首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells in guiding peripheral nerve regeneration remain poorly understood. This study was designed to investigate the effects of human umbilical cord blood-derived mesenchymal stem cells on neural regeneration using a rat sciatic nerve crush injury model. Human umbilical cord blood-derived mesenchymal stem cells (1 × 10 6 ) or a PBS control were injected into the crush-injured segment of the sciatic nerve. Four weeks after cell injection, brain-derived neurotrophic factor and tyrosine kinase receptor B mRNA expression at the lesion site was increased in comparison to control. Furthermore, sciatic function index, Fluoro Gold-labeled neuron counts and axon density were also significantly increased when compared with control. Our results indicate that human umbilical cord blood-derived mesenchymal stem cells promote the functional recovery of crush-injured sciatic nerves.  相似文献   

2.
In this study, we chemically extracted acellular nerve allografts from bilateral sciatic nerves, and repaired 10-mm sciatic nerve defects in rats using these grafts and brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells. Experiments were performed in three groups: the acellular nerve allograft bridging group, acellular nerve allograft + bone marrow mesenchymal stem cells group, and the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchyrnal stem cells group. Results showed that at 8 weeks after bridging, sciatic functional index, triceps wet weight recovery rate, myelin thickness, and number of myelinated nerve fibers were significantly changed in the three groups. Variations were the largest in the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells group compared with the other two groups. Experimental findings suggest that chemically extracted acellular nerve allograft combined nerve factor and mesenchymal stem cells can promote the restoration of sciatic nerve defects. The repair effect seen is better than the single application of acellular nerve allograft or acellular nerve allograft combined mesenchymal stem cell transplantation.  相似文献   

3.
BACKGROUND: Schwann cells are the most commonly used cells for tissue-engineered nerves. However, autologous Schwann cells are of limited use in a clinical context, and allogeneic Schwann cells induce immunological rejections. Cells that do not induce immunological rejections and that are relatively easy to acquire are urgently needed for transplantation.OBJECTIVE: To bridge sciatic nerve defects using tissue engineered nerves constructed with neural tissue-committed stem cells (NTCSCs) derived from bone marrow; to observe morphology and function of rat nerves following bridging; to determine the effect of autologous nerve transplantation, which serves as the gold standard for evaluating efficacy of tissue-engineered nerves.DESIGN, TIME AND SETTING: This randomized, controlled, animal experiment was performed in the Anatomical laboratory and Biomedical Institute of the Second Military Medical University of Chinese PLA between September 2004 and April 2006.MATERIALS: Five Sprague Dawley rats, aged 1 month and weighing 100-150 g, were used for cell culture. Sixty Sprague Dawiey rats aged 3 months and weighing 220-250 g, were used to establish neurological defect models. Nestin, neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP), and S-100 antibodies were provided by Santa Cruz Biotechnology, Inc., USA. Acellular nerve grafts were derived from dogs.METHODS: All rats, each with 1-cm gap created in the right sciatic nerve, were randomly assigned to three groups. Each group comprised 20 rats. Autograft nerve transplantation group: the severed 1-cm length nerve segment was reverted, but with the two ends exchanged; the proximal segment was sutured to the distal sciatic nerve stump and the distal segment to the proximal stump. Blank nerve scaffold transplantation group: a 1-cm length acellular nerve graft was used to bridge the sciatic nerve gap. NTCSC engineered nerve transplantation group: a 1-cm length acellular nerve graft, in which NTCSCs were inoculated, was used to bridge the sciatic nerve gap.MAIN OUTCOME MEASURES: Following surgery, sciatic nerve functional index and electrophysiology functions were evaluated for nerve conduction function, including conduction latency, conduction velocity, and action potential peak. Horseradish peroxidase (HRP, 20%) was injected into the gastrocnemius muscle to retrogradely label the L4 and L5 nerve ganglions, as well as neurons in the anterior horn of the spinal cord, in the three groups. Positive expression of nestin, NSE, GFAP, and S-100 were determined using an immunofluorescence double-labeling method.RESULTS: NTCSCs differentiated into neuronal-like cells and glial-like cells within 12 weeks after NTCSC engineered nerve transplantation. HRP retrograde tracing displayed a large amount of HRP-labeted neurons in L4-5 nerve ganglions, as well as the anterior horn of the spinal cord, in both the autograft nerve transplantation and the NTCSC engineered nerve transplantation groups. However, few HRP-labeled neurons were detected in the blank nerve scaffold transplantation group. Nerve bridges in the autograft nerve transplantation and NTCSC engineered nerve transplantation groups exhibited similar morphology to normal nerves. Neither fractures or broken nerve bridges nor neuromas were found after bridging the sciatic nerve gap with NTCSCs-inoculated acellular nerve graft, indicating repair. Conduction latency, action potential, and conduction velocity in the NTCSC engineered nerve transplantation group were identical to the autograft nerve transplantation group (P>0.05), but significantly different from the blank nerve scaffold transplantation group (P<0.05). CONCLUSION: NTCSC tissue-engineered nerves were able to repair injured nerves and facilitated restoration of nerve conduction function, similar to autograff nerve transplantation.  相似文献   

