首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purpose 131Iodine metaiodobenzylguanidine (131I-MIBG) is a radiopharmaceutical used for scintigraphic localisation of phaeochromocytomas and paragangliomas. The experience with its therapeutic use is limited. We report our experience for the treatment of malignant phaeochromocytoma and paraganglioma. Materials and methods The charts of 19 patients with malignant phaeochromocytoma (n = 12) or paraganglioma (n = 7), who were treated with 131I-MIBG, were retrospectively reviewed. Four patients (21%) received radiotherapy, three (16%) chemotherapy, and in one patient (5%), both chemotherapy and radiotherapy was given before 131I-MIBG therapy. Response to 131I-MIBG treatment was evaluated by objective as tumour response, biochemical and subjective response. Results Of the 19 patients, 13 (68%) were men, 6 (32%) were women. Ages ranged from 22 to 68 years (median, 47). The median initial dose was 7.4 GBq (200 mCi; range, 6.7 GBq–25.9 GBq, 180–700 mCi); median cumulative dose was 22.2 GBq (600 mCi; range, 6.8 GBq–81.4 GBq, 183–2200 mCi). Objective tumour response was achieved in 47% of the patients. Biochemical response rate was 67%, and symptomatic response was seen in 89% of the patients. Overall median follow-up was 29 months, with a range of 3–93 months. Haematologic complications were the most common side effects and were observed in 26% of the patients. Conclusion Our data support that symptomatic and biochemical response can be reached with 131I-MIBG therapy in patients with metastatic phaeochromocytoma and paraganglioma. Although complete tumour response was not observed, the palliation and control of tumour function by 131I-MIBG therapy may be valuable for the patients.  相似文献   

2.
Disease status assessment of neuroblastoma patients requires computed tomography (or magnetic resonance imaging), bone scan, metaiodobenzylguanidine (MIBG) scan, bone marrow tests, and urine catecholamine measurements. There is no clinical experience concerning the evaluation of these patients by means of technetium-99m (99mTc)-somatostatin analog scintigraphy. Furthermore, these radiopharmaceuticals are promising imaging agents owing to their lower cost, availability, dosimetry, and ease of preparation. An 8-year-old boy already diagnosed with stage-IV neuroblastoma received chemotherapy. In the follow-up, after obtaining the parents’ informed consent, iodin 131 (131I)-MIBG and 99mTc-6-hydrazinopyridine-3-carboxylic acid (HYNIC)-octreotide scans were done on separate days to evaluate tumor extension. Even as the 131I-IBG scan showed mild diffuse uptake in the projection of both lung hili, the 99mTc-HYNIC-octreotide scan showed multiple axial and appendicular bone uptakes and paravertebral, abdominal, mediastinal, and supraclavicular ganglionar uptakes. The 99mTc-HYNIC-octreotide showed much more lesion extension than the 131I-MIBG. Therefore, 99mTc-HYNIC-octreotide may be a promising radiopharmaceutical for the evaluation of neuroblastoma patients. This finding justifies the pre liminary evaluation of this tracer in the context of a clinical trial.  相似文献   

3.
Purpose Non-invasive imaging of tumour development remains a challenge, especially for tumours in the intraperitoneal cavity. Therefore, the aim of this study was the visualisation of both the development of peritoneal carcinomatosis and tumour regression after radioimmunotherapy with tumour-specific 213Bi-Immunoconjugates, via in vivo bioluminescence imaging of firefly luciferase-transfected cells. Methods Human diffuse-type gastric cancer cells expressing mutant d9-E-cadherin were stably transfected with firefly luciferase (HSC45-M2-luc). For bioluminescence imaging, nude mice were inoculated intraperitoneally with 1 × 107 HSC45-M2-luc cells. On days 4 and 8 after tumour cell inoculation, imaging was performed following D-luciferin injection using a cooled CCD camera with an image intensifier unit. For therapy, mice were injected with 2.7 MBq 213Bi-d9MAb targeting d9-E-cadherin on day 8 after tumour cell inoculation. Bioluminescence images were taken every 4 days to monitor tumour development. Results After i.p. inoculation of HSC45-M2-luc cells into nude mice, development as well as localisation of peritoneal carcinomatosis could be visualised using bioluminescence imaging. Following 213Bi-d9MAb therapy on day 8 after intraperitoneal inoculation of HSC45-M2-luc cells, small tumour nodules were totally eliminated and larger nodules showed a clear reduction in size on day 12 after tumour cell inoculation. Subsequently a recurrence of tumour mass was observed, starting from the remaining tumour spots. By measuring the mean grey level intensity, tumour development over time could be demonstrated. Conclusion Non-invasive bioluminescence imaging permits visualisation of the development of peritoneal carcinomatosis, localisation of tumour in the intraperitoneal cavity and evaluation of therapeutic success after 213Bi-d9MAb treatment.  相似文献   

