首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zenzen V  Zankl H 《Cancer letters》2003,202(1):35-42
The fluorescence monitoring represents an innovative approach to detect tumor tissue by photosensitizer-mediated fluorescence. Therefore, information on cellular uptake, tumor selectivity and accumulation properties of photosensitizers are of essential interest. In this study we compared the accumulation properties of two photosensitizer precursors, the 5-aminolaevulinic acid (ALA) and a hexylester of ALA (h-ALA), in vivo using the hen's egg model and the human larynx carcinoma cell line HEp-2. The formation of the actual photosensitizer, protoporphyrin IX (PpIX), was determined both qualitatively and quantitatively. The intensity of the excited PpIX-fluorescence was observed as an indicator for the presence of PpIX after topical ALA- and h-ALA-applications. PpIX-fluorescence was measured using spatially resolved fluorescence spectroscopy.  相似文献   

2.
We studied pharmacokinetics and tumor response to photodynamic therapy (PDT) using chlorin p6 (CP6) in hamster cheek pouch model. CP6 was administered either intraperitoneally (IP) at a dose of 1.5 mg/kg body weight or applied topically at 1.0 mg/kg body weight and its accumulation in tumor, normal mucosa, and abdominal skin was measured by optical fiber-based fluorescence spectroscopy. Photodynamic therapy was performed by superficial illumination of tumor with 660 nm (+/-25 nm) light at a fluence rate of 100J/cm2 and tumor response to PDT was analyzed by histological examination. CP6 accumulation was higher in tumors as compared to adjoining tissue and normal mucosa at 4-6h after its IP administration. For relatively large tumors (size >8mm) topical application was observed to be more effective than IP. The level of CP6 in tumor, surrounding tissue, normal mucosa and skin was seen to decrease rapidly within 24h after its administration and was undetectable at longer time (>72 h) intervals. PDT of small tumors at 4h after IP injection of CP6 resulted in complete tumor necrosis. Whereas, PDT of large tumors receiving CP6 topically caused necrosis in 300-800 microm superficial region of the tumor. In one animal kept for follow up in each treatment group, it was observed that small tumors disappeared completely leaving scar tissue, while large tumor had significant reduction in tumor size. The use of CP6 for PDT of oral cancer is suggested.  相似文献   

3.
Photodynamic therapy (PDT) is a modem, low-invasive method of urinary bladder (UB) cancer treatment. PDT can induce complete or partial destruction of the tumor, reduce recurrence rate, provide assistance to elderly patients with compromised somatic status who are not radically operable. A combined technique improves the results of photodynamic therapy in patients with surface and invasive UB cancer of stage T2 because photodynamic impact affects not only the tumor but also all UB mucosa by light fiber with cylindric diffusor introduced in a silicon balloon with water. This leads to tumor destruction and a recurrence rate decrease.  相似文献   

4.
Optimizing photodynamic therapy involves attempting to increase both the absolute tumour content of photosensitizer and the selectivity between tumour and surrounding normal tissue. One reason why photodynamic therapy has not been considered suitable for treatment of metastatic tumours in the liver, is the poor selectivity of conventional photosensitizers for tumour compared to normal liver. This report details an alternative approach to increasing this selectivity by the use of antibody-targeted photosensitizers (or photoimmunoconjugates) to target intrahepatic tumours caused by human colorectal cancer cells in the nude mouse, and explores the role of molecular charge on the tumour-targeting efficiency of macromolecules. The murine monoclonal antibody 17.1A (which recognizes an antigen expressed on HT 29 cells) was used to prepare site-specific photoimmunoconjugates with the photosensitizer chlorine6. The conjugates had either a predominant cationic or anionic charge and were injected i.v. into tumour-bearing mice. Biodistribution 3 or 24 h later was measured by extraction of tissue samples and quantitation of chlorine6 content by fluorescence spectroscopy. The photoimmunoconjugates were compared to the polylysine conjugates in an attempt to define the effect of molecular charge as well as antibody targeting. The anionic 17.1A conjugate delivered more than twice as much photosensitizer to the tumour at 3 h than other species (5 times more than the cationic 17. 1A conjugate) and had a tumour:normal liver ratio of 2.5. Tumour-to-liver ratios were greater than one for most compounds at 3 h but declined at 24 h. Tumour-to-skin ratios were high (> 38) for all conjugates but not for free chlorine6. Cationic species had a high uptake in the lungs compared to anionic species. The photoimmunoconjugates show an advantage over literature reports of other photosensitizers, which can result in tumour:normal liver ratios of less than 1.  相似文献   

