首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene for the maturation protein of the single-stranded RNA coliphage MS2 is preceded by an untranslated leader of 130 nt, which folds into a cloverleaf, i.e., three stem–loop structures enclosed by a long distance interaction (LDI). This LDI prevents translation because its 3′ moiety contains the Shine–Dalgarno sequence of the maturation gene. Previously, several observations suggested that folding of the cloverleaf is kinetically delayed, providing a time window for ribosomes to access the RNA. Here we present direct evidence for this model. In vitro experiments show that ribosome binding to the maturation gene is faster than refolding of the denatured cloverleaf. This folding delay appears related to special properties of the leader sequence. We have replaced the three stem–loop structures by a single five nt loop. This change does not affect the equilibrium structure of the LDI. Nevertheless, in this construct, the folding delay has virtually disappeared, suggesting that now the RNA folds faster than ribosomes can bind. Perturbation of the cloverleaf by an insertion makes the maturation start permanently accessible. A pseudorevertant that evolved from an infectious clone carrying the insertion had overcome this defect. It showed a wild-type folding delay before closing down the maturation gene. This experiment reveals the biological significance of retarded cloverleaf formation.  相似文献   

2.
Summary The arachidonic acid cascade leading to prostaglandins has been implicated in diabetic embryopathy. Both arachidonic acid and prostaglandin E2 reverse the teratogenic effects of high glucose concentrations on neural tube development in mouse embryos in culture. Arachidonic acid supplementation also protects against diabetes-induced neural tube defects in vivo. In the present study, prostaglandin E2 was measured directly in embryos from normal and diabetic mice. In normal mice a clear developmental pattern was seen. Prostaglandin E2 levels were high during early formation of the cranial neural folds (day 8), declined during convergence and fusion of the cranial neural folds to form the neural tube (day 9), and were low after neurulation was complete (days 10 and 11). In addition, evidence in this study indicates that embryos have cyclooxygenase activity capable of generating prostaglandin E2 during a brief developmental period preceding neural tube closure. In embryos from mice made diabetic (>13.9 mmol/l glucose) with streptozotocin, prostaglandin E2 levels were significantly lower than normal during early development of the cranial neural folds (day 8), but similar to normal after the cranial neural tube had closed (late day 9 and day 10). The findings suggest that diabetes mellitus, as ascertained by high blood glucose, promotes cranial neural tube malformations by causing a functional deficiency of prostaglandin E2 during early neurulation. Whether the altered PGE2 pattern in the embryo indicates a diabetic effect on the arachidonic acid-prostaglandin cascade in cells of the embryo or in cells of extraembryonic or maternal tissues is uncertain.Abbreviations PGE2 Prostaglandin E2 - PBS phosphate-buffered saline - PGHS prostaglandin H synthase  相似文献   

3.
Lipid rafts are discrete membrane subdomains rich in sphingolipids and cholesterol. In ventricular myocytes a function of caveolae, a type of lipid rafts, is to concentrate in close proximity several proteins of the beta-adrenergic transduction pathway. We have investigated the subcellular localization of HCN4 channels expressed in HEK cells and studied the effects of such localization on the properties of pacemaker channels in HEK and rabbit sinoatrial (SAN) cells. We used a discontinuous sucrose gradient and Western blot analysis to detect HCN4 proteins in HEK and in SAN cells, and found that HCN4 proteins localize to low-density membrane fractions together with flotillin (HEK) or caveolin-3 (SAN), structural proteins of caveolae. Lipid raft disruption by cell incubation with methyl-beta-cyclodextrin (MbetaCD) impaired specific HCN4 localization. It also shifted the midpoint of activation of the HCN4 current in HEK cells and of I(f) in SAN cells to the positive direction by 11.9 and 10.4 mV, respectively. These latter effects were not due to elevation of basal cyclic nucleotide levels because the cholesterol-depletion treatment did not alter the current response to cyclic nucleotides. In accordance with an increased I(f), MbetaCD-treated SAN cells showed large increases of diastolic depolarization slope (87%) and rate (58%). We also found that the kinetics of HCN4- and native f-channel deactivation were slower after lipid raft disorganization. In conclusion, our work indicates that pacemaker channels localize to lipid rafts and that disruption of lipid rafts causes channels to redistribute within the membrane and modifies their kinetic properties.  相似文献   

