首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Friedreich's ataxia (FRDA) is the most common hereditary ataxia, affecting about 1 in 50,000 individuals. It is caused by mutations in the frataxin gene; 98% of cases have homozygous expansions of a GAA trinucleotide in intron 1 of the frataxin gene. The remaining 2% of patients are compound heterozygotes, who have a GAA repeat expansion in one allele and a point mutation in the other allele. FRDA patients with point mutation have been suggested to have atypical clinical features. We present a case of compound heterozygotes in a FRDA patient who has a deletion of one T in the start codon (ATG) of the frataxin gene and a GAA repeat expansion in the other allele. The patient presented with chorea and subsequently developed FRDA symptoms. The disease in this case is the result of both a failure of initiation of translation and the effect of the expansion. This novel mutation extends the range of point mutations seen in FRDA patients, and also broadens the spectrum of FRDA genotype associated with chorea.  相似文献   

2.
BACKGROUND: Most patients with Friedreich ataxia (FA) have a GAA trinucleotide repeat expansion in intron 1 of the FA gene (FRDA) on both arms of chromosome 9. However, some patients are compound heterozygotes and harbor a GAA expansion on one allele and a point mutation on the other. Compound heterozygous patients with FA who have a GAA expansion and a G130V mutation have been reported to have an atypical phenotype with a slow disease progression, minimal or no ataxia, or gait spasticity. OBJECTIVE: To describe intrafamilial phenotypic variability in a GAA expansion/G130V mutation compound heterozygous family with FA. SETTING: Tertiary referral university hospital setting. PATIENTS AND METHODS: A 34-year-old man presented to our hospital with a 24-year history of stiff legs and mild unsteadiness of gait. Clinical examination showed a spastic paraparesis with normal to pathologically brisk deep tendon reflexes and mild left upper limb ataxia. His 27-year-old sister presented with a slowly progressive early-onset ataxic syndrome. She had ataxia of gait, mild to severe limb ataxia, and reduced or absent deep tendon reflexes, but no evidence of spasticity on examination. RESULTS: Neurophysiologic investigations showed evidence of a sensory axonal neuropathy, and molecular genetic analysis showed that both siblings were compound heterozygotes with a GAA expansion and a G130V mutation. CONCLUSIONS: This report confirms that compound heterozygous patients with FA who have a GAA expansion and a G130V mutation may present with an ataxic phenotype and that intrafamilial phenotypic variability in these pedigrees can occur. It also emphasizes the importance of performing molecular genetic analysis for the GAA trinucleotide expansion in patients presenting with a spastic paraparesis of undetermined etiology, especially when there is neurophysiologic evidence of a sensory axonal neuropathy.  相似文献   

3.
Friedreich ataxia (FRDA) is caused by a GAA expansion in the first intron of the FXN gene, which encodes frataxin. Four percent of patients harbor a point mutation on one allele and a GAA expansion on the other. We studied an Italian patient presenting with symptoms suggestive of FRDA, and carrying a single expanded 850 GAA allele. As a second diagnostic step, frataxin was measured in peripheral blood mononuclear cells, and proved to be in the pathological range (2.95 pg/μg total protein, 12.7 % of control levels). Subsequent sequencing revealed a novel deletion in exon 5a (c.572delC) which predicted a frameshift at codon 191 and a premature truncation of the protein at codon 194 (p.T191IfsX194). FXN/mRNA expression was reduced to 69.2 % of control levels. Clinical phenotype was atypical with absent dysarthria, and rapid disease progression. l-Buthionine-sulphoximine treatment of the proband’s lymphoblasts showed a severe phenotype as compared to classic FRDA.  相似文献   