5.
The authors present pilot experience in investigation of accumulation, distribution and elimination of photosensitizer photoditazin from hyperplastic tissue of human prostate. Fluorescent spectroscopy showed that 2-24 hours after intravenous injection of photoditazin in a dose 1 mg/kg, it is detected in hyperplastic tissue of human prostate with maximal accumulation 3 hours after introduction. Exogenic fluorescence of photoditazin lowered 12 and 24 hours after injection this indicating its elimination. The results favor use of photoditazin for photodynamic treatment of patients with benign prostatic hyperplasia.  相似文献   

6.
PURPOSE: The aim of the present study was to optimize and simplify photodynamic therapy using a new liposomal formulation of the photosensitizer meta-(tetrahydroxyphenyl)chlorin [m-THPC (Foscan); liposomal m-THPC (Fospeg)] and to reduce systemic reactions to the photosensitizer. EXPERIMENTAL DESIGN: To examine the pharmacokinetics of liposomal m-THPC, we determined tissue and plasma variables in feline patients with spontaneous squamous cell carcinoma. In vivo fluorescence intensity measurements of tumor and skin were done with a fiber spectrophotometer after i.v. injection of m-THPC or liposomal m-THPC in 10 cats. Blood samples, drawn at several time points after photosensitizer administration, were analyzed by high-performance liquid chromatography. RESULTS: None of the liposomal m-THPC-treated cats showed side effects during or after drug injection. Fluorescence intensities, fluorescence ratios (tumor fluorescence divided by skin fluorescence), and bioavailability in the tumor were 2 to 4 times higher with liposomal m-THPC compared with m-THPC. Liposomal m-THPC concentration in the tumor increased constantly to reach a maximum at 4 hours after injection. Plasma concentration and bioavailability were approximately 3 times higher with liposomal m-THPC compared with m-THPC measured at the time points of highest plasma concentration. The distribution half-life was shorter with liposomal m-THPC, resulting in maximal tumor accumulation up to 5.5 times earlier. Maximal tumor accumulation and maximal fluorescence ratio with liposomal m-THPC occurred at the same time point, indicating maximal selectivity. In both groups, all cats responded to therapy. CONCLUSIONS: Liposomal m-THPC was well tolerated by all cats and seems to have superior pharmacokinetic properties compared with m-THPC. The efficacy of the drug warrants further study.  相似文献   

7.
Purpose: To compensate for photosensitizer uptake variation in photodynamic therapy (PDT), via control of delivered light dose through photodynamic dose calculation based on online dosimetry of photosensitizer in tissue before treatment. Methods and Materials: Photosensitizer verteporfin was quantified via multiple fluorescence microprobe measurements immediately before treatment. To compensate individual PDT treatments, photodynamic doses were calculated on an individual animal basis, by matching the light delivered to provide an equal photosensitizer dose multiplied by light dose. This was completed for the lower quartile, median, and upper quartile of the photosensitizer distribution. PDT-induced tumor responses were evaluated by the tumor regrowth assay. Results: Verteporfin uptake varied considerably among tumors and within a tumor. The coefficient of variation in the surviving fraction was found significantly decreased in groups compensated to the lower quartile (CL-PDT), the median (CM-PDT), and the upper quartile (CU-PDT) of photosensitizer distribution. The CL-PDT group was significantly less effective compared with NC-PDT (Noncompensated PDT), CM-PDT, and CU-PDT treatments. No significant difference in effectiveness was observed between NC-PDT, CM-PDT, and CU-PDT treatment groups. Conclusions: This research suggests that accurate quantification of tissue photosensitizer levels and subsequent adjustment of light dose will allow for reduced subject variation and improved treatment consistency.  相似文献   

