共查询到14条相似文献,搜索用时 78 毫秒
1.
目的:比较和分析两种自动勾画软件(AccuContour和DeepViewer)勾画危及器官的精确度,以此评估它们在不同肿瘤放射治疗中的适用程度和优越性。方法:回顾性选取中科院合肥肿瘤医院肿瘤患者60例,其中鼻咽癌、肺癌、乳腺癌、宫颈癌各15例,由同一个物理师在患者CT图像上手动勾画危及器官,再分别用两种自动勾画软件进行勾画。以手动勾画结果为标准,分别计算两种软件勾画结果的戴斯相似性系数(DSC)和绝对体积差(ΔV),并对两种勾画结果的差异进行配对t检验,比较两种软件勾画结果。结果:AccuContour软件和DeepViewer软件勾画结果的总体DSC分别为0.90±0.11和0.87±0.14(t=-5.029, P<0.05),总体ΔV分别为(13.23±18.77)和(29.89±45.27) cm3(t=7.344, P<0.05)。在20个危及器官中,AccuContour软件勾画结果的所有DSC均大于0.7,其中最大DSC为脑(0.99±0.00),最小DSC为右眼晶状体(0.71±0.11);DeepViewer软件勾画的结果有18个器官DSC大于等于0.7,其中,最大DSC为肺(0.98±0.00),最小DSC为右侧股骨头(0.63±0.18)。AccuContour软件勾画的13个器官的ΔV均小于DeepViewer勾画结果。结论:两种软件整体勾画效果均比较好,对于体积较大的危及器官,勾画效果要优于体积较小的器官,AccuContour软件勾画效果优于DeepViewer软件。 相似文献
2.
目的:探讨AccuContour软件及定制化自动勾画模型在直肠癌术前容积旋转调强放疗中临床靶区(CTV)和危及器官(OAR)自动勾画几何轮廓及剂量学各项参数精度,为临床应用提供依据。方法:回顾性选取133例已接受直肠癌术前容积旋转调强放疗的患者,随机分组,65例作为训练集,16例作为验证集,52例作为测试集,构建并训练自动勾画模型,将其导入AccuContour软件并自动勾画CTV和4个OAR,对比自动勾画与手动勾画在CTV和OAR几何轮廓的体积差异([ΔV])、Dice相似性系数(DSC)、Jaccard系数(JAC)、敏感性指数(SI)、包容性系数(lncl)、质心偏差(DC)、Hausdorff距离(HD)等,以及自动勾画与手动勾画CTV和OAR在同一容积旋转调强计划中所受照射剂量学参数差异,从而评估自动勾画效果。结果:CTV的DSC值、JAC值、SI值、lncl值为:0.84±0.06、0.72±0.08、0.81±0.07、0.87±0.08,[ΔV]值、DC值、HD值为:10.93%(4.56%, 15.37%)、5.03(3.27, 8.77) mm、15.03(15.00, 24.70) mm;OAR的DSC值、SI值、lncl值、JAC值、[ΔV]值、DC值、HD值比较优劣顺序依次为:右股骨头、左股骨头、膀胱、小肠;自动勾画与手工勾画剂量学参数对比中,除膀胱V30、小肠Dmean、CTV D95的差异有统计学意义外(P<0.05),其余均无统计学意义(P>0.05)。结论:在直肠癌术前容积旋转调强放疗中,本研究所采用的自动勾画系统,对于CTV和OAR的自动勾画有一定准确性,为临床医生节省大量时间,提高工作效率。 相似文献
3.
目的:比较MANTEIA和RT-Mind两种软件自动勾画头部小体积危及器官(OAR)的准确性。方法:选取30例头部肿瘤患者的电子计算机断层扫描(CT)影像和核磁共振影像,将两套勾画系统软件自动勾画的实验组1和在勾画基础上手动修改的实验组2与医生手动勾画的对照组进行交叉指数系数(OI)、形状相似性系数(DSC)、杰卡德相似系数(J)和剂量偏差比较。结果:对于体积相对较大或CT值差异明显的头部器官(如脑干、晶体),OI、DSC、J值较高,剂量偏差较低;但对于小体积OAR(如视交叉、视神经、垂体)OI、DSC、J值较低,剂量偏差较高。P值分析发现:自动勾画A1组与手动勾画M组OAR的OI、DSC和J值比较差异均有统计学意义(P<0.05)。除晶体和内耳的OI值外,自动勾画B1组与手动勾画M组OAR的OI、DSC和J值比较差异均有统计学意义(P<0.05)。在自动勾画基础上,手动修改后,OI、DSC和J值都有提升,但与M组的OAR相比仍存在一定的差异。结论:通过软件自动勾画可以满足体积相对较大或CT值差异明显的头部器官放疗的临床需求,但对于头部小体积OAR,在临床上仍需要医生手动勾... 相似文献
4.