4.
Many studies have been dedicated to the development of scaffolds for improving post-traumatic nerve regeneration. The goal of this study was to assess the effect on nerve regeneration, associating a hybrid chitosan membrane with non-differentiated human mesenchymal stem cells isolated from Wharton’s jelly of umbilical cord, in peripheral nerve reconstruction after crush injury. Chromosome analysis on human mesenchymal stem cell line from Wharton’s jelly was carried out and no structural alterations were found in metaphase. Chitosan membranes were previously tested in vitro, to assess their ability in supporting human mesenchymal stem cell survival, expansion, and differentiation. For the in vivo testing, Sasco Sprague adult rats were divided in 4 groups of 6 or 7 animals each:Group 1, sciatic axonotmesis injury without any other intervention (Group 1-Crush); Group 2, the axonotmesis lesion of 3 mm was infiltrated with a suspension of 1 250-1 500 human mesenchymal stem cells (total volume of 50 μL) (Group 2-CrushCell); Group 3, axonotmesis lesion of 3 mm was enwrapped with a chitosan type III membrane covered with a monolayer of non-differentiated human mesenchymal stem cells (Group 3-CrushChitIIICell) and Group 4, axonotmesis lesion of 3 mm was enwrapped with a chitosan type III membrane (Group 4-CrushChitIII). Motor and sensory functional recovery was evaluated throughout a healing period of 12 weeks using sciatic functional index, static sciatic index, extensor postural thrust, and withdrawal reflex latency. Stereological analysis was carried out on regenerated nerve fibers. Results showed that infiltration of human mesenchymal stem cells, or the combination of chitosan membrane enwrapment and human mesenchymal stem cell enrichment after nerve crush injury provide a slight advantage to post-traumatic nerve regeneration. Results obtained with chitosan type III membrane alone confirmed that they significantly improve post-traumatic axonal regrowth and may represent a very promising clinical tool in peripheral nerve reconstructive surgery. Yet, umbilical cord human mesenchymal stem cells, that can be expanded in culture and induced toform several different types of cells, may prove, in future experiments, to be a new source of cells for cell therapy, including targets such as peripheral nerve and muscle.  相似文献   

5.
背景:作者前期将无细胞神经移植物与骨髓间充质干细胞复合培养,成功构建了组织工程人工神经。 目的:应用辣根过氧化物酶(HRP)神经逆行示踪技术对无细胞神经移植物复合骨髓间充质干细胞构建的神经移植复合体桥接大鼠坐骨神经缺损后运动神经元的保护作用进行评价。 方法:成年清洁级健康雄性SD大鼠,随机分成3组:①实验组:采用复合骨髓间充质干细胞的无细胞神经移植物桥接大鼠坐骨神经缺损。②空白对照组:采用无细胞神经移植物桥接大鼠坐骨神经缺损。③自体神经对照组:采用自体神经移植桥接大鼠坐骨神经缺损。术后12周应用辣根过氧化物酶神经逆行示踪技术对脊髓前角运动神经元的再生进行评价。 结果与结论:术后12周脊髓前角运动神经元再生评价结果显示:实验组优于无细胞神经移植物组,而与自体神经移植物组相比差异无显著性意义。证实无细胞神经移植物复合骨髓间充质干细胞构建组织工程人工神经修复大鼠坐骨神经缺损,对大鼠脊髓运动神经元具有保护作用,可能达到与自体神经移植相似的效果。 关键词:无细胞神经移植物;骨髓间充质干细胞;辣根过氧化物酶;神经移植;大鼠  相似文献   