8.
BACKGROUND: We had previously developed the possibility of use of a photodynamic diagnosis (PDD) system using a tumor-selective photosensitizer and laser irradiation for the early detection and photodynamic therapy (PDT) for centrally located early lung cancers. Recently, we established the autofluorescence diagnosis system integrated into a videoendoscope (SAFE-3000) as a very useful technique for the early diagnosis of lung cancer. PATIENTS AND METHODS: Twenty-nine patients (38 lesions) with centrally located early lung cancer received PDD and PDT using the second-generation photosensitizer, talaporfin sodium (NPe6). Just before the PDT, we defined the tumor margin accurately using the novel PDD system SAFE-3000 with NPe6 and a diode laser (408nm). RESULTS: Red fluorescence emitted from the tumor by excitation of the photosensitizer by the diode laser (408nm) from SAFE-3000 allowed accurate determination of the tumor margin just before the PDT. The complete remission (CR) rate following NPe6-PDT in the cases with early lung cancer was 92.1% (35/38 lesions). We also confirmed the loss of red fluorescence from the tumors immediately after the PDT using SAFE-3000. We confirmed that all the NPe6 in the tumor had been excited and photobleached by the laser irradiation (664nm) and that no additional laser irradiation was needed for curative treatment. CONCLUSIONS: This novel PDD system using SAFE-3000 and NPe6 improved the quality and efficacy of PDT and avoided misjudgement of the dose of the photosensitizer or laser irradiation in PDT. PDT using NPe6 will become a standard option of treatments for centrally located early lung cancer.  相似文献   

9.
Vascular-targeted photodynamic therapy (vPDT) is a novel vascular targeting modality based on site-directed delivery of a photosensitizer to tumor vasculature, which induces reactive oxygen species (ROS)-mediated vascular effects upon light activation. To enhance the therapeutic outcome of vPDT, we combined proteasomal inhibitor bortezomib and vPDT using photosensitizer verteporfin in the present study. We found that bortezomib in combination with verteporfin-PDT induced more accumulation of ubiquitinated proteins and apoptosis in endothelial cells than each individual treatment. The combination therapy also enhanced vPDT-induced inhibition in tumor growth. These results indicate that bortezomib can be used together with verteporfin-PDT for enhanced treatment outcome.  相似文献   

10.
We studied the effects of photodynamic diagnosis (PDD) and photodynamic therapy (PDT) in confirming the existence of hepatoma, using the new photosensitizer mono-L-aspartyl chlorine 6. Japanese white rabbits were selected for abdominal incision under intravenous anesthesia, and VX 2 tumor cells were transplanted into the left liver lobe to create a hepatoma model. In the experiment, hepatoma of 1 cm in diameter (at one week after transplantation) was radiated with a semiconducter laser (664 nm, 200 J/cm2) for treatment.  相似文献   

11.
Background The photosensitizer, NPe6, was injected into mice previously transplanted with fibrosarcoma to study changes in ultrasmall lesions at an early stage of neoplasm. Methods Meth-A fibrosarcoma cells (1×106) were transplanted subcutaneously at the hind legs of 5-week-old BALB/c-nu/nu Slc female mice. The fluorescence images of the tumor area obtained after intravenous administration of 5 mg/kg of NPe6 were analyzed in mice which were transplanted with fibrosarcoma 1, 2, 3, 4, 5, 6 or 7 days prior to the day of experiment. The fluorescence images were captured before and 30 seconds, 1, 3, 4, and 24 hours after NPe6 injection. Image analysis showed the concentration distribution map of NPe6 in the tumor. Pathologic studies were done to investigate the cause for the nonhomogeneous accumulation of the dye in the tumor. Results The tumor area was detectable on the day of transplantation. The concentration of NPe6 in the tumor began to increase rapidly 2 days after transplantation. The retention of NPe6 in the tumor was longer than that in the surrounding normal tissue area, and the intensity of fluorescence in the tumor was stronger than the surrounding normal area. Pathologic examination showed that angiogenesis became recognizable on the second day after the transplantation of tumor cells. The concentration of NPe6 in the tumor increased with the degree of angiogenesis. Conclusion Our results suggest that the retention of NPe6 in the tumor was involved with the angiogenesis in the tumor area.  相似文献   

