTH to rats in the TS group did not significantly affect percent Ct Ar. These findings suggest that intermittent administration of human PTH (1-34) at the dose we used may completely prevent cancellous bone loss both in TS and NX young rats, and that it may not affect cortical bone loss in TS young rats but only attenuate it in NX young rats. Received: October 3, 2001 / Accepted: December 20, 2001  相似文献   

7.
Wang L  Orhii PB  Banu J  Kalu DN 《BONE》2001,28(2):202-207
Previous studies have demonstrated that growth hormone (GH) has a marked anabolic effect on cortical bone, and parathyroid hormone (PTH) has been shown to increase cancellous bone markedly and cortical bone to some extent in ovariectomized (ovx) rats. Combined therapies mostly focused on combining a bone anabolic agent with an antiresorptive agent. The following study was carried out to examine the efficacy of combined therapy with GH and PTH, two bone anabolic agents in rebuilding bone after loss due to ovariectomy in lumbar vertebrae, which contain both cortical and cancellous bones. Twelve-month-old female F344 rats were divided into five groups: sham + solvent vehicle, ovx + solvent vehicle, ovx + GH (2.5 mg/kg/day), ovx + PTH (80 microg/kg/day), and ovx + GH (2.5 mg/kg/day) + PTH (80 microg/kg/day). After surgery, animals were left for 4 months to become osteopenic before the beginning of therapy. Hormone administrations were given 5 days per week for 2 months and the animals were killed. The L3 vertebra was removed and examined by pQCT densitometry and by histomorphometry. Compared with age-matched, sham-operated controls, there was a 21% decrease in total bone mineral content (BMC) (p < 0.0001), 17.0% decrease in total bone mineral density (BMD) (p < 0.0001), 25.4% decrease in cortical BMC (p < 0.001), 3.1% decrease in cortical BMD (p < 0.05), 50.5% decrease in cancellous BMC (p < 0.01), 47.3% decrease in cancellous BMD (p < 0.01), and 14.5% decrease in cancellous bone volume (BV/TV) (p < 0.05) in the vehicle-treated ovx rats. Compared with age-matched, vehicle-treated ovx controls, GH, PTH, and GH + PTH increased total BMC by 22.8% (p < 0.001), 32.4% (p < 0.0001), and 72.7% (p < 0.0001), respectively; total BMD by 9.7% (p > 0.05), 22.6% (p < 0.001), and 38.8% (p < 0.0001), respectively; cortical BMC by 28.8% (p < 0.01), 50.8% (p < 0.0001), and 98.4% (p < 0.0001), respectively; and cortical BMD by 4.5% (p < 0.01), 2.9% (p < 0.05), and 6.3% (p < 0.0001), respectively. PTH and GH + PTH significantly increased cancellous BMC by 95.3% (p < 0.01) and 255.8% (p < 0.0001), respectively; cancellous BMD by 77.6% (p < 0.05) and 181% (p < 0.0001), respectively; cancellous BV/TV by 38.6% (p < 0.0001) and 55.9% (p < 0.0001), respectively; and trabecular thickness by 48% (p < 0.0001) and 68.3% (p < 0.0001), respectively. Note that GH by itself had no significant effect on vertebral cancellous BMC, cancellous BMD, and cancellous BV/TV. In conclusion, the effect of PTH was mostly more marked than that of GH. GH acted mainly by increasing cortical bone with less effect on cancellous bone, while PTH acted by increasing both cortical and cancellous bones. Combined therapy with GH and PTH was more effective in rebuilding bone after ovariectomy than either therapy alone. The effects of combined therapy with GH and PTH were additive in vertebral bone in the aged osteopenic rats.  相似文献   

8.
