首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
壳聚糖纳米粒表面游离氨基与纳米粒特性研究   总被引:6,自引:1,他引:6  
为研究对三聚磷酸钠(TPP)交联的壳聚糖纳米粒的表面游离氨基与纳米粒的性质之间的关联性,采用胶体滴定法测定壳聚糖纳米粒表面氨基游离率,考察表面游离氨基的数量及离解程度对纳米粒粒径、电位、形态及对药物包封率和体外释药特性的影响,并阐述这种变化机制。结果表明,随TPP浓度增加,表面游离氨基逐步减少,在一定TPP浓度范围内,纳米粒粒径减小,表面zeta电位降低,稳定性也随之下降,粒子易聚集,释药速度和程度也随之降低,但药物包封率未受到影响;随着pH升高,表面游离氨基离解程度降低,纳米粒粒径亦随之减小,表面zeta电位降低。酸性介质提高纳米粒的释药速度和程度,在中性和碱性介质中纳米粒的释药速度和程度明显降低。交联程度和pH影响表面游离氨基的数量或离解程度,进而影响纳米粒的体积相转变(溶胀/收缩过程)等重要性质。表面游离氨基与纳米粒性质间有密切的联系。  相似文献   

2.
目的:考察5-氟尿嘧啶-N-琥珀酰壳聚糖纳米粒(5-FU-Suc-Chi/NPs)理化性质影响因素。方法:采用乳化溶剂挥发法制备5-FU-Suc-Chi/NPs并考察其理化性质的影响因素。结果:5-FU-Suc-Chi/NPs的粒径、Zeta电位、包封率及载药量的大小与N-琥珀酰壳聚糖的取代度(DS)和分子量(Mw)有关。结论:N-琥珀酰壳聚糖的分子参数是影响5-FU-Suc-Chi/NPs理化性质的重要因素。  相似文献   

3.
褪黑素固体脂质纳米粒的制备及理化性质   总被引:2,自引:0,他引:2  
考察不同的处方对褪黑素固体脂质纳米粒粒径和包封率等理化性质的影响,并进行其体外释放实验。结果表明,以单硬脂酸甘油酯为脂质材料,乳化超声法制备固体脂质纳米粒,平均粒径为(62.4±1.5)nm,ζ电位为(-7.0±0.2)mV,平均包封率为(64.6±3.8)%;药物的体外释放符合Weibull模型。  相似文献   

4.
壳聚糖纳米粒的研究进展   总被引:16,自引:0,他引:16  
壳聚糖是一类带正电的直链多糖,具有良好的生物相容性和生物可降解性,且具有多种生物活性,能有效增加药物通过眼部、鼻腔及胃肠道粘膜上皮的吸收,降低药物的吸收前代谢,提高药物的生物利用度,因此壳聚糖在缓控释给药系统中具有广阔的应用前景,但其溶解性能有待于进一步提高。本文就壳聚糖纳米粒的制备方法、作物特点及应用作一概述。  相似文献   

5.
银杏内酯PELGE纳米粒的制备及理化性质   总被引:1,自引:0,他引:1  
采用共沉淀法制备银杏内酯PELGE纳米粒,正交试验设计优化处方,并考察了优化制品的外观和体外释放行为.结果表明,所得纳米粒外观圆整,包封率为(66.9±1.7)%,粒径为(123.3±44.0)nm,体Pb24h累积释放率为60.2%.  相似文献   

6.
阿昔洛韦眼用壳聚糖纳米粒的制备及家兔生物利用度研究   总被引:4,自引:0,他引:4  
目的:应用离子交联法制备阿昔洛韦壳聚糖纳米粒,考察其体外性质及其经家兔眼部给药后的生物利用度.方法:壳聚糖与三聚磷酸钠通过离子交联作用制备纳米粒,考察了纳米粒的粒径、Zeta电位、包封率以及体外释放性质,通过家兔眼部结膜囊内给药,考察眼房水中药物浓度的变化,并与市售阿昔洛韦滴眼液相比较.结果:阿昔洛韦壳聚糖纳米粒的平均粒径为235 nm,多分散系数为0.256,Zeta电位为43.9 mV;平均包封率为15.6%,平均载药量为1.9%;家兔眼部给药后,AUC0→6 h达到3.69μg·h-1·mL-1,是市售制剂的2.4倍.结论:实验初步证实制备的壳聚糖纳米粒可以促进阿昔洛韦的眼部吸收.  相似文献   

7.
壳聚糖纳米粒制备的研究进展   总被引:1,自引:0,他引:1  
载药纳米粒作为药物、基因传递和控释的载体,是近年来出现的药物控释和缓释的新剂型。壳聚糖具有较好的生物黏附性、促吸收效应和酶抑制载体作用等特性。壳聚糖纳米粒作为一种新型药物载体,已成为目前国内外研究开发的热点。本文就壳聚糖纳米粒制备的研究进展情况进行了综述。  相似文献   

