首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
Evidence exists that BRCA2 carriers may have an elevated risk of breast, ovarian, colon, prostate, and pancreatic cancer. In general, carriers are defined as individuals with protein truncating mutations within the BRCA2 gene. Many Brca2 knockout lines have been produced and characterized in the mouse. We previously produced a rat Brca2 knockout strain in which there is a nonsense mutation in exon 11 between BRC repeats 2 and 3, and a truncated protein is produced. Interestingly, while such a mutation in homozygous mice would lead to limited survival of approximately 3 months, the Brca2-/- rats are 100% viable and the vast majority live to over 1 year of age. Brca2-/- rats show a phenotype of growth inhibition and sterility in both sexes. Aspermatogenesis in the Brca2-/- rats is due to a failure of homologous chromosome synapsis. Long-term phenotypes include underdeveloped mammary glands, cataract formation and lifespan shortening due to the development of tumors and cancers in multiple organs. The establishment of the rat Brca2 knockout model provides a means to study the role of Brca2 in increasing cancer susceptibility and inducing a novel ocular phenotype not previously associated with this gene.  相似文献   

2.
Moynahan ME 《Oncogene》2002,21(58):8994-9007
BRCA1 and BRCA2 mutations are estimated to be responsible for the great majority of familial breast and ovarian cancers. Much progress has been made toward the understanding of the function of these proteins through genetic, biochemical, and structural studies. The embryonic lethality encountered in the knockout mouse initially hindered the development of mouse models aimed at studying tumor suppression. However, mice that harbor hypomorphic Brca1 and Brca2 alleles and cre-mediated tissue-specific deletions for Brca1 and Brca2 have been generated. Mice deficient for either Brca1 or Brca2 sustain a wide range of carcinoma and mammary epithelium deleted for Brca1 or Brca2 is highly susceptible to mammary tumorigenesis. Mammary (and other) tumors occur at long latency as compared to oncogene-induced mouse tumors. p53 deficiency is highly cooperative with both Brca1 and Brca2 in promoting tumorigenesis. Analysis of Brca1-associated mammary tumors reveals significant similarities to BRCA1-associated breast cancer in regard to high tumor grade, hormone receptor negativity, a high incidence of p53 mutations and genetic instability.  相似文献   

3.
The proteins encoded by BRCA1 and ATM may be important in DNA repair and maintenance of genomic integrity. Women heterozygous for a mutation in BRCA1 have an increased incidence of breast cancer. Some evidence also suggests that female carriers of ATM mutations may be susceptible to breast cancer. However, mice carrying one mutant allele of Brca1 or ATM are not highly susceptible to breast cancer. We proposed that heterozygosity for a mutant allele of Brca1 or ATM may confer a decreased ability to repair DNA damage. Such a defect might lead to a heightened sensitivity to tumor development in susceptible animal models. Therefore, mice predispose to mammary tumor development might show an increased susceptibility if they also carry an ATM or Brca1 mutation. C57BL/6J (B6) MIN/+ mice are predisposed to mammary and intestinal tumors and exposure to the point mutagen ethylnitrosourea (ENU) markedly increases mammary tumor multiplicity and incidence. To test our hypothesis, B6.MIN/+ male mice were crossed with 129S6/SvEvTac females heterozygous for a mutant allele of either Brca1 or ATM. Female progeny from each cross were treated with ENU and followed for tumor development. Only MIN/+ F1 females developed mammary tumors and heterozygosity for a mutant Brca1 or ATM allele had no effect on mammary or intestinal tumor incidence and multiplicity. These results suggest that heterozygosity for a mutation in Brca1 or ATM: does not affect MIN-induced tumorigenesis in mice under these conditions. Additionally, exposure to a somatic point mutagen does not increase tumor development in mice carrying Brca1 or ATM mutations.  相似文献   

4.
Lessons learned from BRCA1 and BRCA2   总被引:20,自引:0,他引:20  
Zheng L  Li S  Boyer TG  Lee WH 《Oncogene》2000,19(53):6159-6175
  相似文献   