We examined the long-term sensitivity of uterus and bone to low-dose 17beta-estradiol in a 4-month experiment in OVX rats and found that a dose of estradiol that fully protected against uterine atrophy did not protect against bone loss. Our results suggest higher estrogen sensitivity of the uterus compared with bone. INTRODUCTION: Estrogen is essential for the function of reproductive tissues and for the normal acquisition and maintenance of bone mass in females. This study was designed to examine the long-term sensitivity of the uterus and bone to low-dose estrogen. MATERIALS AND METHODS: In preliminary experiments, we determined the lowest subcutaneous dose of 17beta-estradiol able to fully protect against uterine atrophy in ovariectomized (OVX) rats. This dose was found to be 1.5 microg/kg, given five times per week. Subsequently, groups of sham-operated (SHAM) or OVX 6-month-old rats (n = 8 each) were subcutaneously injected with vehicle or 1.5 microg/kg 17beta-estradiol five times per week. All animals were killed 4 months after surgery. Serum osteocalcin and urinary deoxypyridinoline were measured as biochemical markers of bone turnover. Bones were analyzed by bone histomorphometry and pQCT. RESULTS AND CONCLUSIONS: Our study clearly showed that a dose of estradiol that restores physiological estradiol serum levels, fully maintains uterine weight in OVX rats at the SHAM control level, and suppresses serum follicle-stimulating hormone (FSH) by 67% relative to OVX vehicle controls does not provide significant protection against OVX-induced bone loss at different cancellous and cortical bone sites. We conclude that the long-term sensitivity of the uterus and the hypothalamus/pituitary axis to 17beta-estradiol is higher than that of bone in rats.  相似文献   

9.
We employed skeletally matured rats to study changes in biochemical markers of bone turnover, bone mineral density (BMD), and bone biomechanics produced by continuous elevation of parathyroid hormone (PTH) in estrogen-deplete and -replete rodents. Ninety-six 7-month-old virgin female rats were divided randomly into 12 groups (n = 8) and treated as follows. One group was killed on the day of surgery. The remaining groups were either bilaterally ovariectomized (Ovx) or sham-operated and left untreated for 8 weeks, at which point, two groups, one sham and one Ovx, were killed. The remaining nine groups were treated for 2 weeks or 4 weeks. One sham and two Ovx groups received subcutaneous implants of Alzet miniosmotic pumps with vehicle for PTH. Two Ovx groups were given pumps with vehicle as well as a subcutaneous implant of 17beta-estradiol, which delivered 10 microg/kg per day. Two Ovx groups were implanted with rat PTH(1-34) in Alzet miniosmotic pumps, which delivered 30 microg PTH/kg per day. Two Ovx groups were implanted with both estradiol pellets and PTH-loaded pumps. One group of Ovx animals from each treatment was killed after 2 weeks and the other after 4 weeks. Biochemical markers of bone turnover, serum osteocalcin and urinary free pyridinoline, BMD, and mechanical strength of excised bones were measured. As expected, there was a significant increase in N-terminal PTH and serum calcium levels in all PTH infusion groups. Both serum osteocalcin and urinary pyridinoline showed a rapid increase within the first 2 weeks of the PTH infusion and remained elevated at week 4. In estrogen-replete groups, osteocalcin increased by week 2 of PTH infusion but pyridinoline did not increase until week 4. BMD of the distal and proximal femur showed the expected decrease 8 weeks after ovariectomy but did not exhibit any further changes during the 4 weeks of treatment with vehicle. Four weeks of PTH infusion in Ovx animals resulted in BMD loss at the midshaft, distal, and proximal regions of the femur. Estrogen repletion by itself, beginning 8 weeks after ovariectomy, produced no change in BMD at any site when compared with from Ovx vehicle-treated rats. Estrogen repletion in PTH-infused Ovx animals resulted in significant improvements of BMD comparable with sham-operated animals at all three femoral regions. The indentation test at the cancellous bone of the distal femur, three-point bending test at the midshaft femur, and cantilever bending test at the femoral neck showed that the changes in mechanical strength in these sites were consistent to the changes found in BMD. Our results showed that (1) continuously elevated levels of PTH induced additional loss of BMD in estrogen-deficient animals beyond the rapid bone loss phase associated with ovariectomy, (2) estrogen repletion, given by implant, to PTH-infused Ovx animals, reversed these BMD changes increasing BMD to levels comparable with estrogen-sufficient rats, and (3) these changes were reflected in the mechanical strength determined at these sites. These results lend experimental support that hormone replacement therapy may benefit bone health in postmenopausal women with primary hyperparathyroidism (PHPT). In addition, it raises the possibility that a continuous elevation of PTH could exert anabolic effects on skeletal tissue if its catabolic component can be minimized.  相似文献   

10.