4.
Objectives Small animal imaging with meta-iodobenzylguanidine (MIBG) allows characterization of animal models, optimization of tumor treatment strategies, and monitoring of gene expression. Anesthetic agents, however, can affect norepinephrine (NE) transport and systemic sympathetic activity. We thus elucidated the effects of anesthetic agents on MIBG transport and biodistribution. Methods SK-N-SH neuroblastoma and PC-12 pheochromocytoma cells were measured for 123I-MIBG uptake after treatment with ketamine (Ke), xylazine (Xy), Ke/Xy, or pentobarbital (Pb). NE transporters were assessed by Western blots. Normal ICR mice and PC-12 tumor-bearing mice were injected with 123I-MIBG 10 min after anesthesia with Ke/Xy, Ke, Xy, or Pb. Plasma NE levels and MIBG biodistribution were assessed. Results Cellular 123I-MIBG uptake was dose-dependently inhibited by Ke and Xy but not by Pb. Treatment for 2 h with 300 μM Ke, Xy, and Ke/Xy decreased uptake to 46.0 ± 1.6, 24.8 ± 1.5, and 18.3 ± 1.6% of controls. This effect was completely reversed by fresh media, and there was no change in NE transporter levels. In contrast, mice anesthetized with Ke/Xy showed no decrease of MIBG uptake in target organs. Instead, uptakes and organ-to-blood ratios were increased in the heart, lung, liver, and adrenals. Plasma NE was notably reduced in the animals with corresponding decreases in blood MIBG, which partly contributed to the increase in target organ uptake. Conclusion In spite of their inhibitory effect at the transporter level, Ke/Xy anesthesia is a satisfactory method for MIBG imaging that allows favorable target tissue uptake and contrast by reducing circulating NE and MIBG. Bong-Ho Ko and Jin-Young Paik equally contributed to this work. This work was supported by the Korea Research Foundation Grant KRF-2005-202-E00116. Presented in part at the fifth Annual Meeting of the Society for Molecular Imaging, Hawaii, August 30–September 2, 2006.  相似文献   

5.
Iodine-123 metaiodobenzylguanidine (MIBG) cardiac scintigraphy is a useful tool for the assessment of cardiac adrenergic neuronal function, which is impaired in children with idiopathic dilated cardiomyopathy (DCM). In adults with DCM, long-term treatment with carvedilol improves both cardiac adrenergic neuronal function and left ventricular function. The aim of this prospective study was to evaluate the impact of carvedilol on cardiac adrenergic neuronal function using 123I-MIBG scintigraphy and on left ventricular function using equilibrium radionuclide angiography in children with DCM. Seventeen patients (11 female, six male; mean age 39±57 months, range 1–168 months) with DCM and left ventricular dysfunction underwent 123I-MIBG cardiac scintigraphy and equilibrium radionuclide angiography before and after a 6-month period of carvedilol therapy. A static anterior view of the chest was acquired 4 h after intravenous injection of 20–75 MBq of 123I-MIBG. Cardiac neuronal uptake of 123I-MIBG was measured using the heart to mediastinum count ratio (HMR). Radionuclide left ventricular ejection fraction (LVEF) was assessed following a standard protocol. MIBG cardiac uptake and left ventricular function respectively increased by 38% and 65% after 6 months of treatment with carvedilol (HMR=223%±49% vs 162%±26%, P<0.0001, and LVEF=43%±17% vs 26%±11%, P<0.0001). Carvedilol can improve cardiac adrenergic neuronal and left ventricular function in children with dilated cardiomyopathy. Further studies are needed to assess the relationship between improvement in MIBG cardiac uptake and the beneficial effects of carvedilol on morbidity and mortality.  相似文献   