12.
The tumoricidal effect of Foscan-mediated photodynamic therapy may involve both vessel and tumor cell destruction. The relevant importance of each mechanism seems to be defined by the time interval between photosensitizer administration and illumination (drug-light interval, DLI). Short drug-light intervals favor vascular damage due to the preferential photosensitizer accumulation in the tumor vasculature, whereas long drug-light intervals trigger direct tumor cell damage due to the dye localization in the tumor. The purpose of this study was to investigate the influence of tumor, plasma and leukocyte concentrations of Foscan at different times after photosensitizer delivery on PDT response. Both pharmacokinetic and tumor-response studies were carried out in nude mice bearing s.c. Colo26 tumors. One to 96 h after i.v. injection of 0.5 mg/kg Foscan, animals were exposed to 10 J/cm(2) 652-nm light delivered at 30 mW/cm(2). Mean tumor regrowth time was determined for each schedule of treatment and correlated to Foscan distribution in the compartments of interest at the time of illumination. PDT efficacy was greatest for irradiations performed at 6 and 12 h post Foscan injection and limited at 96 h. Unlike tumor and plasma Foscan concentrations, photosensitizer accumulation in leukocytes exhibited a good correlation with PDT efficacy. The results suggest that leukocytes could play an important role in the mechanism of PDT-induced vascular damage either by being one of the main effector compartments or by better reflecting Foscan accumulation in endothelial cells compared to plasma. The prevalence of indirect damage was highlighted by the fact that PDT efficacy was not modified by the use of a higher fluence rate of irradiation (160 mW/cm(2)), which depleted intratumor oxygen and did not restrain PDT-induced cell toxicity.  相似文献   

13.
Photochemical internalization (PCI) is a unique procedure for site-specific delivery of several types of membrane-impermeable molecules to the cytosol of target cells. The technology is based on photochemical-induced release of endocytosed macromolecules from endosomes and lysosomes into the cytosol. The purpose of this study was to evaluate the therapeutic potential of PCI of the type I ribosomal-inactivating protein gelonin in an animal model. The photosensitizer aluminum phthalocyanine disulfonate (AlPcS(2a)) was injected intraperitoneally (10 mg/kg) into athymic female BALB/c (nu/nu) nude mice (8-9 mice per group) with subcutaneously growing human adenocarcinoma (WiDr) tumors 48 hr before exposure to 135 J/cm(2) of red light focused on the tumor. Six hours before light exposure a single dose of 50 microg gelonin was administrated intratumorally. Tumor growth was measured at least twice a week. After immunomagnetic separation of in vivo growing tumor cells the subcellular localization of the photosensitizer was evaluated by fluorescence microscopy. The photosensitizer localized in endocytic vesicles in in vivo growing WiDr cells. Furthermore, it was found that in vitro gelonin treatment of WiDr cells isolated from photosensitizer-treated mice potentiated a light-induced decrease of clonal survival. Complete remission in 6 of 9 (67%) of the treated mice were induced. Our findings indicate that photochemical treatment with the photosensitizer AlPcS(2a) activates the cytotoxic potential of gelonin in vivo. These results demonstrate that the synergistic effect of combining photoactivation of photosensitizer located in endocytic vesicles and gelonin is indeed a result of PCI of gelonin.  相似文献   

14.
In this study we have evaluated the use of hypericin ex vivo urine fluorescence cytology as a non-invasive method for detecting early bladder cancers. To date this is the first study reported using this technique with hypericin. Urine samples from patients with early bladder cancers were processed for fluorescence cytology by incubation with hypericin, a novel photosensitizer. Normal urine samples incubated with hypericin served as normal controls. Laser confocal microscopy and spectroscopy was used to detect the fluorescence in the exfoliated low-grade urothelial tumor cells. Fluorescence cytology was considered positive if hypericin fluorescence of the low-grade urothelial tumor cells was detected to be stronger (>8.5 times) compared to the baseline fluorescence established for normal urine samples. Automated analysis for an objective reproducible outcome appears possible. The possibility of detection of malignant urothelial cells in early cancer makes ex vivo fluorescence cytology promising for routine diagnostic screening.  相似文献   