5.
Inherited mutations of the human BRCA2 gene confer increased risks for developing breast, ovarian, and several other cancers. Unlike previously described Brca2 knockout mice that display predominantly embryonic lethal phenotypes, we developed mice with a homozygous germ-line deletion of Brca2 exon 27 that exhibit a moderate decrease in perinatal viability and are fertile. We deleted this Brca2 COOH-terminal domain because it interacts directly with the Rad51 protein, contains a nuclear localization signal, and is required to maintain genomic stability in response to various types of DNA damage. These homozygous Brca2-mutant mice have a significantly increased overall tumor incidence and decreased survival compared with their heterozygous littermates. Virgin female mice homozygous for this Brca2 mutation also display an inhibition of ductal side branching in the mammary gland at 6 months of age. Given their substantial viability and cancer predisposition, these mutant mice will be useful to further define the role of the COOH-terminal Brca2 domain in tumorigenesis both in vivo and in vitro.  相似文献   

6.
BRCA2 is a breast cancer susceptibility gene of which the product is thought to be involved in monitoring genome integrity and cell cycle progression. Brca2-null mice have a defect in embryonic cellular proliferation and die in utero. Here we report the generation of T-cell lineage-specific Brca2-deficient (tBrca2(-/-)) mice using the Cre-loxP system. Mice with a flanked by loxP allele of Brca2 were crossed to transgenic mice bearing Cre recombinase driven by the T cell-specific promoter Lck. Thymic cellularity and distribution of subset populations were normal in tBrca2(-/-) mutants. Thymocytes from tBrca2(-/-) mice underwent normal apoptosis in response to a variety of stimuli, and activated tBrca2(-/-) T cells had normal proliferative capacity. tBrca2(-/-) T cells were more likely than wild-type cells to undergo spontaneous apoptosis, but apoptosed normally in response to restimulation or DNA-damaging stress signals. Examination of metaphase spreads of tBrca2(-/-) T cells revealed that the chromosomes often exhibited aberrations such as breaks and tri-radial structures. The level of chromosomal abnormalities was enhanced in T cells from tBrca2(-/-); p53(-/-) double-mutant mice. However, tBrca2(-/-); p53(-/-) T cells did not show the enhanced level of spontaneous apoptosis demonstrated by tBrca2(-/-) T cells, a difference that likely accounts for an increase in cell number and (3)[H]thymidine incorporation of double-mutant T cells in culture compared with either single mutant. Despite this increased T-cell number, the onset of T-cell lymphomas was only marginally accelerated in tBrca2(-/-); p53(-/-) mice compared with p53(-/-) mice. Our results support a role for Brca2 in repairing spontaneous DNA lesions, and suggest that loss of Brca2 enhances the susceptibility of mouse T-lineage cells to chromosomal aberrations and deregulation of apoptosis in the absence of p53.  相似文献   

7.
Women who inherit mutations in the breast cancer susceptibility genes, BRCA1 and BRCA2, are predisposed to the development of breast and ovarian cancer. We used mice with a Brca1 mutation on a BALB/cJ inbred background (BALB/cB1+/- mice) or a Brca2 genetic alteration on the 129/SvEv genetic background (129B2+/- mice) to investigate potential gene-environment interactions between defects in these genes and treatment with the highly estrogenic compound diethylstilbestrol (DES). Beginning at 3 weeks of age, BALB/cB1+/-, 129B2+/-, and wild-type female mice were fed a control diet or a diet containing 640 ppb DES for 26 weeks. DES treatment caused vaginal epithelial hyperplasia and hyperkeratosis, uterine inflammation, adenomyosis, and fibrosis, as well as oviductal smooth muscle hypertrophy. The severity of the DES response was mouse strain specific. The estrogen-responsive 129/SvEv strain exhibited an extreme response in the reproductive tract, whereas the effect in BALB/cJ and C3H/HeN(MMTV-) mice was less severe. The Brca1 and Brca2 genetic alterations influenced the phenotypic response of BALB/cJ and 129/SvEv inbred strains, respectively, to DES in the mammary gland and ovary. The mammary duct branching morphology was inhibited in DES-treated BALB/cB1+/- mice compared with similarly treated BALB/cB1+/+ littermates. In addition, the majority of BALB/cB1+/- mice had atrophied ovaries, whereas wild-type littermates were largely diagnosed with arrested follicular development. The mammary ductal architecture in untreated 129B2+/- mice revealed a subtle inhibited branching phenotype that was enhanced with DES treatment. However, no significant differences were observed in ovarian pathology between 129B2+/+ and 129B2+/- mice. These data suggest that estrogenic compounds may modulate mammary gland or ovarian morphology in BALB/cB1+/- and 129B2+/- mice. These observations are consistent with the hypothesis that compromised DNA repair processes in cells harboring Brca1 or Brca2 mutations lead to inhibited growth and differentiation compared with the proliferative response of wild-type cells to DES treatment.  相似文献   