4.
We previously reported that mutations in the thyroid hormone receptor (TR) surface that mediates dimer and heterodimer formation do not alter affinity for cognate hormone (triiodothyronine (T(3))) yet dramatically enhance T(3) association and dissociation rates. This study aimed to show that TR oligomeric state influences binding and dissociation kinetics. We performed binding assays using marked hormone ((125)I-T(3)) and TRs expressed and purified by different methods. We find that T(3) associates with TRs with biphasic kinetics in solution; a rapid step (half-life ±0.1 h) followed by a slower second step (half-life ±5 h) and that purification of monomers suggests that biphasic kinetics are due to the presence of monomers and dimers in our preparations. In support of this idea, incubation of TR ligand binding domain monomers with corepressor peptide induces dimer formation and decreases association rates and T(3) binds to, and dissociates from, a TRβ mutant that only forms dimers (TRβD355R) with slow single-phase kinetics. In addition, heterodimer formation with retinoid X receptors also influences ligand binding kinetics. Together, these results suggest that the dimer/heterodimer surface is allosterically coupled to the hormone binding pocket and that different interactions at this surface exert different effects on ligand binding that may be relevant for TR actions in the cell.  相似文献   

5.
Calcified skeletons are produced within complex assemblages of proteins and polysaccharides whose roles in mineralization are not well understood. Here we quantify the kinetics of calcite nucleation onto a suite of high-purity polysaccharide (PS) substrates under controlled conditions. The energy barriers to nucleation are PS-specific by a systematic relationship to PS charge density and substrate structure that is rooted in minimization of the competing substrate–crystal and substrate–liquid interfacial energies. Chitosan presents a low-energy barrier to nucleation because its near-neutral charge favors formation of a substrate–crystal interface, thus reducing substrate interactions with water. Progressively higher barriers are measured for negatively charged alginates and heparin that favor contact with the solution over the formation of new substrate–crystal interfaces. The findings support a directing role for PS in biomineral formation and demonstrate that substrate–crystal interactions are one end-member in a larger continuum of competing forces that regulate heterogeneous crystal nucleation.  相似文献   

6.
7.
8.
Organ shape and size, and, ultimately, organ function, relate in part to the cell and tissue spatial arrangement that takes place during embryonic development. Despite great advances in the genetic regulatory networks responsible for tissue and organ development, it is not yet clearly understood how specific gene functions are linked to the specific morphogenetic processes underlying the internal organ asymmetries found in vertebrate animals. During female chick embryogenesis, and in contrast to males where both testes develop symmetrically, asymmetrical gonad morphogenesis results in only one functional ovary. The disposition of paired organs along the left-right body axis has been shown to be regulated by the activity of the homeobox containing gene pitx2. We have found that pitx2 regulates cell adhesion, affinity, and cell recognition events in the developing gonad primordium epithelia. This in turn not only allows for proper somatic development of the gonad cortex but also permits the proliferation and differentiation of primordial germ cells. We illustrate how Pitx2 activity directs asymmetrical gonad morphogenesis by controlling mitotic spindle orientation of the developing gonad cortex and how, by modulating cyclinD1 expression during asymmetric ovarian development, Pitx2 appears to control gonad organ size. All together our observations indicate that the effects elicited by Pitx2 during the development of the female chick ovary are critical for cell topology, growth, fate, and ultimately organ morphogenesis and function.  相似文献   