4.
Frataxin gene point mutations in Italian Friedreich ataxia patients   总被引:1,自引:0,他引:1  
Friedreich ataxia (FRDA) is associated with a GAA-trinucleotide-repeat expansion in the first intron of the FXN gene (9q13-21), which encodes a 210-amino-acid protein named frataxin. More than 95% of patients are homozygous for 90-1,300 repeat expansion on both alleles. The remaining patients have been shown to be compound heterozygous for a GAA expansion on one allele and a micromutation on the other. The reduction of both frataxin messenger RNA (mRNA) and protein was found to be proportional to the size of the smaller GAA repeat allele. We report a clinical and molecular study of 12 families in which classical FRDA patients were heterozygous for a GAA expansion on one allele. Sequence analysis of the FXN gene allowed the identification of the second disease-causing mutation in each heterozygous patient, which makes this the second largest series of FRDA compound heterozygotes reported thus far. We have identified seven mutations, four of which are novel. Five patients carried missense mutations, whereas eight patients carried null (frameshift or nonsense) mutations. Quantitation of frataxin levels in lymphoblastoid cell lines derived from six compound heterozygous patients showed a statistically significant correlation of residual protein levels with the age at onset (r = 0.82, p < 0.05) or the GAA expansion (r = -0.76, p < 0.1). In the group of patients heterozygous for a null allele, a strong (r = -0.94, p < 0.01) correlation was observed between the size of GAA expansion and the age at onset, thus lending support to the hypothesis that the residual function of frataxin in patients' cells derive exclusively from the expanded allele.  相似文献   

5.
Friedreich's ataxia is the most common inherited ataxia. Ninety-six percent of patients are homozygous for GAA trinucleotide repeat expansions in the first intron of the frataxin gene. The remaining cases are compound heterozygotes for a GAA expansion and a frataxin point mutation. We report here the identification of 10 novel frataxin point mutations, and the detection of a previously described mutation (G130V) in two additional families. Most truncating mutations were in exon 1. All missense mutations were in the last three exons coding for the mature frataxin protein. The clinical features of 25 patients with identified frataxin point mutations were compared with those of 196 patients homozygous for the GAA expansion. A similar phenotype resulted from truncating mutations and from missense mutations in the carboxy-terminal half of mature frataxin, suggesting that they cause a comparable loss of function. In contrast, the only two missense mutations located in the amino-terminal half of mature frataxin (D122Y and G130V) cause an atypical and milder clinical presentation (early-onset spastic gait with slow disease progression, absence of dysarthria, retained or brisk tendon reflexes, and mild or no cerebellar ataxia), suggesting that they only partially affect frataxin function. The incidence of optic disk pallor was higher in compound heterozygotes than in expansion homozygotes, which might correlate with a very low residual level of normal frataxin produced from the expanded allele. Ann Neurol 1999;45:200–206  相似文献   

6.
We describe two sisters with early onset gait ataxia, rapid disease progression, absent or very mild dysarthria and upper limb dysmetria, retained knee jerks in one, slight to moderate peripheral nerve involvement, and diabetes. Molecular analysis showed that they are compound heterozygotes for GAA expansion and a novel exon 5a missense mutation (R165P). This mutation appears to be associated with an atypical but not milder Friedreich ataxia phenotype.  相似文献   

7.
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease most commonly caused by a GAA trinucleotide repeat expansion in the first intron of FXN, which reduces expression of the mitochondrial protein frataxin. Approximately 98% of individuals with FRDA are homozygous for GAA expansions, with the remaining 2% compound heterozygotes for a GAA expansion and a point mutation within FXN. Two siblings with early onset of symptoms experienced rapid loss of ambulation by 8 and 10 years. Diagnostic testing for FRDA demonstrated one GAA repeat expansion of 1010 repeats and one non-expanded allele. Sequencing all five exons of FXN identified a novel deletion-insertion mutation in exon 3 (c.371_376del6ins15), which results in a modified frataxin protein sequence at amino acid positions 124–127. Specifically, the amino acid sequence changes from DVSF to VHLEDT, increasing frataxin from 211 residues to 214. Using the known structure of human frataxin, a theoretical 3D model of the mutant protein was developed. In the event that the modified protein is expressed and stable, it is predicted that the acidic interface of frataxin, known to be involved in iron binding and interactions with the iron–sulphur cluster assembly factor IscU, would be impaired.  相似文献   

8.
Friedreich ataxia (FRDA) is typically characterized by slowly progressive ataxia, depressed tendon reflexes, dysarthria, pyramidal signs, and loss of position and vibration sense with onset before 25 years. While several atypical forms of FRDA are recognized, profound vision deficit is rare. We describe here a 41-year-old man with profound vision deficit and episodic complete blindness associated with marked optic atrophy, spastic paraparesis, and sensory neuropathy without ataxia whose diagnostic evaluation revealed compound heterozygosity for two frataxin mutations, a 994 GAA repeat intronic expansion and c.389G > T (p.G130V) missense mutation. This case emphasizes that FRDA should be considered for individuals with significant vision deficit with optic atrophy and sensory neuropathy, even in the absence of ataxia. This case also raises the additional, related concern that prior studies may underestimate the frequency and varieties of variant forms of FRDA.  相似文献   