目的:探讨基于Atlas实施宫颈癌危及器官自动勾画时勾画算法及匹配数目对自动勾画结果的影响。方法:基于MIM-Maestro软件建立宫颈癌Atlas模板库,入库病例数目为60例。随机选择Atlas库外10例宫颈癌患者,由临床医生手动勾画危及器官(膀胱、直肠和双侧股骨头),并定义为参考勾画(Vref)。应用多数投票算法和STAPLE算法,匹配数分别选择1、3、5、7、9进行自动勾画。采用勾画时间(T)、相似性系数(DSC)、敏感性指数(SI)、质心偏差(DC)、Jaccard系数(JAC)、Hausdorff距离(HD)评价勾画结果,并进行单因素方差分析和配对样本t检验。结果:勾画时间随匹配数目增大呈线性增加,与勾画算法无关。多数投票算法和STAPLE算法勾画结果均显示,匹配数为1时膀胱的SI和左股骨头的DSC、HD、JAC与匹配数为3、5、7、9时有统计学差异。STAPLE算法中,直肠和双侧股骨头的SI均显示匹配数目为1、3与5、7、9有统计学差异。两种勾画算法的比较结果显示,仅双侧股骨头的SI有统计学差异。结论:基于Atlas实施危及器官自动勾画时,勾画算法对结果基本无影响,所需时间与匹配数呈正比,综合勾画结果建议匹配数目选择3。 相似文献
5.
目的 探讨分析鼻咽癌容积旋转调强放射治疗(VMAT)中危及器官(OAR)自动勾画(AS)的几何和剂量学准确度,并检验OAR勾画的几何和剂量学之间的相关性,为放射治疗(简称放疗)患者OAR勾画提供参考依据。方法 回顾性选择120例鼻咽癌放疗患者,其中男性84例,女性36例;年龄11~82岁,中位年龄55岁;病灶位于颅底与软腭之间,垂直径和横径各3~4 cm,前后径2~3 cm。其中随机数字法选择85例患者经AccuLearning深度学习训练平台训练形成AS模型,将AS模型导入AccuContour软件。利用AS模型勾画未训练的35例鼻咽癌放疗患者的18个OAR。比较AS与手动勾画(MS)OAR的几何度量有戴斯相似性系数(DSC)、杰卡德系数(JAC)、质心偏差(DC)、豪斯多夫距离(HD95)、对称位置平均表面距离(ASSD)、相对绝对体积差异(RAVD)。在同一个VMAT计划下,通过剂量体积直方图(DVH),比较AS与MS勾画的OAR剂量学参数。采用双尾Spearman来分析几何指标和剂量学绝对差异值之间的相关性。结果AS勾画的OAR轮廓与MS勾画的OAR轮廓具有差异性。几何指标DS... 相似文献
6.
目的:评估CT金属伪影对鼻咽癌放疗危及器官(OAR)自动勾画的影响。方法:选取有无牙齿修复物的鼻咽癌患者各16例,由放疗医师和深度学习自动勾画平台AccuContour分别勾画26种OAR轮廓。比较有无金属伪影患者不同OAR轮廓三维相似性系数(DSC)和Hausdorff距离(HD)以及有无金属伪影横断面内口腔和下颌骨的二维DSC和HD。同时记录人工勾画和自动勾画全部OAR的时间。结果:所有OAR的三维DSC和HD在有无金属伪影患者组间均无显著差异(P>0.05)。无金属伪影横断面内口腔的二维DSC和HD优于有伪影横断面(P<0.01),且伪影越严重,自动勾画的口腔轮廓局部偏离基准值越明显。自动勾画效率(<2 min)显著优于人工勾画效率(>70 min)。结论:牙齿修复物伪影对基于深度学习的鼻咽癌放疗OAR自动勾画的准确性和工作效率影响有限,较人工勾画方法仍然具备明显优势。 相似文献
7.