6.
Purpose and methods Studies on peptide receptor radionuclide therapy (PRRT) using radiolabelled somatostatin analogues have shown promising results with regard to tumour control. The efficacy of PRRT is limited by uptake and retention in the proximal tubules of the kidney, which might lead to radiation nephropathy. We investigated the long-term renal toxicity after different doses of [177Lu-DOTA0,Tyr3]octreotate and the effects of dose fractionation and lysine co-injection in two tumour-bearing rat models. Results Significant renal toxicity was detected beyond 100 days after start of treatment as shown by elevated serum creatinine and proteinuria. Microscopically, tubules were strongly dilated with flat epithelium, containing protein cylinders. Creatinine levels rose significantly after 555 MBq [177Lu-DOTA0,Tyr3]octreotate, but were significantly lower after 278 MBq (single injection) or two weekly doses of 278 MBq. Renal damage scores were maximal after 555 MBq and significantly lower in the 278 and 2×278 MBq groups. Three doses of 185 MBq [177Lu-DOTA0,Tyr3]octreotate with intervals of a day, a week or a month significantly influenced serum creatinine (469±18, 134±70 and 65±15 μmol/l, respectively; p<0.001). Renal histological damage scores were not significantly influenced by dose fractionation. Lysine co-administration with three weekly treatments of 185 MBq significantly lowered serum creatinine and proteinuria. Conclusion Injection of high doses of [177Lu-DOTA0,Tyr3]octreotate resulted in severe renal damage in rats as indicated by proteinuria, elevated serum creatinine and histological damage. This damage was dose dependent and became overt between 100 and 200 days after treatment. Dose fractionation had significant beneficial effects on kidney function. Also, lysine co-injection successfully prevented functional damage.  相似文献   

7.
The first aim of this study was to compare the hypoxia imaging ability of fluorine-18 fluoroerythronitroimidazole ([18F]FETNIM) with that of fluorine-18 fluoromisonimidazole ([18F]FMISO) in murine tumours of different sizes under two different oxygenation conditions. Secondly, we wanted to assess the biodistribution of the markers in normal tissues under similar conditions. Female CDF1 mice with a C3H mammary carcinoma grown on their backs were used. Tumours were size matched and animals breathed either normal air (21% O2) or carbogen gas (95% O2 + 5% CO2). The gassing procedure was begun 5 min before the intravenous injection of either [18F]FETNIM or [18F]FMISO and continued until the mice were sacrificed at 120 min. Blood, tumour, muscle, heart, lung, liver, kidney and fat were removed, counted for radioactivity and weighed. The tumour and muscle were frozen and cut with a cryomicrotome into sections. The spatial distribution of radioactivity from the tissue sections was determined with digital autoradiography. Estimation of the necrotic fraction was made on sections from formalin-fixed tumours. Digital autoradiography showed that the whole tumour-to-muscle radioactivity uptake ratios were significantly higher in normal air-breathing mice than in carbogen-treated mice for both [18F]FETNIM (4.9±2.6 vs 1.8±0.5; P<0.01) and [18F]FMISO (4.4±1.0 vs 1.5±0.4; P<0.01). The carbogen treatment had only slight effects on the biodistribution of either marker in normal tissues. The necrotic fraction determined in tumours did not correlate with the tumour volume or with the tumour-to-muscle radioactivity uptake ratio. This study shows that the uptake of both [18F]FETNIM and [18F]FMISO correlates with the oxygenation status in tumours. In addition, our data show no significant difference in the intratumoral uptake between the two markers. However, significantly higher radioactivity uptake values were measured for [18F]FMISO than for [18F]FETNIM in normal tissues.  相似文献   

8.
Recently carbon-11 acetate (AC) positron emission tomography (PET) has been reported to be of clinical value for the diagnosis of cancer that is negative on fluorine-18 fluorodeoxyglucoce (FDG) PET. We investigated the uptake of AC in lung cancer to determine whether this tracer is of potential value for tumour detection and characterisation, and to compare AC PET imaging with FDG PET and technetium-99m sestamibi (MIBI) single-photon emission tomography (SPET). Twenty-three patients with 25 lung cancers underwent AC and FDG PET. Twenty of 23 patients were also investigated with MIBI SPET. Dynamic images were acquired for 26 min after the injection of 555 MBq of AC. Standardised uptake values (SUVs) and/or tumour to non-tumour activity ratios (T/N) for each tumour were investigated at 10–20 min after AC administration, 40–60 min after administration of 185 MBq FDG and 15–45 min after administration of 555 MBq MIBI. Twenty lung cancers were resected surgically, and the degree of tracer uptake in the primary lesion was correlated with histopathological features (cell dedifferentiation and aggressiveness) and prognosis. Rapid uptake of AC followed by extremely slow clearance was observed. For the purpose of tumour identification, AC PET was inferior to FDG PET in 8 of 25 (32%) lung cancers, and the T/N of AC was lower than that of FDG. However, AC PET was superior to FDG PET in the identification of a slow-growing tumour (bronchiolo-alveolar carcinoma). There was a positive correlation between AC uptake (T/N) and MIBI uptake (T/N) (r=0.799, P<0.0001). A positive correlation was not observed between either AC or MIBI uptake and the degree of cell dedifferentiation in lung adenocarcinomas, whereas FDG uptake did correlate with the degree of cell dedifferentiation. In lung adenocarcinoma, there was a weak correlation between aggressiveness and FDG uptake, but no correlation was evident for AC and MIBI. In addition, a positive correlation was not observed between AC or MIBI uptake and postoperative recurrence in lung adenocarcinoma, whereas FDG uptake did correlate with postoperative recurrence. Thus, the greater the FDG uptake, the higher the malignant grade. In conclusion, for the purpose of tumour identification, AC PET was inferior to FDG PET but superior to MIBI SPET. Neither AC nor MIBI uptake reflects the malignant grade in lung adenocarcinoma, whereas FDG uptake does. AC PET is less diagnostically informative than FDG PET in patients with lung cancer. However, AC PET may play a complementary role in the identification of low-grade malignancies that are not FDG avid.  相似文献   