8.
Jeng YM  Cai-Ng S  Li A  Furuta S  Chew H  Chen PL  Lee EY  Lee WH 《Oncogene》2007,26(42):6160-6166
BRCA1 mutation carriers have an 85% lifetime risk of breast cancer and 60% for ovarian cancer. BRCA1 facilitates DNA double-strand break repair, and dysfunction of BRCA1 leads to hypersensitivity to DNA damaging agents and consequently genomic instability of cells. In this communication, we have examined the tumor incidence and survival of Brca1 heterozygous female mice. Brca1 heterozygotes appear to have a shortened life span with 70% tumor incidence. Lymphoma, but not ovarian and mammary gland tumors, occurs commonly in these mice. After a whole-body exposure to ionizing radiation, Brca1 heterozygous mice have a 3-5-fold higher incidence specific to ovarian tumors, but not lymphoma, when compared with the Brca1+/+ mice. All the tumors from heterozygous mice examined retain the wild-type allele and the cancer cells express Brca1 protein, precluding the chromosomal mechanism for loss of heterozygosity of Brca1 locus. Although the manifestation of BRCA1 haploinsufficiency may be different between human and mouse, this study suggests that women carrying Brca1 mutations may be more prone to ovarian tumor formation after IR exposure than nonmutation carriers.  相似文献   

9.
In order to generate an in vitro mouse model for the study of human ovarian cancers, we compared the effects of a truncated Brca1 mutant expression on cellular phenotype with those of a full-length sense and antisense Brca1 expression in the ID-8 mouse epithelial ovarian cancer cell line. The examined cellular processes include proliferation, tumorigenicity in syngeneic mice in vivo and sensitivity/resistance to several cytotoxic drugs. We found that the expression of a spontaneous truncated Brca1 mutant in ID-8 cells which contain two endogenous wild-type Brca1 alleles led to a dominant-negative effect of Brca1, demonstrated by an increase in tumorigenicity in vivo and in chemosensitivity. Expression of a truncated Brca1 mutant in a mouse epithelial ovarian cancer cell line could thus provide a powerful in vitro model for the study of human BRCA1-related ovarian tumorigenesis.  相似文献   

10.
Xiang T  Jia Y  Sherris D  Li S  Wang H  Lu D  Yang Q 《Oncogene》2011,30(21):2443-2450
The breast cancer susceptibility gene 1 (Brca1) has a key role in both hereditary and sporadic mammary tumorigenesis. However, the reasons why Brca1-deficiency leads to the development of cancer are not clearly understood. Activation of Akt kinase is one of the most common molecular alterations associated with human malignancy. Increased Akt kinase activity has been reported in most breast cancers. We previously found that downregulation of Brca1 expression or mutations of the Brca1 gene activate the Akt oncogenic pathway. To further investigate the role of Brca1/Akt in tumorigenesis, we analyzed Brca1/Akt expression in human breast cancer samples and found that reduced expression of Brca1 was highly correlated with increased phosphorylation of Akt. Consistent with the clinical data, knockdown of Akt1 by short-hairpin RNA inhibited cellular proliferation of Brca1 mutant cells. Importantly, depletion of Akt1 significantly reduced tumor formation induced by Brca1-deficiency in mice. The third generation inhibitor of mammalian target of rapamycin (mTOR), Palomid 529, significantly suppressed Brca1-deficient tumor growth in mice through inhibition of both Akt and mTOR signaling. Our results indicate that activation of Akt is involved in Brca1-deficiency mediated tumorigenesis and that the mTOR pathway can be used as a novel target for treatment of Brca1-deficient cancers.  相似文献   