目的:面向放疗危及器官自动勾画构建基于U-Net的模型并针对肝脏分割构建3种改进模型。方法:采集共计184例肝癌患者和183例头部放疗患者的计算机断层扫描(CT)图像及组织结构信息,并结合公开数据集Sliver07用于模型的训练与评估。通过搭建U-Net模型并针对肝脏分割分别结合空洞卷积、SLIC超像素算法、区域生长算法进行训练并得到预测模型,利用预测模型对自动勾画结果进行预测。采用交并比(Io U)和平均交并比(MIo U)评价预测结果的精确性。结果:测试集头部放疗危及器官自动勾画预测结果MIo U为0.795~0.970,肝脏分割使用U-Net预测结果MIo U约为0.876,使用改进后模型预测结果MIo U约为0.888,并很好地约束了预测偏差较大结果的出现,使得测试样本中Io U结果小于0.8的数量占比从16.67%降至7.5%。直观勾画方面结合改进算法的模型比U-Net更能捕捉到复杂、混淆性的边界区域。结论:构建U-Net模型能够在头部放疗危及器官和肝脏自动勾画上表现良好,3种改进的模型能够在肝脏分割上具有更优的表现。 相似文献
8.
目的:评估基于人工智能技术的自动勾画软件勾画胸部危及器官轮廓的几何学精度,为临床应用提供依据。方法:选择30例胸部肿瘤患者的CT图像,分别使用基于人工智能技术的自动勾画软件勾画和医师手动勾画胸部危及器官。采用Hausdorff距离、形状相似性指数及Jaccard系数这3个指标评价自动勾画与手动勾画危及器官的几何学一致性。结果:在肺、心脏和脊髓的Hausdorff距离中,最大为右肺的(22.31±4.50) mm,最小为脊髓的(3.17±0.80) mm。危及器官的形状相似性指数值均≥0.91。Jaccard系数中左肺和右肺的均值≥0.95,脊髓的为0.84±0.02,心脏的略低为0.83±0.04。结论:基于人工智能技术的危及器官自动勾画软件对于胸部危及器官勾画能够达到较高的准确性和精度,可以满足临床工作。
【关键词】胸部肿瘤;人工智能;危及器官;自动勾画;放射治疗 相似文献
9.
目的:勾画危及器官是放射治疗中非常重要的常规工作。然而,目前的人工勾画非常耗时,而且依赖于医生的知识和经验。为此,本研究提出一种深度反卷积神经网络,用于自动和精确地勾画危及器官。 方法:深度反卷积神经网络是一个用于自动分割的端到端框架。实验使用了230例头颈部患者的数据,在其中随机选择了184例作为训练集,用于调制自动分割模型的参数,其余46例用作测试集评估方法的性能。用于分割的危及器官包括脑干、脊髓、左腮腺、右腮腺、左颞叶、右颞叶、甲状腺、喉、气管9个危及器官。自动分割精度的量化指标使用戴斯相似性系数和豪斯多夫距离。 结果:所有危及器官自动分割的戴斯相似性系数值均在0.70以上(平均值为0.81),豪斯多夫距离值在5.0 mm内(平均值为4.3 mm),表明本研究提出的自动分割方法能准确地分割危及器官。 结论:利用深度反卷积神经网络建立了一种自动分割危及器官的方法,可以得到较准确的结果,为放射治疗流程自动化提供了技术支持。 相似文献
10.
目的:将一款基于深度学习的危及器官自动勾画软件系统DeepViewer应用于临床,实现自动勾画肿瘤患者治疗计划中危及器官的功能。方法:DeepViewer使用改进后的全卷积神经网络U-Net来实现自动勾画患者CT扫描部位所包含的危及器官,并使用Dice相似性系数(DSC)对比分析这22种危及器官自动勾画与手动勾画的差异。结果:11种危及器官DSC平均值在0.9以上,5种危及器官DSC平均值为0.8~0.9,5种器官DSC平均值为0.7~0.8,视交叉DSC平均值最低,为0.676。总体结果表明DeepViewer系统能够较准确地自动勾画出危及器官,特别是左、右肺、膀胱、脑干等器官,已基本满足临床需求。结论:DeepViewer软件系统可以实现放疗肿瘤患者危及器官的自动勾画,准确性较高。同时,DeepViewer系统勾画完毕后,可以通过网络系统自动传输RTStructure DICOM3.0文件,无需其他操作,能极大地提高临床医生工作效率,降低治疗计划流程中的勾画总时间。 相似文献
11.