9.
Purpose  The aim of this investigation was to quantitatively compare the novel positron emission tomography (PET) hypoxia marker 2-(2-nitroimidazol-1-yl)-N-(3[18F],3,3-trifluoropropyl)acetamide ([18F]EF3) with the reference hypoxia tracer [18F]fluoromisonidazole ([18F]FMISO). Methods  [18F]EF3 or [18F]FMISO was injected every 2 days into two separate groups of rats bearing syngeneic rhabdomyosarcoma tumours. In vivo PET analysis was done by drawing regions of interest on the images of selected tissues. The resulting activity data were quantified by the percentage of injected radioactivity per gram tissue (%ID/g) and tumour to blood (T/B) ratio. The spatial distribution of radioactivity was defined by autoradiography on frozen tumour sections. Results  The blood clearance of [18F]EF3 was faster than that of [18F]FMISO. The clearance of both tracers was slower in tumour tissue compared with other tissues. This results in increasing T/B ratios as a function of time post tracer injection (p.i.). The maximal [18F]EF3 tumour uptake, compared to the maximum [18F]FMISO uptake, was significantly lower at 2 h p.i. but reached similar levels at 4 h p.i. The tumour uptake for both tracers was independent of the tumour volume for all investigated time points. Both tracers showed heterogeneous intra-tumoural distribution. Conclusions  [18F]EF3 tumour uptake reached similar levels at 4 h p.i. compared with tumour retention observed after injection of [18F]FMISO at 2 h p.i. Although [18F]EF3 is a promising non-invasive tracer, it is not superior over [18F]FMISO for the visualisation of tumour hypoxia. No significant differences between [18F]EF3 and [18F]FMISO were observed with regard to the intra-tumoural distribution and the extra-tumoural tissue retention.  相似文献   

10.
Background During rotational atherectomy (RA), the coronary atherosclerotic plaque is largely pulverized into microdebris, which may cause serious hemodynamic instability owing to significant segmental left ventricular asynergy embolization of the distal microvasculature by atheromatous debris and associated vasospasm. Objective To evaluate the usefulness of 123I-metaiodobenzylguanidine (123I-MIBG) in the examination of microvascular embolization after RA. Methods and results Nineteen patients with stable effort angina pectoris who had undergone RA were evaluated in this study. Left ventricular ejection fraction (LVEF) was determined by left ventriculography immediately before and after RA. The serum concentration of creatine phosphokinase (CPK), creatine phosphokinase-myocardial band (CPK-MB) isozyme, and cardiac troponin-T was determined after RA. 99mTc-methoxyisobutylisonitrile (99mTc-MIBI) and 123I-MIBG scintigraphic examinations were also performed 1 day after RA. The regional defect score (RDS) was determined from 99mTc-MIBI scintigraphic findings, while early and delayed RDS, heart-to-mediastinum count ratios (H/M ratios), and washout rate (WR) were determined from 123I-MIBG scintigraphy. After RA, the left ventriculographic LVEF mildly decreased by ≤10% in ten patients (group A), but it decreased by >10% in the remaining nine patients (group B). There were no differences in baseline clinical characteristics between the two groups. The CPK, CPK-MB isozyme, troponin-T, RDS by 99mTc-MIBI, H/M ratios, and WR after RA were similar in the two groups. However, the RDSs determined from early and delayed 123I-MIBG in group A were significantly lower than those in group B (4.5 ± 3.8 vs. 13.4 ± 10.8, P < 0.05; 9.0 ± 6.3 vs. 17.7 ± 10.0, P < 0.05, respectively). Moreover, there were significant correlations between delta LVEF and troponin-T (r = 0.54, P < 0.05) and RDSs of early and delayed 123I-MIBG (r = 0.46, P < 0.05; r = 0.64, P < 0.05, respectively). Conclusions These findings suggest that 123I-MIBG imaging can be used to evaluate microvascular disturbance caused by embolization by microdebris after RA.  相似文献   