Introduction: Intermittent 1-34 parathyroid hormone (iPTH) administration, a bone-forming treatment, is widely used as a therapy for severe osteoporosis. It can only be used for a maximum of 24 mo and must be followed by an antiresorptive drug to retain the new formed tissue. Mechanical load, in the form of low-intensity and high-frequency vibration, has received considerable attention due to its ability to prevent bone loss. Aim: To investigate the ability of whole body mechanical vibration (MV) to potentiate the anabolic effects of iPTH and to inhibit bone resorption following discontinuation of iPTH treatment in estrogen-deficient rats. Methodology: Fifty-four 6-month-old female Wistar rats were ovariectomized (OVX) or sham-operated. After 5 mo, they were divided into 7 groups: Sham – non-OVX; Control – OVX, vehicle for 60 d; MV – OVX, submitted to MV for 60 d; PTH60d – OVX, injected with iPTH for 60 d; PTH+MV – OVX, injected with iPTH combined with MV for 60 d; PTH30d – OVX, injected with iPTH for 30 d, and untreated for 30 d; PTH30d/MV30d – OVX, injected with iPTH for 30 d, followed by MV for 30 d. Bone mineral density (BMD) and body composition (lean mass and fat) were evaluated at OVX (T0), the beginning (T1), and at the end (T2) of treatments by dual X-ray absorptiometry (DXA). Femurs were processed for histomorphometry (bone volume - BV/TV and cortical thickness - Ct.Th) and tibias for biomechanical test. Results: Body composition and BMD were similar among the groups at T0. In T2, MV presented higher fat than other groups (except PTH60d) and PTH30d/MV30d showed greater lean mass than Control. At T1, Sham presented the highest BMD, but between T1 vs T2 there was an increase in all iPTH-treated groups. At T2, BMD was higher in PTH60d and PTH+MV than in the Control and MV groups. The highest BV/TV was observed in the PTH+MV group, followed by PTH60d. Cortical thickness was increased in PTH60d and PTH+MV compared to Sham. Vibration applied post-iPTH (PTH30d/MV30d) improved the force at failure in tibias when compared to Sham and Control groups. Conclusion: MV potentiated iPTH anabolic effects in cancellous bone; however, MV was unable to maintain bone mass after stopping iPTH in ovariectomized rats.  相似文献   

11.
Previous studies have shown that parathyroid hormone (PTH) monotherapy and cotherapy with estrogen or risedronate augment vertebral bone mass and bone strength in young, ovariectomized (OVX) rats. The current study was designed to determine whether PTH has similar bone anabolic effects in aged OVX rats at a much later stage of estrogen depletion. Female Sprague Dawley rats were subjected to sham surgery or bilateral ovariectomy at three months of age and maintained untreated for one year after surgery to allow for the development of vertebral osteopenia in OVX rats. Groups of baseline control and OVX rats were sacrificed at the end of this pretreatment period. The remaining OVX rats were then treated for ten weeks with vehicle, antiresorptive agents alone (estrogen, risedronate, or calcitonin), or PTH alone. Other groups of OVX rats were treated concurrently with PTH and each of the antiresorptive agents. The first and fourth lumbar vertebral bodies were processed undecalcified for quantitative bone histomorphometry and biomechanical testing, respectively. As expected, bone mass and compressive strength were decreased in the lumbar vertebral body of baseline OVX rats compared to baseline control rats. This bone loss was associated with decreases in trabecular number and width and an increase in trabecular separation. Treatment with estrogen, risedronate, or calcitonin alone failed to reverse the changes in bone mass, structure, and strength induced by ovariectomy. In contrast, treatment of OVX rats with PTH alone restored vertebral cancellous bone volume and ash density to the level of vehicle-treated control rats and increased vertebral maximum load, stress, and normalized load to well above this level. The hormone significantly increased trabecular width, but not number, in the lumbar vertebral body of OVX rats. Concurrent treatments with PTH and the antiresorptive agents did not augment cancellous bone and biomechanical competence to a greater, or lesser, extent than treatment with PTH alone. Compressive strength correlated significantly with bone mass and trabecular width in the lumbar vertebral body. These results indicate that PTH completely restores lost bone mass and improves bone strength in the vertebral body of aged OVX rats with established osteopenia. With our previous study in younger OVX rats, the current study demonstrates that the anabolic effect of PTH is independent of age and the stage of estrogen depletion in the rat skeleton.  相似文献   

12.