9.
Friedreich ataxia (FRDA), the most common autosomal recessive ataxia, is caused in 94% of cases by homozygous expansions of an unstable GAA repeat localised in intron 1 of the X25 gene. We have investigated this mutation in five Brazilian patients: four with typical FRDA findings and one patient with atypical manifestations, who was considered to have some other form of cerebellar ataxia with retained reflexes. The GAA expansion was detected in all these patients. The confirmation of FRDA diagnosis in the atypical case may be pointing out, as in other reports, that clinical spectrum of Friedreich's ataxia is broader than previously recognised and includes cases with intact tendon reflexes.  相似文献   

10.
Friedreich's ataxia (FRDA), the most common subtype of early onset hereditary spinocerebellar ataxia (SCA), is an autosomal recessive neurodegenerative disorder caused by unstable GAA tri-nucleotide expansions in the first intron of FRDA gene located at 9q13-q21.1 position. Results of GAA repeat polymorphism in 80 Turkish SCA patients and 38 family members of 11 typical FRDA patients were reported. GAA triplet repeat size ranged from approximately 7 to 34 in normal alleles and from approximately 66 to 1300 in mutant alleles. Twenty six patients were homozygous for GAA expansion and size of expanded alleles differed from approximately 425 to 1300 repeats. Children 2 and 6 years old (showing no ataxia symptoms) of one family had homozygous GAA expansions reaching approximately 925 repeats. All 11 families studied had at least 1 afflicted child and 9 parents and 2 siblings were carrier (heterozygous) with mutant alleles ranging from 66 to 850 repeats. Family studies confirmed the meiotic instability and stronger effect of expansion in the smaller alleles on phenotype and a negative correlation between GAA repeat expansion size and onset-age of the disease.  相似文献   

11.
Fourteen patients with classical features of Friedreich's ataxia (FRDA) were examined. The clinical diagnosis of FRDA was afterwards confirmed in all patients by the appropriate DNA investigation which showed markedly increased amounts of GAA repeats on both alleles of the frataxin gene. None of our patients presented with atypical features such as late-onset FRDA, FRDA with retained deep tendon reflexes or with a very slow course. Five of them are not yet confined to a wheelchair. But for 1 patient who died at age 36 years and had the largest number of GAA repeats on both alleles, there was no significant correlation between number of repeats in the shortest allele, age at onset, age at wheelchair dependence, duration of the disease and main clinical signs. All patients but 3 had between 500 and 1,050 GAA repeats. The 3 patients with, respectively, 400, 450 and 500 repeats on the shortest allele had a clinical course comparable to the other patients. Even in the case of variations in the number of repeats in the same sibship, there were only modest differences between the siblings concerning age at onset of the disease, symptoms and signs and age at wheelchair dependence. There were no qualitative differences in the main clinical features and laboratory investigations in the full-blown phase of the disorder. Molecular biology has become a major element in the diagnosis of FRDA. DNA testing for FRDA should be applied to every case of idiopathic autosomal recessive or sporadic ataxia. However, the clinical features of FRDA remain fully characteristic in many patients and keep their diagnostic value.  相似文献   

12.
Friedreich ataxia (FRDA) is an autosomal recessive, neurodegenerative disease, characterized by progressive gait and limb ataxia, dysarthria, lower-limb areflexia, Babinski sign, loss of position and vibration senses, cardiomyopathy, and carbohydrate intolerance. It is the most common inherited ataxia, and is associated with a GAA triplet repeat expansion in the first intron of the X25 gene on the long arm of chromosome 9. We present a case whose clinical diagnosis was initially confounded by the mildness of the ataxic phenotype and a family history of multiple sclerosis. Evaluation of the X25 gene revealed that the patient was homozygous for the GAA triplet repeat expansion, pathognomonic of FRDA. Investigation of her sural nerve biopsy revealed a significantly smaller expansion size, constituting the first direct demonstration of somatic mosaicism involving the nervous system in FRDA. We speculate that a similar contraction in pathologically affected tissues could be the molecular basis for the mildness of the ataxia. © 1998 John Wiley & Sons, Inc. Muscle Nerve 21:390–393, 1998.  相似文献   