11.
Reducing the acquisition time of whole-body fluorine-18 fluorodeoxyglucose positron emission tomography (18F-FDG PET) (corrected for attenuation) is of major importance in clinical practice. With the introduction of lutetium oxyorthosilicate (LSO), the acquisition time can be dramatically reduced, provided that patients are injected with larger amounts of tracer and/or the system is operated in 3D mode. The aim of this study was to determine the optimal dose of 18F-FDG required in order to achieve good-to-excellent image quality when a "3-min emission, 2-min transmission/bed position" protocol is used for an LSO PET camera. A total of 218 consecutive whole-body 18F-FDG PET studies were evaluated retrospectively. After excluding patients with liver metastases, hyperglycaemia and paravenous injections, the final study population consisted of 186 subjects (112 men, 74 women, age 59±15 years). Patients were injected with an activity of 18F-FDG ranging from 2.23 to 15.21 MBq/kg. Whole-body images corrected for attenuation (3 min emission, 2 min transmission/bed position) were acquired with an LSO PET camera (Ecat Accel,Siemens) 60 min after tracer administration. Patients were positioned with their arms along the body. Image reconstruction was done iteratively and a post-reconstruction filter was applied. Image quality was scored visually by two independent observers using a five-point scoring scale (poor, reasonable, good, very good, excellent). In addition, the coefficient of variability (COV) was measured in a region of interest over the liver in order to quantify noise. Of the images obtained in 118 patients injected with 8 MBq/kg 18F-FDG, 92% and 90% were classified as good, very good or excellent by observer 1 and observer 2, respectively. The COV averaged 10.63%±3.19% for doses 8 MBq/kg and 16.46%±5.14% for doses <8 MBq/kg. Administration of an 18F-FDG dose of 8 MBq/kg results in images of good to excellent quality in the vast majority of patients when using an LSO PET camera and applying a 3-min emission, 2-min transmission/bed position acquisition protocol. At lower doses, a rapid decline in image quality and increasing noise are observed. Alternative protocols should be adopted in order to compensate for the loss in image quality when doses <8 MBq/kg are used.  相似文献   

12.
Purpose N-([11C]methyl)benperidol ([11C]NMB) can be used for positron emission tomography (PET) measurements of D2-like dopamine receptor binding in vivo. We report the absorbed radiation dosimetry of i.v.-administered 11C-NMB, a critical step before applying this radioligand to imaging studies in humans. Materials and methods Whole-body PET imaging with a CTI/Siemens ECAT 953B scanner was done in a male and a female baboon. After i.v. injection of 444–1221 MBq of 11C-NMB, sequential images taken from the head to the pelvis were collected for 3 h. Volumes of interest (VOIs) were identified that entirely encompassed small organs (whole brain, striatum, eyes, and myocardium). Large organs (liver, lungs, kidneys, lower large intestine, and urinary bladder) were sampled by drawing representative regions within the organ volume. Time–activity curves for each VOI were extracted from the PET, and organ residence times were calculated by analytical integration of a multi-exponential fit of the time–activity curves. Human radiation doses were estimated using OLINDA/EXM 1.0 and the standard human model. Results Highest retention was observed in the blood and liver, each with total residence times of 1.5 min. The highest absorbed radiation doses were to the heart (10.5 mGy/kBq) and kidney (9.19 mGy/kBq), making these the critical organs for [11C]NMB. A heart absorption of 50 mGy would result from an injected dose of 4,762 MBq [11C]NMB. Conclusions Thus, this study suggests that up to 4,762 MBq of [11C]NMB can be safely administered to human subjects for PET studies. Total body dose and effective dose for [11C]NMB are 2.82 mGy/kBq and 3.7 mSv/kBq, respectively.  相似文献   

13.
Objective This study was performed to evaluate the effects of intravenous (i.v.) contrast agent on semi-quantitative values and lymph node (LN) staging of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in patients with lung cancer. Methods Thirty-five patients with lung cancer were prospectively included. Whole-body PET and nonenhanced CT images were acquired 60 min following the i.v. injection of 370 MBq 18F-FDG and subsequently, enhanced-CT images were acquired with the i.v. administration of 400 mg iodinated contrast agent without positional change. PET images were reconstructed with both nonenhanced and enhanced CTs, and the maximum and average standardized uptake values (SUVmax and SUVave) calculated from lung masses, LNs, metastatic lesions, and normal structures were compared. To evaluate the effects of the i.v. contrast agent on LN staging, we compared the LN status on the basis of SUVs (cut-offs; SUVmax = 3.5, SUVave = 3.0). Results The mean differences of SUVmax in normal structures between enhanced and nonenhanced PET/CT were 15.23% ± 13.19% for contralateral lung, 8.53% ± 6.11% for aorta, 5.85% ± 4.99% for liver, 5.47% ± 6.81% for muscle, and 2.81% ± 3.05% for bone marrow, and those of SUVave were 10.17% ± 9.00%, 10.51% ± 7.89%, 4.95% ± 3.89%, 5.66% ± 9.12%, and 2.49% ± 2.50%, respectively. The mean differences of SUVmax between enhanced and nonenhanced PET/CT were 5.89% ± 3.92% for lung lesions (n = 41), 6.27% ± 3.79% for LNs (n = 76), and 3.55% ± 3.38% for metastatic lesions (n = 35), and those of SUVave were 3.22% ± 3.01%, 2.86% ± 1.71%, and 2.33% ± 3.95%, respectively. Although one LN status changed from benign to malignant because of contrast-related artifact, there was no up- or down-staging in any of the patients after contrast enhancement. Conclusions An i.v. contrast agent may be used in PET/CT without producing any clinically significant artifact.  相似文献   