OVX monkeys treated for 18 months with 1 or 5 microg/kg/d teriparatide [PTH (1-34)] had significantly stronger proximal femora relative to ovariectomized controls. Teriparatide enhancement of cortical area, cortical width, and trabecular bone volume seemed to more than compensate for the dose-dependent increase in cortical porosity. Beneficial effects of teriparatide treatment on the proximal femur persisted beyond the treatment period and may extend to the marrow. INTRODUCTION: We conducted a detailed quantitative analysis of the effects of teriparatide on the proximal femur of ovariectomized monkeys. Teriparatide increased bone mass, enhanced structural architecture, and strengthened the hip, despite increasing cortical porosity. MATERIALS AND METHODS: Monkeys were treated with vehicle (sham or OVX controls), 1 microg/kg/day teriparatide [parathyroid hormone (1-34); PTH1], or 5 microg/kg/day teriparatide (PTH5) for 18 months or for 12 months followed by 6 months of treatment withdrawal (PTH1W and PTH5W, respectively). Excised proximal femora were analyzed by microCT, conventional histomorphometry, and biomechanics.RESULTS AND CONCLUSIONS: The femoral neck showed significant reduction in trabecular bone volume (BV/TV) for OVX compared with sham, whereas PTH1 BV/TV was restored to sham levels and PTH5 BV/TV was greater than sham and OVX. The withdrawal groups had BV/TVs intermediate between sham and OVX. PTH1 had trabecular number (Tb.N) greater than OVX, and PTH5 Tb.N was greater than sham and OVX. The withdrawal groups had Tb.Ns intermediate between sham and OVX. No differences between groups were observed for trabecular orientation or trabecular thickness. Teriparatide dose-dependently increased bone formation rate and activation frequency in the femoral neck. Cellular composition analyses suggested a tendency of ovariectomy to increase adiposity of marrow by 100%, whereas PTH tended to reduce adipocyte number and increase osteoblast number compared with OVX. Analyses of the cortex showed dose-dependent elevation of cortical porosity, which was consistent with enhanced bone turnover with treatment. Cortical porosity was reduced after withdrawal of teriparatide, because PTH1W cortical porosity was lower than OVX, whereas PTH5W cortical porosity was intermediate between sham and OVX. Increased cortical porosity did not weaken the proximal femora. Biomechanics showed that ovariectomy weakened proximal femora compared with sham, but PTH1, PTH5, and PTH1W were stronger than OVX and not different from sham. PTH5W strength was intermediate between sham and OVX. Therefore, teriparatide had beneficial effects on the proximal femur, despite increasing cortical porosity. Cortical porosity did not adversely affect the mechanical integrity of the proximal femora, because enhanced cortical area and trabecular bone volume more than compensated for the porosity. Much of the beneficial effects of teriparatide were retained after 6 months withdrawal from treatment. PTH effects on the femoral neck were not limited to bone but may include inhibition of OVX-stimulated adiposity of the marrow.  相似文献   

13.