6.
In this study,we chemically extracted acellular nerve allografts from bilateral sciatic nerves,and repaired 10-mm sciatic nerve defects in rats using these grafts and brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells.Experiments were performed in three groups: the acellular nerve allograft bridging group,acellular nerve allograft + bone marrow mesenchymal stem cells group,and the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells group.Results showed that at 8 weeks after bridging,sciatic functional index,triceps wet weight recovery rate,myelin thickness,and number of myelinated nerve fibers were significantly changed in the three groups.Variations were the largest in the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells group compared with the other two groups.Experimental findings suggest that chemically extracted acellular nerve allograft combined nerve factor and mesenchymal stem cells can promote the restoration of sciatic nerve defects.The repair effect seen is better than the single application of acellular nerve allograft or acellular nerve allograft combined mesenchymal stem cell transplantation.  相似文献   

7.
《中国神经再生研究》2016,(8):1322-1326
We hypothesized that a chemically extracted acellular allogeneic nerve graft used in combination with bone marrow mesenchymal stem cell transplantation would be an effective treatment for long-segment sciatic nerve defects. To test this, we established rabbit models of 30 mm sciatic nerve defects, and treated them using either an autograft or a chemically decellularized allogeneic nerve graft with or without simultaneous transplantation of bone marrow mesenchymal stem cells. We compared the tensile properties, electrophysiological function and morphology of the damaged nerve in each group. Sciatic nerves repaired by the allogeneic nerve graft combined with stem cell trans-plantation showed better recovery than those repaired by the acellular allogeneic nerve graft alone, and produced similar results to those observed with the autograft. These ifndings conifrm that a chemically extracted acellular allogeneic nerve graft combined with transplanta-tion of bone marrow mesenchymal stem cells is an effective method of repairing long-segment sciatic nerve defects.  相似文献   

8.
目的:通过植入经PRP诱导的BMSCs结合化学萃取的去细胞神经修复坐骨神经缺损,观察其对周围神经的修复作用。 方法:32只新西兰大耳白兔,随机分成4组,即单纯的化学萃取的去细胞神经、BMSCs结合化学萃取的去细胞神经、经PRP诱导的BMSCs结合化学萃取的去细胞神和自体神经修复坐骨神经缺损,检测指标包括形态学观察、靶肌肉肌湿重恢复率、运动神经传导速度(MNCV)及轴突直径和髓鞘厚度等。 结果:结果显示,靶肌肉肌湿重恢复率、MNCV、轴突直径和髓鞘厚度和形态学观察在经PRP诱导的BMSCs结合化学萃取的去细胞神经组明显优于单纯的化学萃取的去细胞神经组和BMSCs结合化学萃取的去细胞神经组,而与自体神经修复组结果相似。 结论:经诱导后的BMSCs在体内具有SC的部分功能,可作为组织工程化外周神经的种子细胞,用于周围神经缺损的修复。  相似文献   

9.
The human umbilical cord is a rich source of autologous stem and progenitor cells. Interestingly, subpopulations of these, particularly mesenchymal-like cells from both cord blood and the cord stroma, exhibited a potential to be differentiated into neuron-like cells in culture. Umbilical cord blood stem cells have demonstrated efficacy in reducing lesion sizes and enhancing behavioral recovery in animal models of ischemic and traumatic central nervous system (CNS) injury. Recent findings also suggest that neurons derived from cord stroma mesenchymal cells could alleviate movement disorders in hemiparkinsonian animal models. We review here the neurogenic potential of umbilical cord stem cells and discuss possibilities of their exploitation as an alternative to human embryonic stem cells or neural stem cells for transplantation therapy of traumatic CNS injury and neurodegenerative diseases.  相似文献   

10.
目的探讨不同转化生长因子-β(TGF-β)表达量的人羊膜间充质干细胞(hAMSCs)尾静脉移植对异种周围神经移植小鼠坐骨神经功能的恢复作用。方法从健康剖宫产产妇志愿捐献的新鲜羊膜中分离出hAMSCs,并进行纯化及鉴定。构建上调和下调TGF-β表达的慢病毒质粒,并转染纯化的hAMSCs,构建出稳定的上调或下调TGF-β表达的hAMSCs。分离并剪去C57BL/6小鼠的部分坐骨神经,将SD大鼠的坐骨神经分离剪取并移植至小鼠的坐骨神经缺损处,构建出异种周围神经移植小鼠模型。将模型小鼠按随机数字表分为对照组、未修饰的hAMSCs治疗组、高表达TGF-β的hAMSCs治疗组、低表达TGF-β的hAMSCs治疗组,每组10只。各组于造模前1 d分别经尾静脉注射磷酸盐缓冲液或相应的hAMSCs重悬液进行移植治疗。于治疗后第14天时采用DigGait步态分析系统评估各组小鼠的坐骨神经功能恢复情况。结果治疗后第14天时,高表达TGF-β的hAMSCs治疗组小鼠的坐骨神经功能指数(-25.820±0.286)明显高于低表达TGF-β的hAMSCs治疗组(-33.413±0.920)和未修饰的hAMSCs治疗组(-30.755±0.421),差异均有统计学意义(P<0.05)。结论高表达TGF-β的hAMSCs尾静脉移植能够更有效地改善异种周围神经移植小鼠的坐骨神经功能,其可能成为周围神经损伤治疗的新突破口。  相似文献   