8.
壳聚糖纳米粒制备技术研究进展   总被引:5,自引:2,他引:5  
目的:介绍壳聚糖的应用及其作为新型药物载体材料制备纳米粒的技术研究进展,为深入研究提供参考。方法:在广泛查阅文献的基础上,通过归纳和分类完成资料整理。结果:壳聚糖研究历史悠久,用于纳米粒制备的工艺方法较多,尤其用其包载基因、多肽及某些抗肿瘤药具有独到优势。结论:壳聚糖作为可生物降解的纳米粒载体材料具有重要的科研和应用价值。  相似文献   

9.
目的:制备蓝萼甲素固体脂质纳米粒,并对其理化性质进行研究。方法:用乳化-溶剂挥发法制得蓝萼甲素固体脂质纳米粒,并对其粒径、形态、表面电位、包封率、体外释药性质等进行研究。结果:所得蓝萼甲素固体脂质纳米粒的粒径分布均匀,平均粒径为(190±10·3)nm,Zeta电位为—31·2mV,平均包封率为(50·45±0·804)%;药物体外释放符合Higuchi线性方程,具有显著缓释作用。结论:固体脂质纳米粒可作为蓝萼甲素新型缓释给药系统。  相似文献   

10.
壳聚糖载药纳米粒研究进展   总被引:2,自引:0,他引:2  
林爱华  平其能 《中国药业》2006,15(21):25-27
目的介绍壳聚糖载药纳米粒近年来的研究进展。方法总结壳聚糖纳米粒的制备方法、释药特性、生物摄取及其应用。结果不同的制备方法可得到不同粒径和表面特性的壳聚糖纳米粒。壳聚糖纳米粒改变了壳聚糖的摄取机制,广泛应用于药物的器官靶向、DNA转染效率提高、药物的非注射途释给药等方面。结论壳聚糖纳米粒作为一种新型的药物载体,具有重要的研究开发价值。  相似文献   

11.
目的制备亮丙瑞林硬脂酸纳米粒,并对其理化性质进行研究。方法分别采用溶剂扩散法和乳化溶剂蒸发法制备硬脂酸固体脂质纳豢粒.并潮定纳束粒形态、粒径、药物包封率和体外释放等理化性质。结果溶剂扩散法和乳化溶剂蒸发法制备得到的硬脂酸纳米粒平均粒径均在400nm左右,形态呈椭圆形。与溶剂扩散法相比.以乳化溶剂蒸发法制备的纳米粒,亮丙瑞林的药物包封率从28.0%提高到53.1%。体外释放2h的药物突释量显著下降。药物释放总维持时闻在24h左右。结论以乳化溶剂扩散法制备亮丙瑞林硬脂酸SLN。药物包封率高。药物突释量小。具有一定的亮丙瑞林口服给药开发前景。  相似文献   

12.
This article reports a promising approach to enhance the oral delivery of nuciferine (NUC), improve its aqueous solubility and bioavailability, and allow its controlled release as well as inhibiting lipid accumulation. NUC-loaded poly lactic-co-glycolic acid nanoparticles (NUC-PLGA-NPs) were prepared according to a solid/oil/water (s/o/w) emulsion technique due to the water-insolubility of NUC. PLGA exhibited excellent loading capacity for NUC with adjustable dosing ratios. The drug loading and encapsulation efficiency of optimized formulation were 8.89?±?0.71 and 88.54?±?7.08%, respectively. NUC-PLGA-NPs exhibited a spherical morphology with average size of 150.83?±?5.72?nm and negative charge of ?22.73?±?1.63?mV, which are suitable for oral administration. A sustained NUC released from NUC-PLGA-NPs with an initial exponential release owing to the surface associated drug followed by a slower release of NUC, which was entrapped in the core. In addition, ~77?±?6.67% was released in simulating intestinal juice, while only about 45.95?±?5.2% in simulating gastric juice. NUC-PLGA-NPs are more efficient against oleic acid (OA)-induced hepatic steatosis in HepG2 cells when compared to naked NUC (n-NUC, *p < 0.05). The oral bioavailability of NUC-PLGA-NPs group was significantly higher (**p < 0.01) and a significantly decreased serum levels of total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C), as well as a higher concentration of high-density lipoprotein cholesterol (HDL-C) was observed, compared with that of n-NUC treated group. These findings suggest that NUC-PLGA-NPs hold great promise for sustained and controlled drug delivery with improved bioavailability to alleviating lipogenesis.  相似文献   