Bone strength, a determinant of resistance to fracture, depends on BMD, geometry, microarchitecture, bone turnover rates, and properties of the bone at the material level. Despite comparable antifracture efficacy, anti‐catabolics and bone anabolic agents are likely to modify the various determinants of bone strength in very different ways. Eight weeks after ovariectomy (OVX), 8‐mo‐old osteoporotic rats received pamidronate (APD; 0.6 mg/kg, 5 days/mo, SC), raloxifene (3 mg/kg, 5/7 days, tube feeding), PTH(1–34) (10 μg/kg, 5/7 days, SC), or vehicle for 16 wk, and we measured vertebral BMD, maximal load, stiffness and energy, microarchitecture, and material properties by nanoindentation, which allows the calculation of the elastic modulus, tissue hardness, and working energy. Markers of bone turnover, plasma osteocalcin, and urinary deoxypyridinoline (Dpd) were also determined. PTH induced greater maximal load than APD or raloxifene, as well as greater absorbed energy, BMD, and increased bone turnover markers. PTH markedly increased trabecular bone volume and connectivity to values higher than sham. Animals treated with APD had BV/TV values significantly higher than OVX but lower than sham, whereas raloxifene had no effect. Tissue hardness was identical in PTH‐treated and OVX untreated controls. In contrast, APD reversed the decline in strength to levels not significantly different to sham, reduced bone turnover, and increased hardness. Raloxifene markedly increased material level cortical hardness and elastic modulus. These results show the different mechanisms by which anti‐catabolics and bone anabolics reduce fracture risk. PTH influences microarchitecture, whereas bisphosphonates alter material‐level bone properties, with probable opposite effects on remodeling space. Raloxifene primarily improved the material stiffness at the cortical level.  相似文献   

14.
Histomorphometric studies of treatments for osteoporosis in humans are restricted to iliac crest biopsies. We studied the effects of PTH(1-84) treatment at the lumbar spine of skeletally mature ovariectomized rhesus monkeys. PTH increased bone turnover, rapidly normalized BMD, and increased vertebral compressive strength. PTH increased trabecular bone volume primarily by increasing trabecular number by markedly increasing intratrabecular tunneling. INTRODUCTION: Histomorphometric studies of the anabolic properties of PTH(1-84) (PTH) and related peptides in human bone are restricted to iliac crest biopsies. The ovariectomized (OVX) monkey is an accepted model of human postmenopausal bone loss and was used to study the effects of PTH treatment at clinically relevant skeletal sites. MATERIALS AND METHODS: Skeletally mature rhesus monkeys were OVX or sham-operated and, after a bone depletion period of 9 months, treated daily for 16 months with PTH (5, 10, or 25 microg/kg). Markers of bone formation (serum osteocalcin) and resorption (urine N-telopeptide [NTX]) and lumbar spine BMD were measured throughout the study. Trabecular architecture and vertebral biomechanical properties were quantified at 16 months. RESULTS: PTH treatment induced dose-dependent increases in bone turnover but did not increase serum calcium. Osteocalcin was significantly increased above OVX controls by 1 month. NTX was significantly elevated at 1 month with the highest dose, but not until 12 months with the 5 and 10 microg/kg doses. Lumbar spine BMD was 5% lower in OVX than in sham animals when treatment was started. All PTH doses increased BMD rapidly, with sham levels restored by 3-7 months with 10 and 25 microg/kg and by 16 months with 5 microg/kg. PTH treatment increased trabecular bone volume (BV/TV), primarily by increasing trabecular number, and dose-dependently increased bone formation rate (BFR) solely by increasing mineralizing surface. The largest effects on BV/TV and yield load occurred with the 10 microg/kg dose. The highest dose reduced trabecular thickness by markedly increasing intratrabecular tunneling. CONCLUSIONS: PTH treatment of OVX rhesus monkeys increased bone turnover and increased BV/TV, BMD, and strength at the lumbar spine. All PTH doses were safe, but the 10 microg/kg dose was generally optimal, possibly because the highest dose resulted in too marked a stimulation of bone remodeling.  相似文献   

15.