11.
背景:骨髓是目前间充质干细胞的主要来源,但由于取材不便、细胞数量受年龄限制等原因,其应用具有一定局限性。近年来,羊膜作为间充质干细胞的新来源受到越来越广泛的关注。 目的:探讨人羊膜来源间充质干细胞在体外对造血干细胞的扩增是否有支持作用,以及怎样提高羊膜间充质干细胞和造血干细胞共移植成功率。 方法:利用组织块培养法,从足月分娩的人羊膜中分离培养羊膜间充质干细胞。密度梯度离心法分离脐血单个核细胞,采用免疫磁珠分选技术分选其中CD34+细胞。分别用脐血单个核细胞和CD34+细胞与羊膜间充质干细胞共培养,连续4周,每周计悬浮细胞浓度,并以骨髓间充质干细胞组及无滋养层组作为对照。采用集落形成实验,把扩增的脐血单个核细胞和CD34+细胞分别接种至甲基纤维素半固体培养基中,14 d后根据典型形态特征计数造血集落数。 结果与结论:羊膜间充质干细胞可促进人脐血单个核细胞和CD34+细胞扩增,扩增后两者在甲基纤维素半固体培养基中能够形成造血祖细胞集落,其造血支持作用与骨髓间充质干细胞相似,两者对比无明显统计学差异。提示,羊膜间充质干细胞体外具有与骨髓间充质干细胞相似的造血支持作用,有可能为造血干细胞体外扩增及临床间充质干细胞与造血干细胞联合移植、提高造血干细胞移植成功率提供一种更加理想的间充质干细胞新来源。  相似文献   

12.
Because of their strong proliferative capacity and multi-potency, placenta-derived mesenchymal stem cells have gained interest as a cell source in the field of nerve damage repair. In the present study, human placenta-derived mesenchymal stem ceils were induced to differentiate into neural stem cells, which were then transplanted into the spinal cord after local spinal cord injury in rats. The motor functional recovery and pathological changes in the injured spinal cord were observed for 3 successive weeks. The results showed that human placenta-derived mesenchymal stem cells can differentiate into neuron-like cells and that induced neural stem cells contribute to the restoration of injured spinal cord without causing transplant rejection. Thus, these cells promote the recovery of motor and sensory functions in a rat model of spinal cord injury. Therefore, human placenta-derived mesenchymal stem cells may be useful as seed cells during the repair of spinal cord injury.  相似文献   

13.
In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated around the injury site, surviving up to 4 weeks post-transplantation. In addition, transplantation-related death did not occur, and neurological functions significantly improved. Histological detection revealed attenuated pathological injury in rat brain tissues following human umbilical cord blood mesenchymal stem cell transplantation. In addition, the number of apoptotic cells decreased. Immunohistochemistry and in situ hybridization showed increased expression of brain-derived neurotrophic factor, nerve growth factor, basic fibroblast growth factor, and vascular endothelial growth factor, along with increased microvessel density in surrounding areas of brain injury. Results demonstrated migration of transplanted human umbilical cord blood mesenchymal stem cells into the lesioned boundary zone of rats, as well as increased angiogenesis and expression of related neurotrophic factors in the lesioned boundary zone.  相似文献   

14.
Stem cell transplantation can promote functional restoration following acute spinal cord injury (injury time < 3 months), but the safety and long-term efficacy of this treatment need further exploration. In this study, 25 patients with traumatic spinal cord injury (injury time > 6 months) were treated with human umbilical cord blood stem cells via intravenous and intrathecal injection. The follow-up period was 12 months after transplantation. Results found that autonomic nerve functions were restored and the latent period of somatosensory evoked potentials was reduced. There were no severe adverse reactions in patients following stem cell transplantation. These experimental findings suggest that the transplantation of human umbilical cord blood stem cells is a safe and effective treatment for patients with traumatic spinal cord injury.  相似文献   