14.
Purpose Monoclonal antibodies (MAbs) labelled with 124I are an attractive option for quantitative imaging with positron emission tomography (PET) in a scouting procedure prior to 131I-radioimmunotherapy (131I-RIT). In this study, three important items in the labelling of MAbs with 124I were introduced to obtain optimal and reproducible product quality: restoration of radiation-induced inorganic deterioration of the starting 124I solution, radiation protection during and after 124I labelling, and synchronisation of the I/MAb molar ratio.Methods A new method was applied, using an NaIO3/NaI carrier mix, realising in one step >90% restoration of deteriorated 124I into the iodide form and chemical control over the I/MAb molar ratio. Chimeric MAb (cMAb) U36 and the murine MAbs 425 and E48 were labelled with 124I using the so-called Iodogen-coated MAb method, as this method provides optimal quality conjugates under challenging radiation conditions. As a standardising condition, NaIO3/NaI carrier mix was added at a stoichiometric I/MAb molar ratio of 0.9. For comparison, MAbs were labelled with 131I and with a mixture of 124I, 123I, 126I and 130I.Results Labelling with 124I in this setting resulted in overall yields of >70%, a radiochemical purity of >95%, and preservation of MAb integrity and immunoreactivity, including at the patient dose level (85 MBq). No significant quality differences were observed when compared with 131I products, while the iodine isotope mixture gave exactly the same labelling efficiency for each of the isotopes, excluding a different chemical reactivity of 124I-iodide. The scouting performance of 124I-cMAb U36 labelled at the patient dose level was evaluated in biodistribution studies upon co-injection with 131I-labelled cMAb U36, and by PET imaging in nude mice bearing the head and neck cancer xenograft line HNX-OE. 124I-cMAb and 131I-cMAb U36 labelled with a synchronised I/MAb molar ratio gave fully concordant tissue uptake values. Selective tumour uptake was confirmed with immuno-PET, revealing visualisation of 15 out of 15 tumours.Conclusion These results pave the way for renewed evaluation of the potential of 124I-immuno-PET for clinical applications.  相似文献   