13.
OBJECTIVES: Friedreich's ataxia (FRDA), the most common inherited ataxia, is associated with an unstable expansion of GAA repeats in the first intron of the frataxin gene on chromosome 9. We investigated the mosaicism of expanded alleles to elucidate the basis for genotype phenotype correlations. PATIENTS AND METHODS: We studied the instability of the GAA repeat in blood leukocytes from 45 individuals including 20 FRDA patients and 20 non-affected controls using small pool PCR combined with Southern blotting and hybridization. RESULTS: Expanded GAA repeats could be resolved into distinct alleles showing differences in length up to 1,000 triplets for an individual genome. We found a significant correlation between the size of the largest allele and the range of mosaicism. CONCLUSION: The somatic mosaicism for expanded repeats observed in FRDA patients rendered the precise measurement of allele sizes more difficult and may influence the results of studies correlating the clinical spectrum with the genotype. Following, a confidential prediction of the prognosis deduced from the repeat length is hardly possible for an individual FRDA patient.  相似文献   

14.
OBJECTIVES: Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by expansion of GAA repeats in the frataxin gene. We have carried out the first molecular analysis at the Friedreich's ataxia locus in the Indian population. MATERIALS AND METHODS: Three families clinically diagnosed for Friedreich's ataxia were analyzed for GAA expansion at the FRDA locus. The distribution of GAA repeats was also estimated in normal individuals of Indian origin. RESULTS: All patients clinically diagnosed for Friedreich's ataxia were found to be homozygous for GAA repeat expansion. The GAA repeat in the normal population show a bimodal distribution with 94% of alleles ranging from 7-16 repeats. CONCLUSION: Indian patients with expansion at the FRDA locus showed typical clinical features of Friedreich's ataxia. The low frequency of large normal alleles (6%) could indicate that the prevalence of this disease in the Indian population is likely to be low.  相似文献   

15.
Around a quarter of Friedreich ataxia (FA) patients, despite being homozygous for GAA expansion within the FRDA gene, show atypical presentations. Our aim is to describe the case of three brothers with long-term follow-up suffering from late onset FA manifested with spastic ataxia. The three patients belong to a family with occipital dysplasia (OD) and Chiari I malformation previously reported by us. We have carried out serial examinations since 1977. Electrophysiological and neuroimaging studies, and molecular genetic analyses of hereditary ataxias are available in all three patients. Onset of symptoms occurred between 25 and 35 years. The clinical picture consisted of progressive spastic gait, truncal and limb ataxia, dysarthria, nystagmus, hyperreflexia with knee and ankle clonus and extensor plantar response, and mild hypopallesthesia. Ages at present vary between 50 and 59. One patient is wheelchair-bound but the other two are able to walk with support. Leaving OD aside, skeletal anomalies are not prominent. All three patients showed cardiomyopathy. MR imaging revealed atrophy of the cerebellum and spinal cord. Motor and sensory nerve conduction velocities were normal. Central conduction time of both motor and sensory pathways was delayed or unobtainable. All three patients were homozygous for the GAA expansion, the smaller expanded allele ranging between 131 and 156 repeats. Four heterozygotic carriers were detected among non-ataxic relatives including one with OD; furthermore, an asymptomatic OD patient showed normal genotype. We conclude that adult onset spastic ataxia is a distinctive FA phenotype associated with minimal GAA expansion. This phenotype represents a new cause of selective distal degeneration of central sensory axons. The present concurrence of OD and FA reflects coincidental cosegregation of two different inherited disorders.  相似文献   

16.
Abstract Diagnostic evaluation of two sisters affected by ataxia, with similar age of onset, revealed a characteristic trinucleotide expansion in the Friedreich’s ataxia (FRDA) locus and two different phenotypic presentations. At onset the elder sister had retained deep tendon reflexes (FARR), while the younger sister presented classic FRDA. The GAA expansion in the patients’ alleles proved to be similar in both siblings, ruling out that age at onset and clinical heterogeneity could be due to different FRDA mutations. On the whole, clinical and genetic data on these patients confirmed that FARR is a variant phenotype of FRDA.  相似文献   