11.
Brca2 is an important tumor suppressor associated with susceptibility to breast cancer. Although increasing evidence indicates that the primary function of Brca2 is to facilitate the repair of DNA damage via the homologous recombination pathway, how Brca2 prevents breast cancer is largely unknown. To study the role of Brca2 specifically in mammary epithelium development, we crossed mice bearing the conditionally deficient allele Brca2(flox9-10) to mouse mammary tumor virus- or whey acidic protein-Cre transgenic lines. Analysis of these animals showed that Brca2 is not required for epithelial expansion in mammary glands of pregnant mice. In addition, examination of mammary gland involution revealed normal kinetics of mammary alveolar cell apoptosis after weaning of litters. Nevertheless, Brca2-deficient mice developed mammary adenocarcinomas after a long latency (average, 1.6 years). Detailed histopathological analysis of four of these tumors demonstrated that three of them showed abnormal p53 protein expression. A mutation in the p53 gene was detected in one case. Moreover, homozygosity versus heterozygosity for the Brca2 mutation heavily skewed the tumor spectrum toward mammary adenocarcinoma development in p53(+/-) mice. Our data indicate that Brca2 is not essential for mammary epithelium development but that Brca2 deficiency and down-regulated p53 expression can work jointly to promote mammary tumorigenesis.  相似文献   

12.
Evers B  Jonkers J 《Oncogene》2006,25(43):5885-5897
Germline mutations in BRCA1 and BRCA2 are responsible for a large proportion of hereditary breast and ovarian cancers. Soon after the identification of both genes in the mid-1990s, investigators set out to develop mouse models for the associated disease. Whereas conventional Brca1 and Brca2 mouse mutants did not reveal a strong phenotype in a heterozygous setting, most homozygous mutations caused embryonic lethality. Consequently, development of mouse models for BRCA-associated tumorigenesis required the generation of tissue-specific conditional knockout animals. In this review, we give an overview of the conventional and the conditional mouse models of BRCA1 and BRCA2 deficiency generated over the last decade, as well as the contribution of these models to our understanding of the biological and molecular functions of BRCA1 and BRCA2. The most advanced mouse models for BRCA1- and BRCA2-associated tumorigenesis mimic human disease to the extent that they can be used in studies addressing clinically relevant questions. These models will help to resolve yet unanswered questions and to translate our increasing knowledge of BRCA1 and BRCA2 biology into clinical practice.  相似文献   

13.
BRCA1 is implicated in cellular responses to DNA damage, thereby substantially contributing to maintenance of the genome integrity. Mutations in the BRCA1 gene occur in breast and ovarian cancer and mutations that disable p53 are frequently found in human cancers, often accompanied by mutations in additional genes, contributing to tumor progression or high-grade malignancy. Therefore, the role of BRCA1 in the sensitivity to anticancer agents in p53-deficient cells was investigated using p53-deficient mouse knockout cell lines either deficient or proficient in Brca1 function. We report that Brca1-deficiency in p53-null cells was associated with increased sensitivity to the topoisomerase I poisons camptothecin and topotecan, the topoisomerase II poisons doxorubicin, mitoxantrone and etoposide, and to the platinum compounds carboplatin and oxaliplatin, but not to the antimetabolites 5-fluorouracil and gemcitabine and the taxanes docetaxel and paclitaxel. The increased growth inhibition to doxorubicin after loss of Brca1 correlated with increased cell killing caused by increased apoptosis. The data presented here indicate that Brca1 modulates p53-independent DNA damage response pathways and they support the case of a role of Brca1 to protect cells from apoptosis-mediated cell death in p53-deficient cells. These results suggest a higher chemotherapy susceptibility of cells disabled in both functions and they foster the concept that functional inhibition of BRCA1 may be a valuable adjunct to anticancer agents to increase the efficacy of chemotherapy in the treatment of p53-mutated cancers.  相似文献   