15.
Purpose  The study serves to optimise conditions for multi-pinhole SPECT small animal imaging of 123I- and 99mTc-labelled radiopharmaceuticals with different distributions in murine heart and brain and to investigate detection and dose range thresholds for verification of differences in tracer uptake. Methods  A Triad 88/Trionix system with three 6-pinhole collimators was used for investigation of dose requirements for imaging of the dopamine D2 receptor ligand [123I]IBZM and the cerebral perfusion tracer [99mTc]HMPAO (1.2–0.4 MBq/g body weight) in healthy mice. The fatty acid [123I]IPPA (0.94 ± 0.05 MBq/g body weight) and the perfusion tracer [99mTc]sestamibi (3.8 ± 0.45 MBq/g body weight) were applied to cardiomyopathic mice overexpressing the prostaglandin EP3 receptor. Results  In vivo imaging and in vitro data revealed 45 kBq total cerebral uptake and 201 kBq cardiac uptake as thresholds for visualisation of striatal [123I]IBZM and of cardiac [99mTc]sestamibi using 100 and 150 s acquisition time, respectively. Alterations of maximal cerebral uptake of [123I]IBZM by >20% (116 kBq) were verified with the prerequisite of 50% striatal of total uptake. The labelling with [99mTc]sestamibi revealed a 30% lower uptake in cardiomyopathic hearts compared to wild types. [123I]IPPA uptake could be visualised at activity doses of 0.8 MBq/g body weight. Conclusion  Multi-pinhole SPECT enables detection of alterations of the cerebral uptake of 123I- and 99mTc-labelled tracers in an appropriate dose range in murine models targeting physiological processes in brain and heart. The thresholds of detection for differences in the tracer uptake determined under the conditions of our experiments well reflect distinctions in molar activity and uptake characteristics of the tracers. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Fluorine-18 3-deoxy-3-fluorothymidine (18FLT) is a tissue proliferation marker which has been suggested as a new tumour-specific imaging tracer in positron emission tomography (PET). The objectives of this study were to investigate the pharmacokinetics of 18FLT in patients with colorectal cancer, defining methodologies for the quantitative analysis of the in vivo 18FLT uptake and subsequently assessing the accuracy of semi-quantitative measures. Dynamic acquisitions over a single field of view of interest identified by computed tomography were carried out for up to 60 min following injection of 18FLT (360±25 MBq). Dynamic arterial blood sampling was carried out in order to provide a blood input function. Simultaneous venous samples were also taken in order to investigate their potential utilisation in deriving a hybrid input function. Arterial and venous blood samples at 5, 15, 30, 60 and 90 min p.i. were used for metabolite analysis. Eleven patients with primary and/or metastatic colorectal cancer were studied on a lesion by lesion basis (n=21). All acquired images were reconstructed using ordered subsets expectation maximisation and segmented attenuation correction. Time-activity curves were derived by image region of interest (ROI) analysis and image-based input functions were obtained using abdominal or thoracic aorta ROIs. Standardised uptake values (SUVs) were calculated to provide semi-quantitative indices of uptake, while non-linear regression (NLR) methodology in association with a three-compartment model and Patlak analysis were carried out to derive the net influx constant K i . The metabolite analysis revealed two radioactive metabolites, with the parent compound representing ~80% of the total radioactivity in the 30-min plasma sample. In the case of NLR, better fits were obtained with a 3k model (i.e. k 4=0) for both lesion and bone marrow time-activity curves. For the same lesions, a high correlation was observed between the K i derived from either Patlak analysis or NLR(3k) and the corresponding SUVs. Our results also suggest that the quantitative behaviour of 18FLT in vivo (up to 60 min p.i.) may be characterised using a 3k model or Patlak analysis in combination with image-derived input functions. The good correlation found between the SUVs (at 60 min) and K i values supports the use of semi-quantitative indices to assess the proliferation rate of colorectal cancer lesions in vivo with 18FLT.The work included in this paper was selected for consideration in the Marie-Curie award during the European Association of Nuclear Medicine 2002 meeting in Vienna.  相似文献   

17.
Purpose There is growing interest in the human sodium/iodide symporter (NIS) gene both as a molecular imaging reporter gene and as a therapeutic gene. Here, we show the feasibility of radioisotope therapy of neuroendocrine tumors. As a separate application of NIS gene transfer, we image NIS-expressing tumors with pinhole SPECT in living subjects. Methods Biodistribution studies and in vivo therapy experiments were performed in nude mice carrying stably NIS-expressing neuroendocrine tumor xenografts following i.v. injection of 131I and 99mTc pertechnetate. To show the usefulness of NIS as an imaging reporter gene, 99mTc pertechnetate uptake was imaged in vivo using a clinical gamma camera in combination with a custom-made single pinhole collimator, followed by SPECT/small animal MRI data coregistration. Results NIS-expressing neuroendocrine tumors strongly accumulated 131I and 99mTc pertechnetate, as did thyroid, stomach, and salivary gland. The volume of NIS-expressing neuroendocrine tumors decreased significantly after therapeutic administration of 131I or 99mTc pertechnetate, whereas control tumors continued to grow. NIS-mediated uptake of 99mTc pertechnetate could be imaged in vivo at high resolution with a clinical gamma camera equipped with a custom-made single pinhole collimator. High-resolution functional and morphologic information could be combined in a single three-dimensional data set by coregistration of SPECT and small animal MRI data. Lastly, we demonstrated a therapeutic effect of 99mTc pertechnetate on NIS-expressing neuroendocrine tumors in cell culture and, for the first time, in vivo, thought to be due to emitted Auger and conversion electrons. Conclusions NIS-expressing neuroendocrine tumors efficiently concentrate radioisotopes, allowing for in vivo high-resolution small animal SPECT imaging as well as rendering possible successful radioisotope therapy of neuroendocrine tumors.  相似文献   