目的:基于U-net卷积神经网络的深度学习方法,探讨宫颈癌放疗临床靶区和危及器官自动勾画的可行性。方法:利用U-net卷积神经网络模型搭建的端到端自动分割框架,以100例已进行IMRT治疗的宫颈癌患者CT及组织结构信息为研究对象,并随机选取其中的10例作为测试集。勾画的对象包括临床靶区(CTV)、膀胱、直肠和左、右股骨头5个部分,比较手动和自动勾画的戴斯相似性系数(DSC)和豪斯多夫距离(HD)以评估自动勾画模型的准确性。结果:4种危及器官自动勾画的DSC值都在0.833以上,平均值是0.898;HD值均在8.3 mm以内,平均值为5.3 mm;临床靶区DSC值是0.860,HD值为13.9 mm。结论:基于U-net卷积神经网络建立的自动勾画模型能较为准确地实现宫颈癌临床靶区和危及器官的自动勾画,临床应用中可大幅提高医生的工作效率及勾画的一致性。 相似文献
12.
目的:将肺部颜色特征与纹理特征融合形成一种更有效的特征,并利用改进的U-Net深度学习网络结构对肺部CT影像进行图像分割以准确提取肺实质区域。方法:使用的CT影像数据来源于LIDC-IDRI数据库,首先通过色彩空间转换、高阶邻域统计的方法分别提取颜色特征和纹理特征,然后采用加权平均直方图融合两类特征,最后将特征输入改进后的U-Net模型,进行1 000次CT扫描测试,以达到完整的肺实质输出。结果:该方法最终的骰子系数、灵敏度、特异性分别为93%、96%和97%。结论:本方法较单一特征分割方法具有较高的分割精度,有效提高肺实质的分割精度,可为后续的肺部疾病自动诊断提供可靠基础,减少临床诊断的成本并节省医生诊断时间。 相似文献
13.
目的:探讨建立一种放射治疗全身器官剂量数据库平台的可行性。方法:使用基于深度学习的自动勾画软件DeepViewer?1例食管癌患者的全身CT上勾画全身器官,然后利用基于GPU加速的蒙特卡罗软件ARCHER计算相应的器官剂量分布,最后利用Lyman-Kutcher-Burman(LKB)模型评估放疗患者正常组织并发症概率(NTCP)。结果:针对该病例,成功建立基于DeepViewer?ARCHER和LKB模型的全身器官剂量数据库,发现距离靶区越近的器官剂量越大,其中心脏与靶区间距离最小,剂量为14.11 Gy,但因其模型参数特殊,通过LKB模型计算的NTCP为0.00%;左、右肺的剂量分别为3.19和1.16 Gy,但是NTCP值却很大,分别为2.13%和1.60%。对于距离靶区较远的头颈部器官(视交叉、视神经和眼)和腹部器官(直肠、膀胱和股骨头)剂量分别约为9和2 mGy,并且NTCP均近似为0.00%。结论:研究结果证明通过自动勾画软件DeepViewer?蒙特卡罗软件ARCHER和LKB模型建立全身器官剂量数据库的可行性。 相似文献
14.
目的:基于级联3D U-Net,利用配对患者头颈部数据[CT和磁共振图像(MRI)],取得比仅CT数据更高分割精度的视交叉自动分割结果。方法:该级联3D U-Net由一个原始3D U-Net和改进的3D D-S U-Net(3D Deeply-Supervised U-Net)组成,实验使用了60例患者头颈部CT图像及MRI图像(T1和T2模态),其中随机选取15例患者数据作为测试集,并使用相似性系数(DSC)评估视交叉的自动分割精度。结果:对于测试集中的所有病例,采用多模态数据(CT和MRI)的视交叉的DSC为0.645±0.085,采用单模态数据(CT)的视交叉的DSC为0.552±0.096。结论:基于级联3D U-Net的多模态自动分割模型能够较为准确地实现视交叉的自动分割,且优于仅利用单模态数据的方法,可以辅助医生提高放疗计划制定的工作效率。 相似文献