15.
In photodynamic therapy (PDT), a tumor-selective photosensitizer is administered followed by activation of the photosensitizer by exposure to a light source of a given wavelength. This, in turn, generates reactive oxygen species that induce cellular apoptosis and necrosis in tumor tissue. Based on our earlier finding that the photosensitizer pheophorbide a is an ABCG2 substrate, we explored the ability of ABCG2 to transport photosensitizers with a structure similar to that of pheophorbide a. ABCG2-overexpressing NCI-H1650 MX50 bronchoalveolar carcinoma cells were found to have reduced intracellular accumulation of pyropheophorbide a methyl ester and chlorin e6 compared to parental cells as measured by flow cytometry. The ABCG2 inhibitor fumitremorgin C was found to abrogate ABCG2-mediated transport. Intracellular fluorescence of hematoporphyrin IX, meso-tetra(3-hydroxyphenyl)porphyrin, and meso-tetra(3-hydroxyphenyl)chlorin was not substantially affected by ABCG2. ABCG2-overexpressing cells also displayed decreased intracellular fluorescence of protoporphyrin IX generated by exogenous application of 5-aminolevulinic acid. Mutations at amino acid 482 in the ABCG2 protein known to affect substrate specificity were not found to impact transport of the photosensitizers. In cytotoxicity assays, ABCG2-transfected HEK-293 cells were 11-fold, 30-fold, 4-fold, and >7-fold resistant to PDT with pheophorbide a, pyropheophorbide a methyl ester, chlorin e6, and 5-aminolevulinic acid, respectively. ABCG2-transfected cells were not resistant to PDT with meso-tetra(3-hydroxyphenyl) chlorin. Neither multidrug resistance-associated protein 1 expression nor P-glycoprotein expression appreciably decreased the intracellular fluorescence of any of the photosensitizers examined as determined by flow cytometry. The results presented here implicate ABCG2 as a possible cause for cellular resistance to photodynamic therapy.  相似文献   

16.
C J Gomer  A Ferrario 《Cancer research》1990,50(13):3985-3990
Mono-L-aspartyl chlorin e6 (NPe6) is a photosensitizer that possesses properties such as chemical purity and a major absorption band at 664 nm which are potentially exploitable for photodynamic therapy (PDT). The current investigation examined pharmacological and photosensitizing parameters of NPe6 in tumor and normal tissues in mice. [14C]NPe6 was used to obtain quantitative tissue distributions of the photosensitizer as a function of: (a) time following administration; (b) drug dose; (c) mode of drug administration; and (d) tumor size. The in vivo photosensitizing efficiency of NPe6 was compared directly to Photofrin II in experiments which evaluated tumor responses and induction of normal skin damage. Initial PDT experiments demonstrated that NPe6 was ineffective at inducing tumor cures when a 24-h time interval (between drug administration and light treatment) was used. However, PDT-induced tumor cures were obtained when NPe6 was administered 4-6 h prior to light exposure, and these NPe6-PDT treatment parameters were as effective as standard Photofrin II-mediated PDT. Interestingly, the level of PDT-induced normal skin damage was significantly greater for Photofrin II than for NPe6 at comparable drug and light doses. An analysis of pharmacological data and PDT time interval requirements suggests that plasma concentrations of NPe6 may be a more important predictive factor than tumor tissue levels of the photosensitizer for the production of PDT-mediated tumor cures. The results of this investigation indicate that NPe6 is an effective tumor photosensitizer with in vivo clearance properties that eliminate the side effect of prolonged normal skin photosensitization.  相似文献   

17.
We present an in vivo fluorescence microscopic evaluation of intratumor distribution of the photosensitizer mono-l-aspartylchlorin-e6 (NPe6) in an intradermal mouse EMT6 tumor model. Although the identification of favorable photophysical and pharmacological properties has led to the development of new photosensitizers in photodynamic therapy, their intratumor distribution kinetics have remained relatively understudied. In this study, we used confocal fluorescence microscopy to follow the transport of NPe6 in vivo after systemic administration through the tail vein. Labeling of vasculature using fluorophore-conjugated anti-CD31 antibodies allows visualization of the uptake of NPe6 in tumor and normal vessels and its partitioning kinetics into the adjacent parenchyma for 3 hours after injection. During the initial 60 minutes after injection, the drug is predominantly confined to the vasculature. Subsequently, it significantly redistributes throughout the extravascular regions with no discernable difference in its extravasation rate between tumor and normal tissues. Further, we investigate the sensitizer''s altered intratumor distribution in response to photodynamic therapy irradiation and observe that treatment-induced changes in vessel permeability caused enhanced accumulation of NPe6 in the extravascular space. Our findings are of immediate clinical relevance and demonstrate the importance of an in vivo imaging approach to examine the dynamic process of intratumor drug distribution.  相似文献   