18.
Objectives The aim of this work was the evaluation of biodistribution and radiation dosimetry of 68Ga-DOTANOC in patients affected by neuroendocrine tumors. Materials and methods We enrolled nine patients (six male and three female) affected by different types of neuroendocrine tumors (NETs). Each patient underwent four whole body positron emission tomography (PET) scans, respectively, at 5, 20, 60, and 120 min after the intravenous injection of about 185 MBq of 68Ga-DOTANOC. Blood and urine samples were taken at different time points post injection: respectively, at about 5, 18, 40, 60, and 120 min for blood and every 40–50 min from injection time up to 4 h for urine. The organs involved in the dosimetric evaluations were liver, heart, spleen, kidneys, lungs, pituitary gland, and urinary bladder. Dosimetric evaluations were done using the OLINDA/EXM 1.0 software. Results A physiological uptake of 68Ga-DOTANOC was seen in all patients in the pituitary gland, the spleen, the liver, and the urinary tract (kidneys and urinary bladder). Organs with the highest absorbed doses were kidneys . The mean effective dose equivalent (EDE) was . Discussion and conclusions The excretion of the compound was principally via urine, giving dose to the kidney and the urinary bladder wall. As SSTR2 is the most frequently expressed somatostatin receptor and 68Ga-DOTANOC has high affinity to it, this compound might play an important role in PET oncology in the future. The dosimetric evaluation carried out by our team demonstrated that 68Ga-DOTANOC delivers a dose to organs comparable to, and even lower than, analogous diagnostic compounds.  相似文献   

19.
Cannabidiol (CBD), a nonpsychoactive cannabinoid, was found to be converted to 9α-hydroxyhexahydrocannabinol (9α-OH-HHC) and 8-hydroxy-iso-hexahydrocannabinol (8-OH-iso-HHC) together with Δ9-tetrahydrocannabinol (Δ9-THC), a psychoactive cannabinoid, and cannabinol in artificial gastric juice. These cannabinoids were identified by gas chromatography-mass spectrometry (GC-MS) by comparison with the spectral data of the authentic compounds. Pharmacological effects of 9α-OH-HHC and 8-OH-iso-HHC in mice were examined using catalepsy, hypothermia, pentobarbital-induced sleep prolongation, and antinociception against acetic acid-induced writhing as indices. The ED50 values (effective dose producing a 50% reduction of control; mg/kg, i.v.) of 9α-OH-HHC and 8-OH-iso-HHC for the cataleptogenic effect were 8.0 and 30.4, respectively. 8-OH-iso-HHC (10 mg/kg, i.v.) produced a significant hypothermia from 15 to 90 min after administration, although 9α-OH-HHC failed to induce such an effect at the same dose. However, both HHCs (10 mg/kg, i.v.) significantly prolonged pentobarbital-induced sleeping time by 1.8 to 8.0 times as compared with the control solution with 1% Tween 80-saline. The ED50 values (mg/kg, i.v.) of 9α-OH-HHC and 8-OH-iso-HHC for the antinociceptive effect were 14.1 and 39.4, respectively. The present study demonstrated that CBD can be converted to Δ9-THC and its related cannabinoids, 9α-OH-HHC and 8-OH-iso-HHC, in artificial gastric juice, and that these HHCs show Δ9-THC-like effects in mice, although their pharmacological effects were less potent than those of Δ9-THC.  相似文献   

20.
Purpose We hypothesized that assessment of myocardial sympathetic activity with no-carrier-added (nca) 123I-meta-iodobenzylguanidine (MIBG) compared to carrier-added (ca) 123I-MIBG would lead to an improvement of clinical performance without major differences in radiation dosimetry. Methods In nine healthy volunteers, 15 min and 4 h planar thoracic scintigrams and conjugate whole-body scans were performed up to 48 h following intravenous injection of 185 MBq 123I-MIBG. The subjects were given both nca and ca 123I-MIBG. Early heart/mediastinal ratios (H/M), late H/M ratios and myocardial washout were calculated. The fraction of administered activity in ten source organs was quantified from the attenuation-corrected geometric mean counts in conjugate views. Radiation-absorbed doses were estimated with OLINDA/EXM software. Results Both early and late H/M were higher for nca 123I-MIBG (ca 123I-MIBG early H/M 2.46 ± 0.15 vs nca 123I-MIBG 2.84 ± 0.15, p = 0.001 and ca 123I-MIBG late H/M 2.69 ± 0.14 vs nca 123I-MIBG 3.34 ± 0.18, p = 0.002). Myocardial washout showed a longer retention time for nca 123I-MIBG (p < 0.001). The effective dose equivalent (adult male model) for nca 123I-MIBG was similar to that for ca 123I-MIBG (0.025 ± 0.002 mSv/MBq vs 0.026 ± 0.002 mSv/MBq, p = 0.055, respectively). Conclusion No-carrier-added 123I-MIBG yields a higher relative myocardial uptake and is associated with a higher myocardial retention. This difference between nca 123I-MIBG and ca 123I-MIBG in myocardial uptake did not result in major differences in estimated absorbed doses. Therefore, nca 123I-MIBG is to be preferred over ca 123I-MIBG for the assessment of cardiac sympathetic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号