Current approved medical treatments for osteoporosis reduce fracture risk to a greater degree than predicted from change in BMD in women with postmenopausal osteoporosis. We hypothesize that bone active agents improve bone strength in osteoporotic bone by altering different material properties of the bone. Eighteen‐month‐old female Fischer rats were ovariectomized (OVX) or sham‐operated and left untreated for 60 days to induce osteopenia before they were treated with single doses of either risedronate (500 μg/kg, IV), zoledronic acid (100 μg/kg, IV), raloxifene (2 mg/kg, PO, three times per week), hPTH(1–34) (25 μg/kg, SC, three times per week), or vehicle (NS; 1 ml/kg, three times per week). Groups of animals were killed after days 60 and 180 of treatment, and either the proximal tibial metaphysis or lumbar vertebral body were studied. Bone volume and architecture were assessed by μCT and histomorphometry. Measurements of bone quality included the degree of bone mineralization (DBM), localized elastic modulus, bone turnover by histomorphometry, compression testing of the LVB, and three‐point bending testing of the femur. The trabecular bone volume, DBM, elastic modulus, and compressive bone strength were all significantly lower at day 60 post‐OVX (pretreatment, day 0 study) than at baseline. After 60 days of all of the bone active treatments, bone mass and material measurements agent were restored. However, after 180 days of treatment, the OVX + PTH group further increased BV/TV (+30% from day 60, p < 0.05 within group and between groups). In addition, after 180 days of treatment, there was more highly mineralized cortical and trabecular bone and increased cortical bone size and whole bone strength in OVX + PTH compared with other OVX + antiresorptives. Treatment of estrogen‐deficient aged rats with either antiresorptive agents or PTH rapidly improved many aspects of bone quality including microarchitecture, bone mineralization, turnover, and bone strength. However, prolonged treatment for 180 days with PTH resulted in additional gains in bone quality and bone strength, suggesting that the maximal gains in bone strength in cortical and trabecular bone sites may require a longer treatment period with PTH.  相似文献   

16.
Background  As hydroxyapatite (HA) has good osteoconductive properties, HA is used as coating material for the implants in cementless arthroplasty. However, its effect is not sufficient for osteoporotic bone. Parathyroid hormone (PTH) is known to have anabolic effects on bone formation. Intermittent administration of PTH increases both cancellous and cortical bone mass. The aim of this study was to confirm the effect of the fixation strength of HA-coated implants in the osteoporotic condition with a mechanical test and a bone histomorphometric method. Methods  Female Sprague-Dawley rats were used for this study. Four weeks after ovariectomy (OVX) or sham surgery, HA-coated titanium rods were inserted into the distal femoral canal (Sham+HA group and OVX+HA group). PTH was administered immediately after the implantation of the HAcoated rods (OVX+HA+P group). We measured the shear strength at the bone-implant interface by a push-out test and the newly formed bone volume on the implant (BV.Im) by bone histomorphometry at 2 and 4 weeks after implantation. Results  The bone-implant shear strength in the OVX+HA group was significantly lower than that in the Sham+HA group at 2 weeks after implantation of the rods. In the OVX+HA+P group, the strength was significantly higher than that in the other groups. Similarly, at 4 weeks, statistically significant differences were confirmed in the bone-implant shear strength among the Sham+HA group, the OVX+HA group, and the OVX+HA+P group. BV.Im in the OVX+HA group was significantly lower than that in the Sham+HA group at 2 weeks after implantation. BV.Im was significantly higher in the OVX+HA+P group than that in the OVX+HA group. However, there was no difference in BV.Im between the Sham+HA group and the OVX+HA+P group. At 4 weeks after implantation, BV.Im was significantly lower in the OVX+HA group than that in the other groups, but no difference was found between the Sham+HA group and the OVX+HA+P group. Conclusions  Intermittent administration of PTH has an effect to increase new bone formation on the surface of HA-coated implants in the osteoporotic condition. This finding suggests that PTH administration is useful to improve the initial fixation of HA-coated implants even in osteoporotic patients.  相似文献   

17.