15.
Spinal cord injury can lead to severe motor,sensory and autonomic nervous dysfunctions.However,there is currently no effective treatment for spinal cord injury.Neural stem cells and progenitor cells,bone marrow mesenchymal stem cells,olfactory ensheathing cells,umbilical cord blood stem cells,adipose stem cells,hematopoietic stem cells,oligodendrocyte precursor cells,macrophages and Schwann cells have been studied as potential treatments for spinal cord injury.These treatments were mainly performed in animals.However,subtle changes in sensory function,nerve root movement and pain cannot be fully investigated with animal studies.Although these cell types have shown excellent safety and effectiveness in various animal models,sufficient evidence of efficacy for clinical translation is still lacking.Cell transplantation should be combined with tissue engineering scaffolds,local drug delivery systems,postoperative adjuvant therapy and physical rehabilitation training as part of a comprehensive treatment plan to provide the possibility for patients with SCI to return to normal life.This review summarizes and analyzes the clinical trials of cell transplantation therapy in spinal cord injury,with the aim of providing a rational foundation for the development of clinical treatments for spinal cord injury.  相似文献   

16.
BACKGROUND: Mesenchymal stem cells (MSCs) appear to be a good alternative to Schwann cells in the treatment of peripheral nerve injury. Fetal stem cells, like umbilical cord blood (UCB) and umbilical cord (UC) stem cells, have several advantages over adult stem cells.OBJECTIVE: To assess the effects of UC-derived MSCs (UCMSCs) and UCB-derived MSCs (UCBMSCs) in repair of sciatic nerve defects. DESIGN, TIME AND SETTING: A randomized controlled animal experiment was performed at the laboratory of Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, from July to December 2009. MATERIALS: UCMSCs were provided by the Research Institute of Biotechnology, Dongguk University. UCBMSCs were provided by the Laboratory of Stem Cells and Tumor Biology, College of Veterinary Medicine, Seoul National University. Dulbecco's modified Eagle's medium (DMEM) was purchased from Gibco-BRL, USA. METHODS: Seven-week-old Sprague-Dawley rats were randomly and evenly divided into three groups: DMEM, UCBMSCs, and UCMSCs. A 10-mm defect in the left sciatic nerve was constructed in all rats. DMEM (15 μL) containing 1 × 106 UCBMSCs or UCMSCs was injected into the gap between nerve stumps, with the surrounding epineurium as a natural conduit. For the DMEM group, simple DMEM was injected. MAIN OUTCOME MEASURES: At 7 weeks after sciatic nerve dissection, dorsal root ganglia neurons were labeled by fluorogold retrograde labeling. At 8 weeks, electrophysiology and histomorphometry were performed. At 2, 4, 6, and 8 weeks after surgery, sciatic nerve function was evaluated using gait analysis.RESULTS: The UCBMSCs group and the UCMSCs group exhibited similar sciatic nerve function and electrophysiological indices, which were better than the DMEM group, as measured by gait analysis (P < 0.05). Fluorogold retrograde labeling of sciatic nerve revealed that the UCBMSCs group demonstrated a higher number of labeled neurons; however, the differences were not significant. Histomorphometric indices were similar in the UCBMSCs and UCMSCs groups, and total axon counts, particularly axon density (P < 0.05), were significantly greater in the UCBMSCs and UCMSCs groups than in the DMEM group. CONCLUSION: Transplanting either UCBMSCs or UCMSCs into axotomized sciatic nerves could accelerate and promote sciatic nerve regeneration over 8 weeks. Both treatments had similar effects on nerve regeneration.  相似文献   

17.
背景:骨髓间充质干细胞移植对脊髓损伤有治疗作用,但其机制尚不完全清楚。 目的:应用免疫组织化学方法观察骨髓间充质干细胞静脉移植损伤脊髓局部脑源性神经营养因子及神经生长因子的表达,分析骨髓间充质干细胞移植治疗大鼠脊髓损伤的作用途径。 方法:运用改良Allen法制备T10脊髓外伤性截瘫大鼠模型,假手术组6只,脊髓损伤组24只随机分为对照组和骨髓间充质干细胞移植组。骨髓间充质干细胞移植组、假手术组接受骨髓间充质干细胞单细胞悬液1 mL(1×106 cells)自大鼠尾静脉缓慢注射移植,对照组静脉注射PBS 1 mL。 结果与结论:脊髓损伤后损伤局部的脑源性神经营养因子、神经生长因子表达增加,骨髓间充质干细胞静脉注射移植后能促进脊髓损伤局部脑源性神经营养因子、神经生长因子更进一步的表达,这可能是促进神经结构及神经功能恢复的因素之一。  相似文献   