17.
BACKGROUND: Most patients with Friedreich ataxia (FRDA) have abnormal GAA triplet repeat expansions in both X25 genes. The size of the GAA expansion in the shorter of the 2 expanded alleles correlates significantly with parameters of clinical severity and is inversely related to the age at onset. OBJECTIVES: To describe the clinical and molecular genetic findings in a patient with very late-onset FRDA and to review the literature. PATIENT AND METHODS: A 58-year-old white woman with mild progressive gait disturbance of 15 years' duration whose examination revealed mild incoordination was analyzed for mutations in the X25 gene. A combination of long-range polymerase chain reaction and genomic Southern blot analyses were used to identify GAA expansions in intron 1 of the X25 gene. To uncover evidence of somatic variability in triplet repeat length, DNA isolated from several tissue samples was similarly analyzed. Single-strand conformational polymorphism analysis was used to screen for mutations spanning the entire coding sequence of frataxin and all intron-exon junctions of the X25 gene. RESULTS: DNA isolated from blood leukocytes revealed GAA triplet repeat expansions in both X25 genes, which were estimated to contain 835 and 1200 repeats. Similar expansions were detected in DNA isolated from lymphoblasts, fibroblasts, buccal cells, and sural nerve, with estimated mean (+/- SD) lengths of the shorter and longer expansions being 854 (+/-69) and 1283 (+/-72) triplets, respectively. A review of reported cases of late-onset Friedreich ataxia (25-39 years) and very late-onset Friedreich ataxia (> or =40 years) demonstrated that this is the first instance of a patient presenting with very late-onset FRDA despite carrying more than 800 GAA repeats in both expanded X25 alleles. CONCLUSIONS: This unique case of very late-onset FRDA highlights a limitation in our ability to accurately predict the phenotype in FRDA based solely on the size of the GAA expansion. Other genetic or environmental factors may significantly modify disease severity in FRDA.  相似文献   

18.
We studied genotype-phenotype correlations in a group of 100 patients with typical Friedreich ataxia (FRDA), and in three groups of patients with atypical clinical presentations, including 44 Acadian FRDA, 8 late-onset FRDA (LOFA), and 6 FRDA with retained reflexes (FARR). All patients, except 3 with typical FRDA, carried two copies of the FRDA-associated GAA triplet repeat expansion. Overall, the phenotypic spectrum of FRDA appeared to be wider than defined by the currently used diagnostic criteria. Our study indicated the existence of several sources of variability in FRDA. Patients with larger GAA expansions tended to have earlier onset and were more likely to show additional manifestations of the disease. Mitotic instability of the expanded GAA repeats may partially account for the limited degree of correlation between expansion sizes as determined in lymphocytes and clinical parameters. Some clinical variants associated with specific FRDA haplotypes, such as Acadian FRDA and FARR, turned out to be unrelated to expansion sizes. No polymorphism in the frataxin coding sequence could be associated with these clinical variants.  相似文献   

19.
INTRODUCTION: One of the main features of Friedreich's ataxia (FA) is phenotypic variability that can now be explained by the molecular mechanism (GAA expansion) underlying the disease. MATERIALS AND METHODS: We have analyzed genotype-phenotype correlations in a group of 40 patients homozygous for the GAA expansion. RESULTS : The smaller GAA expansion (GAA1 allele) size correlated with age at onset and progression disease rate, but we found no correlation between the larger GAA expansion (GAA2 allele) size and these clinical parameters. The frequency of pes cavus, scoliosis, axonal sensory neuropathy and areflexia increased with the size of GAA1, whereas some signs such as sphincter disturbances, cerebellar atrophy on MRI, amyotrophy, dysarthria and decreased vibration sense were associated with increased duration of the disease. CONCLUSION: GAA1 size is the main determinant of FA phenotype and GAA2 size is a poor predictor of clinical variation. Some clinical features are independent of GAA1 and GAA2 sizes and are determined by the duration of the disease.  相似文献   

20.
Friedreich ataxia is the most common inherited ataxia, with a wide phenotypic spectrum. It is generally caused by GAA expansions on both alleles of FXN, but a small percentage of patients are compound heterozygotes for a pathogenic expansion and a point mutation. Two recent diagnostic innovations are further characterizing individuals with the phenotype but without the classic genotypes. First, lateral-flow immunoassay is able to quantify the frataxin protein, thereby further characterizing these atypical individuals as likely affected or not affected, and providing some correlation to phenotype. It also holds promise as a biomarker for clinical trials in which the investigative agent increases frataxin. Second, gene dosage analysis and the identification of affected individuals with gene deletions introduce a novel genetic mechanism of disease. Both tests are now clinically available and suggest a new diagnostic paradigm for the disorder. Genetic counseling issues and future diagnostic testing approaches are considered as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号