Hypophysectomy (HX) results in cessation of bone growth and cancellous osteopenia in rats. It has been reported that prostaglandin E2 (PGE2) improves cortical and cancellous bone mass in HX rats. The purpose of the present study was to examine whether combined administration of vitamin K2 and PGE2 would have a more beneficial effect on bone than single administration of either alone in HX rats. Forty-three female Sprague-Dawley rats, 6 weeks of age, were randomized by the stratified weight method into five groups: intact controls, HX, HX + vitamin K2 (30 mg/kg, p.o., daily), HX + PGE2 (0.83 mg/kg, i.m., 5 days a week), and HX + vitamin K2 + PGE2. The duration of the experiment was 4 weeks. There was a reduction in cancellous bone volume/total tissue volume (BV/TV) of the proximal tibial metaphysis and a reduction in total tissue area and cortical area (Ct.Ar) of the tibial diaphysis. Vitamin K2 did not affect cancellous BV/TV or Ct.Ar. On the other hand, PGE2 attenuated the loss of cancellous BV/TV in association with higher bone formation rate/bone surface (BFR/BS) and eroded surface (ES)/BS compared with intact controls. PGE2 also increased percent Ct.Ar compared with nontreated HX rats as a result of attenuation of a decrease in periosteal BFR/BS. Vitamin K2 had a synergistic effect with PGE2 on cancellous BV/TV as a result of the suppression of an increase in ES/BS observed by PGE2 treatment. These results suggested that PGE2 had an anabolic action on cancellous and cortical bone and that despite no apparent effect of vitamin K2 on bone, it had a synergistic effect with PGE2 on cancellous bone mass in young HX rats.  相似文献   

18.
Intermittent administration of human parathyroid hormone (hPTH) has an anabolic effect on bone in animals and humans and is expected to be a potent agent for the treatment of osteoporosis. However, little is known about the effects of hPTH on cancellous bone healing after cancellous bone fractures or osteotomies. We evaluated whether hPTH enhanced bone union at the site of cancellous bone osteotomy and further elucidated the possible mechanisms of hPTH effects on cancellous bone healing. After a bilateral ovariectomy (OVX) or sham operation in mature female rats, cancellous bone osteotomy was performed on the right proximal tibia. After once-a-week administration of hPTH (1-34) (100 microg/kg) or its vehicle for 4 weeks, bilateral tibiae including osteotomy and non-osteotomy sites were harvested. Along with conventional bone histomorphometry, cancellous bone union at the osteotomy site and the rate of proliferating cells immunostained with proliferating cell nuclear antigen (PCNA) and adipocytes in the surrounding bone marrow were evaluated. hPTH increased cancellous bone volume by stimulating bone formation in both normal and OVX rats and suppressed adipocyte volume (p<0.05). The percentage of PCNA-positive cells at the osteotomy site after PTH treatment was 2- to 3-fold higher than that of vehicle treatment controls both in sham-operated and OVX rats (p<0.05). The magnitude of increase in the percentage of PCNA-positive cells after PTH treatment at the osteotomy site was two times higher than that at the non-osteotomy site. Furthermore, PTH treatment increased cancellous bone union after osteotomy both in sham-operated and OVX rats (p<0.05). These results suggest that hPTH enhances cancellous bone healing at the site of osteotomy with, at least in part, a local regulating action that increases osteoblastogenesis and decreases adipocytogenesis at and around the osteotomy.  相似文献   

19.