18.
干细胞移植治疗脊髓损伤18例   总被引:2,自引:1,他引:1  
目的探讨脐带间充质干细胞移植治疗脊髓损伤的疗效。方法对18例脊髓损伤患者给予脐带间充质干细胞6次移植。移植前后按照《美国脊柱损伤协会评估标准》(ASIA评分)及日常生活活动(ADL)量表的Barthel指数给予患者评分,两次评分进行统计学处理。结果有5例患者的《美国脊柱损伤协会评估标准》评分增加,其余13例均无变化,移植前后的评分比较P>0.05。结论脐带间充质干细胞移植治疗脊髓损伤短期内观察疗效不确切。  相似文献   

19.
BACKGROUND: Transplantation of human umbilical cord blood-derived mesenchymal stem cells (MSCs) has been shown to benefit spinal cord injury (SCI) repair. However, mechanisms of microenvironmental regulation during differentiation of transplanted MSCs remain poorly understood. OBJECTIVE: To observe changes in nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and interleukin-8 (IL-8) expression following transplantation of human umbilical cord-derived MSCs, and to explore the association between microenvironment and neural functional recovery following MSCs transplantation.DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Department of Orthopedics, First Affiliated Hospital of Soochow University from April 2005 to March 2007. MATERIALS: Human cord blood samples were provided by the Department of Gynecology and Obstetrics, First Affiliated Hospital of Soochow University. Written informed consent was obtained. METHODS: A total of 62 Wister rats were randomly assigned to control (n = 18), model (n = 22, SCI + PBS), and transplantation (n = 22, SCI + MSCs) groups. The rat SCI model was established using the weight compression method. MSCs were isolated from human umbilical cord blood and cultured in vitro for several passages. 5-bromodeoxyuridine (BrdU)-labeled MSCs (24 hours before injection) were intravascularly transplanted. MAIN OUTCOME MEASURES: The rats were evaluated using the Basso, Beattie and Bresnahan (BBB) locomotor score and inclined plane tests. Transplanted cells were analyzed following immunohistochemistry. Enzyme-linked immunosorbant assay was performed to determine NGF, BDNF, and IL-8 levels prior to and after cell transplantation.RESULTS: A large number of BrdU-positive MSCs were observed in the SCI region of the transplantation group, and MSCs were evenly distributed in injured spinal cord tissue 1 week after transplantation. BBB score and inclined plane test results revealed significant functional improvement in the transplantation group compared to the model group (P< 0.05), which was maintained for 2-3 weeks. Compared to the model group, NGF and BDNF levels were significantly increased in the injured region following MSCs transplantation at 3 weeks (P < 0.05), but IL-8 levels remained unchanged (P > 0.05).CONCLUSION: MSCs transplantation increased NGF and BDNF expression in injured spinal cord tissue. MSCs could promote neurological function recovery in SCI rats by upregulating NGF expression and improving regional microenvironments.  相似文献   

20.
目的 探讨脐带血间充质于细胞(CB-MSC)移植对脑创伤大鼠的治疗作用及其在体内分化为神经元样细胞的可行性.方法 健康Wistar大鼠采用随机数字表法分为3组:(1)损伤组,开颅钻孔打击脑组织不移植细胞;(2)移植对照组,开颅创伤脑组织后在创伤区注射生理盐水1.25μ;(3)CB-MSC移植组,开颅创伤脑组织后在创伤区注射含CB-MSC混悬液.每组各18只.CB-MSC从脐带血中分离、培养得到,采用BrdU标记.分别于移植后3 d及10 d进行大鼠行为学评分,2周和4周行Y迷宫试验.移植后2周和5周对植人脑内的CB-MSC进行免疫组织化学检测,镜下观察胶质纤维酸性蛋白(GFAP)和神经元特异性烯醇化酶(NSE)阳性细胞.结果移植后10d 3组大鼠行为学评分差异有统计学意义(p<0.05),移植后2周和4周大鼠学习、记忆评分差异亦有有统计学意义(P<0.05).移植后2周和5周在CB-MSC移植组细胞移植区均发现BrdU-GFAP和BrdU-NSE阳性细胞,其他2组均未发现.结论 CB-MSC移植可促进大鼠脑创伤恢复,提高学习和记忆能力,CB-MSC在体内可以向神经元样细胞分化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号