13.
目的 研究不同种类药用辅料成分对麦角甾苷固体脂质纳米粒(SLN)理化性质的影响,为研究SLN的处方筛选提供依据。方法 采用乳化-固化法制备麦角甾苷-SLN,单一变量法考察山嵛酸甘油酯(Compritol ATO 888)、单硬脂酸甘油酯、大豆卵磷脂、Myrj52等辅料对麦角甾苷-SLN粒径、包封率、表征分散度(PDI)等理化性质的影响,采用透射电镜法观察麦角甾苷-SLN的形态,X-射线衍射(XRD)分析其药物晶体结构。结果 随Compritol ATO 888用量增加,麦角甾苷-SLN粒径不断减小,包封率逐渐减小,PDI逐渐增加;随单硬脂酸甘油酯的用量增加,粒径明显增大,包封率略有降低,PDI减小;随卵磷脂用量增加,粒径明显增大,包封率降低,PDI减小;随Myrj52用量明显增加,粒径减小,包封率增加,PDI增大;麦角甾苷-SLN外观圆整,呈球形;麦角甾苷以分子分散状态被包裹在SLN中。结论 不同辅料对麦角甾苷-SLN的理化性质均产生一定影响趋势,为制备SLN的处方筛选研究提供启示与思路。  相似文献   

14.
The tissue distribution and toxicity of nanoparticles (NPs) depend on their physical and chemical properties both in the manufactured condition and within the biological system. We characterized three types of commercially available aluminum‐based NPs (Al‐NPs), two rod‐type aluminum oxide NPs (Al2O3, AlONPs), with different aspect ratios (short [S]‐ and long [L]‐AlONPs), and spherical aluminum cerium oxide NPs (AlCeO3, AlCeONPs). The surface area was in order of the S‐AlONPs > L‐AlONPs > AlCeONPs. Very importantly, we found that AlCeONPs is Al2O3‐coated CeO2 NPs, but not AlCeO3 NPs, and that the Al level in AlCeONPs is approximately 20% of those in S‐ and L‐AlONPs. All three types of Al‐NPs were slightly ionized in gastric fluid and rapidly particlized in the intestinal fluid. There were no significant differences in the body weight gain following 28 days of repeated oral administration of the three different types of Al‐NPs. All Al‐NPs elevated Al level in the heart, spleen, kidney and blood at 24 hours after the final dose, accompanied by the altered tissue level of redox reaction‐related trace elements. Subsequently, in four types of cells derived from the organs which Al‐NPs are accumulated, H9C2 (heart), HEK‐293 (kidney), splenocytes and RAW264.7 (blood), S‐AlONPs showed a very low uptake level and did not exert significant cytotoxicity. Meanwhile, cytotoxicity and uptake level were the most remarkable in cells treated with AlCeONPs. In conclusion, we suggest that the physicochemical properties of NPs should be examined in detail before the release into the market to prevent unexpected adverse health effects.  相似文献   

15.
The effects of different loading procedures of magnetic nanoparticles (MNs) on the structure and physicochemical properties of cisplatin magnetic liposomes were investigated by X-ray diffraction, infrared spectroscopy, transmission electron microscopy, and fluorescence spectroscopy. 1, 2-Dipalmitoyl-sn-glycero-3-Phosphocholine based cisplatin magnetic liposomes were prepared using two different procedures. In procedure I, MNs were combined with phospholipids during film formation; MNs were embedded in a phospholipid bilayer. In procedure II, MNs were mixed with drugs during hydration and MNs were contained in an interior aqueous compartment. The encapsulation efficiency of cisplain and the content of MN in procedure I liposomes were 33.5%?±?3.3% and 2.34?±?0.09?mg?mL?1, respectively. It indicated that the deliberate MN loading into the liposome structure was not only successful using procedure I, but also superior over procedure II both in cisplatin encapsulation efficiency and MN content, which can promote the magnetic targeting effect of magnetic liposomes during delivering cisplatin.  相似文献   

16.
目的制备氟尿嘧啶隐形泡囊并考察其理化性质和体外细胞毒性。方法用自制Plu-Chol,以改良注入法制备氟尿嘧啶隐形泡囊,考察泡囊的形态、粒径、电位、包封率和体外释放特性,通过MTT比色法比较泡囊与原药对Hela细胞的作用效应。结果氟尿嘧啶隐形泡囊在电镜下的外观为球形,平均粒径为904.87±0.45 nm,Zeta电位为-66.75 mV,包封率为30.93%±1.71%;体外释放符合Weibull distribution模型,且具有明显的缓释性(氟尿嘧啶隐形泡囊释药t1/2为游离氟尿嘧啶的3.75倍);细胞毒性试验表明泡囊对Hela细胞的杀伤作用明显优于原药(IC50降低了83.95%,P<0.01)。结论所制氟尿嘧啶隐形泡囊的操作简单,对肿瘤细胞的杀伤力显著强于原药。  相似文献   