18.
A Ferrario  D Kessel  C J Gomer 《Cancer research》1992,52(10):2890-2893
A mouse mammary tumor model was used to evaluate metabolic properties of the photosensitizer mono-L-aspartyl chlorin e6 (NPe6) and to determine the optimal time interval between drug administration and light treatment for effective photodynamic therapy (PDT). Photosensitizer metabolism was evaluated by comparing tissue distribution patterns of NPe6 having 14C atoms positioned on either the tetrapyrrole ring or on the aspartyl residue. High performance liquid chromatographic analysis of photosensitizer extracted from tumor tissue was also obtained as a function of time after drug administration. NPe6 distribution in tissue samples and pharmacological calculations of area under the curve were similar for both forms of [14]NPe6. Likewise, metabolic contaminants of NPe6 were not detected by high performance liquid chromatographic analysis following extraction of the photosensitizer from tumor tissue. Maximal in vivo PDT effectiveness was achieved when light treatments were started within 2 h of drug injection. PDT effectiveness was decreased by 50% when light treatments were initiated 6 h after drug injection and was abolished with a 12-h interval between NPe6 injection and light exposure. Responsiveness to NPe6-mediated PDT was correlated with photosensitizer levels in the plasma but not in tumor tissue. These results show that NPe6 was not metabolized following in vivo administration and that the responsiveness of NPe6 mediated PDT was associated with vascular clearance of the photosensitizer.  相似文献   

19.
Three porphycenes with fast pharmacokinetics were tested for their ability to photosensitize amelanotic hamster melanoma A-Mel-3 at short time intervals after injection. Laser light irradiation was performed at the time of maximal photosensitizer level in tumor tissue. Photodynamic therapy as short as 5 min after injection led to complete local tumor remission at a dosage of 1.4 μmol/kg for the porphycene CBPn. In comparison, Photofrin required 8.4 μmol/kg for local tumor remission in 5 of 6 animals with 24 hr accumulation time after injection. We propose a swift photodynamic protocol which can compete favorably with conventional techniques of tumor treatment. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Photodynamic therapy is emerging as a viable modality for the treatment of many cancers. A limiting factor in its use against intracavity tumors such as disseminated ovarian cancer is insufficient selectivity of the photosensitizer for tumor compared with normal tissue. We report on an approach to improve tumor targeting by exploiting differences between cell types and by chemical modification of a photosensitizer conjugate. Attachment of polyethylene glycol (pegylation) to a polyacetylated conjugate between poly-l-lysine and chlorin(e6) increased the relative phototoxicity in vitro toward an ovarian cancer cell line (OVCAR-5) while reducing it toward a macrophage cell line (J774), compared with the nonpegylated conjugate. Surprisingly, the increased phototoxicity of the pegylated conjugate correlated with reduced oxygen consumption. Pegylation also reduced the tendency of the conjugate to aggregate and reduced the consumption of oxygen when the conjugates were illuminated in solution in serum containing medium, suggesting a switch in photochemical mechanism from type II (singlet oxygen) to type I (radicals or electron transfer). Pegylation led to more mitochondrial localization as shown by confocal fluorescence microscopy in OVCAR-5 cells, and, on illumination, produced a switch in cell death mechanism toward apoptosis not seen with J774 cells. Conjugates were injected i.p. into nude mice bearing i.p. OVCAR-5 tumors, and the pegylated conjugate gave higher amounts of photosensitizer in tumor and higher tumor:normal tissue ratios and increased the depth to which the chlorin(e6) penetrated into the peritoneal wall. Taken together, these results suggest that pegylation of a polymer-photosensitizer conjugate improves tumor-targeting and may increase the efficacy of photodynamic therapy for ovarian cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号