Skeletal anabolism with PTH is achieved through daily injections that result in brief exposure to the peptide. We hypothesized that similar anabolic effects could be achieved with less frequent but more sustained exposures to PTH. A PTH-Fc fusion protein with a longer half-life than PTH(1-34) increased cortical and cancellous BMD and bone strength with once- or twice-weekly injections. INTRODUCTION: The anabolic effects of PTH are currently achieved with, and thought to require, daily injections that result in brief exposure to the peptide. We hypothesized that less frequent but more sustained exposures to PTH could also be anabolic for bone, provided that serum levels of PTH were not constant. MATERIALS AND METHODS: PTH(1-34) was fused to the Fc fragment of human IgG1 to increase the half-life of PTH. Skeletal anabolism was examined in mice and rats treated once or twice per week with this PTH-Fc fusion protein. RESULTS: PTH-Fc and PTH(1-34) had similar effects on PTH/PTHrP receptor activation, internalization, and signaling in vitro. However, PTH-Fc had a 33-fold longer mean residence time in the circulation of rats compared with that of PTH(1-34). Subcutaneous injection of PTH-Fc once or twice per week resulted in significant increases in bone volume, density, and strength in osteopenic ovariectomized mice and rats. These anabolic effects occurred in association with hypercalcemia and were significantly greater than those achievable with high concentrations of daily PTH(1-34). PTH-Fc also significantly improved cortical bone volume and density under conditions where daily PTH(1-34) did not. Antiresorptive co-therapy with estrogen further enhanced the ability of PTH-Fc to increase bone mass and strength in ovariectomized rats. CONCLUSIONS: These results challenge the notion that brief daily exposure to PTH is essential for its anabolic effects on cortical and cancellous bone. PTH-derived molecules with a sustained circulating half-life may represent a powerful and previously undefined anabolic regimen for cortical and cancellous bone.  相似文献   

20.
The goal of this study was to characterize the skeletal response to ovariectomy in mice (129P3, C57BL/6, and B6129PF2) commonly used in gene manipulation studies to evaluate their potential as preclinical models of postmenopausal osteoporosis. The magnitude of cancellous bone loss and cellular indices of increased bone turnover in response to ovariectomy varied with mouse type and skeletal site, but in general, were less pronounced and less consistent than in Sprague-Dawley rats, the established preclinical model for postmenopausal bone loss. INTRODUCTION: The ovariectomized (OVX) rat is the most widely used preclinical rodent model for postmenopausal osteoporosis. However, the underlying mechanisms of bone disorders, including osteoporosis, have been explored predominantly in the mouse. The purpose of this study was to evaluate mice (129P3 and C57BL/6 inbred strains and their F2 hybrid offspring, B6129PF2), commonly used for gene knockout and overexpression studies, for their potential as preclinical models of postmenopausal bone loss. MATERIALS AND METHODS: The mice were OVX or sham-operated at 4 months of age and killed at 1 or 3 months after surgery. Lumbar vertebrae and distal femora were subjected to histomorphometric assessment. RESULTS: Mice in the two strains and the F2 hybrids (will be referred to as strain for the remainder of the abstract) lost vertebral cancellous bone after OVX; bone volume (BV/TV) was 20% and 27% lower at 1 and 3 months after surgery, respectively. The decreased cancellous BV/TV was associated with an increase in osteoclast surface at 1 month after OVX in the 129P3 strain only. Osteoblast surface was increased by 20% with OVX at both 1 and 3 months after surgery, irrespective of mouse strain. However, bone formation rate was not altered by OVX in any of the mouse strains. In contrast to the lumbar vertebrae, cancellous bone loss in response to OVX differed in the distal femur among the three mouse strains. OVX had no significant effect on distal femur BV/TV in the B6129PF2 mouse strain. In the C57BL/6 strain, cancellous BV/TV was reduced by OVX at 1 month after surgery but not at 3 months after surgery, whereas distal femur BV/TV in 129P3 mice was reduced at 3 months after surgery. Osteoclast surface was not affected by OVX at either time-point in the C57BL/6 strain, but was increased by 116% at 1 month after surgery in the 129P3 strain. Osteoblast surface was increased with OVX at 1 month after surgery, irrespective of strain, whereas bone formation rate was not altered by OVX at either time-point in any of the strains. CONCLUSIONS: The magnitude of cancellous bone loss and cellular indices of increased bone turnover in response to OVX varied with mouse strain and skeletal site, but in general, were less pronounced and less consistent than in the Sprague-Dawley rat. Although mouse models will continue to provide insights into genetic influences on bone mass and turnover, caution should be exercised when using 129P3 and C57BL/6 mice, and their F2 hybrids, as models for postmenopausal bone loss and preclinical testing of potential therapies for osteoporosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号