17.
目的:制备醋酸纤维素(CA)水分散体,并测定其部分理化性质。方法:以乙酸乙酯、无水乙醇为溶剂,十二烷基硫酸钠为乳化剂,采用乳化-溶剂挥干法制备醋酸纤维素水分散体,并以沉降体积比评分为指标,通过正交实验,对结果进行直观分析和方差分析,确定了最优处方。结果:最优处方中十二炕基硫酸钠、乙醇和CA的含量分别为3 g·L-1,5%和5%,本法制得的醋酸纤维素水分散体外观良好,平均粒径162 nm,zeta电位-58.8 mV,固形物含量为8.8%,黏度为(5.2±0.7)mPa·s(n=6)。结论:自制的醋酸纤维素水分散体粒径小、固形物含量高、黏度低,能够满足包衣要求。  相似文献   

18.
Hypericin (HYP), a natural photosensitizer, has powerful photo-oxidizing ability, tumor-seeking characteristics, and minimal dark toxicity; nevertheless, it has proven high lipid solubility compared to its sparingly water soluble nature. Therefore, its formulation into solid lipid nanoparticles (SLNs) has attracted increasing attention as a potential drug-delivery carrier. Two HYP-loaded SLNs formulations were prepared utilizing microemulsion-based technique. Thereafter, the physicochemical properties of the formulations were investigated and evaluated. HYP-loaded SLNs showed spherical shape with mean particle size ranging from 200-300 nm for both formulations (FA and FB). The encapsulation efficiencies reached above 80% and FA showed significant higher encapsulation than FB (P<0.05), also, the thermal analysis using differential scanning calorimetry (DSC) indicated good compatibility between hypericin and lipids forming the cores in both formulations. Spectroscopic measurements of the photostability study showed that hypericin encapsulation into SLNs improved its photostability, compared to free HYP in 0.1% ethanolic solution. However, photocytotoxicity studies on HepG2 cells revealed an evident inhibition of the photodynamic efficacy of HYP-loaded SLNs, compared to free HYP. In conclusion, although the elevated entrapment efficiency of HYP into SLNs increased its photostability, it decreased its phototoxicity which might be due to the quenching deactivation of HYP molecules resulting from SLN compactness and thickness structure.  相似文献   

19.
Titanium dioxide (TiO(2)) has been considered as non-toxic mineral particles widely used in the fields like cosmetics, food and drug. When the scale come to nanometer, TiO(2) nanoparticles (nano-TiO(2)) exhibits multiple specific characteristics coupled with unknown risks on health. The purpose of this study was to systematically research the influence of nano-TiO(2) on erythrocyte. The results indicated that the erythrocytes treated with nano-TiO(2) underwent abnormal sedimentation, hemagglutination and dose dependent hemolysis, totally differing from those treated with micro-TiO(2). The ghost cells were firstly investigated by using ultra-thin cell section in the case under nano-TiO(2). The mechanism of such adverse effects is (1) the attachment around erythrocyte change the surface native properties and ultimately lead to hemoagglutination; (2) the content leak to the outside of erythrocyte through the breakage induced by both the nano-TiO(2) trans-membrane and the oxidative stress under nano-TiO(2). Our findings imply that nano-TiO(2) may have potential toxicity to human being health.  相似文献   

20.
Resveratrol (RES) is natural polyphenol with a strong biological activity, but its disadvantages, such as poor water solubility, susceptibility to oxidative decomposition and rapid metabolism in the body, which substantially restricts in vivo bioavailability, need to be resolved. This study used carboxymethyl chitosan (CMCS) as a drug carrier and utilized emulsion cross-linking to prepare RES-loaded CMCS nanoparticles (RES-CMCSNPs). A single-factor experiment was performed to optimize the preparation of these particles; in vitro and in vivo characteristics were evaluated. Spherical RES-CMCSNPs were prepared under optimal conditions, in which average particle size, potential, drug loading and encapsulation efficiency were (155.3?±?15.2) nm, (?10.28?±?6.4) mV, (5.1?±?0.8)% and (44.5?±?2.2)%, respectively. FTIR, DSC and XRD showed that RES molecules were wrapped in the nanoparticles. In vitro DPPH radical scavenging abilities showed RES-CMCSNPs were better than RES raw powder. The nanoparticles improved the solubility of RES, thereby greatly improving the antioxidant activity of the drug. In vitro release experiments of RES and RES-CMCSNPs by simulating the human gastrointestinal tract were performed, in which RES-CMCSNPs rendered better releasing effects than raw RES. Raw RES and RES-CMCSNPs results were in line with those obtained for the single-chamber model for pharmacokinetic studies in rats. Compared with the bulk drugs, the RES-CMCSNPs exhibited increased in vivo absorption, prolonged duration of action and increased relative bioavailability by 3.516 times more than those of the raw RES. In addition, the residual chloroform is less than the ICH limit for class 2 solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号