14.
15.
16.
Bachelier R  Xu X  Li C  Qiao W  Furth PA  Lubet RA  Deng CX 《Oncology reports》2005,14(5):1117-1120
Germline mutations of breast cancer-associated gene 1 (BRCA1) predispose women to breast and ovarian cancer. It was recently shown that bilateral oophorectomy decreases breast cancer incidence in BRCA1 mutation carriers. To model human BRCA1 carriers, our laboratory has previously created mice with a conditional knockout of the full-length BRCA1 gene in the mammary epithelium combined with a heterozygous knockout of the p53 tumor suppressor gene. These mice developed ER-negative mammary tumors and were employed to determine the effects of oophorectomy on tumor formation. Individual knockout mice (BRCA1(Co/Co) MMTV-Crep53+/-), following two complete pregnancies, were either oophorectomized or sham treated. Mice were subsequently examined for the development of palpable mammary tumors until they were 12 months of age. Until 135 days post-oophorectomy (255 days of age), the tumor incidence was similar in both oophorectomized and intact mice, approximately 30%. After this time, the increase in tumor incidence was much lower in the oophorectomized mice, while tumor incidence increased in non-oophorectomized mice. The effects of oophorectomy on mammary development in both control and knockout mice were also examined. Oophorectomized mice with a conditional knockout of full-length BRCA1 in conjunction with a loss of one p53 allele exhibited glandular regression with a reduction in the number of mammary epithelial cells following oophorectomy. This study employed a model that may be relevant for testing agents useful against breast cancer in BRCA1 carriers and a subset of sporadic cancers. The data also show that oophorectomy, if performed significantly prior to the time that tumors arise, appears to be quite effective.  相似文献   

17.
Germline mutations of human breast cancer-associated gene 1 (BRCA1) predispose women to breast and ovarian cancers. In mice, over 20 distinct mutations, including null, hypomorphic, isoform, conditional, and point mutations, have been created to study functions of Brca1 in mammary development and tumorigenesis. Analyses using these mutant mice have yielded an enormous amount of information that greatly facilitates our understanding of the gender- and tissue-specific tumor suppressor functions of BRCA1, as well as enriches our insights into applying these preclinical models of disease to breast cancer research. Here, we review features of these mutant mice and their applications to cancer prevention and therapeutic treatment.  相似文献   

18.
Inherited heterozygous BRCA2 mutations predispose carriers to tissue-specific cancers, but somatic deletion of the wild-type allele is considered essential for carcinogenesis. We find in a murine model of familial pancreatic cancer that germline heterozygosity for a pathogenic Brca2 truncation suffices to promote pancreatic ductal adenocarcinomas (PDACs) driven by Kras(G12D), irrespective of Trp53 status. Unexpectedly, tumor cells retain a functional Brca2 allele. Correspondingly, three out of four PDACs from patients inheriting BRCA2(999del5) did not exhibit loss-of-heterozygosity (LOH). Three tumors from these patients displaying LOH were acinar carcinomas, which also developed only in mice with biallelic Brca2 inactivation. We suggest a revised model for tumor suppression by BRCA2 with implications for the therapeutic strategy targeting BRCA2 mutant cancer cells.  相似文献   

19.
20.
Recombinant adenoviruses expressing human BRCA1 (AdBRCA1), murine Brca1 (AdBrca1), three clinically relevant human mutant BRCA1 proteins (t340, C61G, and 1853Stop), or a murine Brca1 C-terminal deletion mutant were constructed and evaluated in vitro. These recombinants were capable of transducing high-level transgene expression to a wide variety of cell lines in vitro. Three independent methods were utilized to monitor cell growth following transduction with these recombinants. High-level expression of either the human or mouse wild-type BRCA1 protein was incompatible with maximal levels of cell growth. AdBRCA1 transduction inhibited the outgrowth of several human breast and ovarian cell lines in colony formation assays. Flow cytometric analysis revealed an accumulation of the transduced cells in the G0/G1 phase of the cell cycle. This BRCA1-mediated accumulation of cells in G0/G1 was accompanied by an increase in the cellular level of hypophosphorylated pRB. Ad mutant BRCA1 t340, C61G, and 1853Stop viruses were impaired, to varying degrees, in their ability to transduce a growth-arrested state to the target cells. Using these same three criteria, overexpression of murine Brca1 by AdBrca1 was also capable of transducing a growth-arrested state to human cells. Deletion of the C-terminus of Brca1 diminished this activity. This panel of adenoviruses may be useful reagents as part of an approach to understand the function of BRCA1/Brca1 in normal breast and ovary and help to define the tumor suppressor defect (s) conferred by clinical BRCA1 mutations in breast and ovarian cell tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号