9.
BCL2 regulates neural differentiation.   总被引:7,自引:0,他引:7       下载免费PDF全文
A main function attributed to the BCL2 protein is its ability to confer resistance against apoptosis. In addition to the constitutively high expression of BCL2, caused by gene rearrangement in follicular lymphomas, elevated expression of the BCL2 gene has been found in differentiating hematopoietic, neural, and epithelial tissues. To address the question of whether the expression of BCL2 is a cause or consequence of cell differentiation, we used a human neural-crest-derived tumor cell line, Paju, that undergoes spontaneous neural differentiation in vitro. The Paju cell line displays moderate expression of BCL2, the level of which increases in parallel with further neural differentiation induced by treatment with phorbol 12-myristate 13-acetate. Transfection of normal human BCL2 cDNA in sense and antisense orientations had a dramatic impact on the differentiation of the Paju cells. Overexpression of BCL2 cDNA induced extensive neurite outgrowth, even in low serum concentrations, together with an increased expression of neuron-specific enolase. Paju cells expressing the anti-sense BCL2 cDNA construct, which reduced the endogenous levels of BCL2, did not undergo spontaneous neural differentiation. These cells acquired an epithelioid morphology and up-regulated the intermediate filament protein nestin, typically present in primitive neuroectodermal cells. The manipulated levels of BCL2 did not have appreciable impact on cell survival in normal culture. Our findings demonstrate that the BCL2 gene product participates in the regulation of neural differentiation.  相似文献   

10.
Polycystin-2 (PC2), the gene product of one of two genes mutated in dominant polycystic kidney disease, is a member of the transient receptor potential cation channel family and can function as intracellular calcium (Ca2+) release channel. We performed a yeast two-hybrid screen by using the NH2 terminus of PC2 and identified syntaxin-5 (Stx5) as a putative interacting partner. Coimmunoprecipitation studies in cell lines and kidney tissues confirmed interaction of PC2 with Stx5 in vivo. In vitro binding assays showed that the interaction between Stx5 and PC2 is direct and defined the respective interaction domains as the t-SNARE region of Stx5 and amino acids 5 to 72 of PC2. Single channel studies showed that interaction with Stx5 specifically reduces PC2 channel activity. Epithelial cells overexpressing mutant PC2 that does not bind Stx5 had increased baseline cytosolic Ca2+ levels, decreased endoplasmic reticulum (ER) Ca2+ stores, and reduced Ca2+ release from ER stores in response to vasopressin stimulation. Cells lacking PC2 altogether had reduced cytosolic Ca2+ levels. Our data suggest that PC2 in the ER plays a role in cellular Ca2+ homeostasis and that Stx5 functions to inactivate PC2 and prevent leaking of Ca2+ from ER stores. Modulation of the PC2/Stx5 interaction may be a useful target for impacting dysregulated intracellular Ca2+ signaling associated with polycystic kidney disease.  相似文献   

11.
12.
13.
14.
The endoglin heterozygous (Eng(+/-)) mouse, which serves as a model of hereditary hemorrhagic telangiectasia (HHT), was shown to express reduced levels of endothelial NO synthase (eNOS) with impaired activity. Because of intricate changes in vasomotor function in the Eng(+/-) mice and the potential interactions between the NO- and prostaglandin-producing pathways, we assessed the expression and function of cyclooxygenase (COX) isoforms. A specific upregulation of COX-2 in the vascular endothelium and increased urinary excretion of prostaglandin E(2) were observed in the Eng(+/-) mice. Specific COX-2 inhibition with parecoxib transiently increased arterial pressure in Eng(+/-) but not in Eng(+/+) mice. Transfection of endoglin in L6E9 myoblasts, shown previously to stimulate eNOS expression, led to downregulation of COX-2 with no change in COX-1. In addition, COX-2 promoter activity and protein levels were inversely correlated with endoglin levels, in doxycyclin-inducible endothelial cells. Chronic NO synthesis inhibition with N(omega)-nitro-l-arginine methyl ester induced a marked increase in COX-2 only in the normal Eng(+/+) mice. N(omega)-nitro-l-arginine methyl ester also increased COX-2 expression and promoter activity in doxycyclin-inducible endoglin expressing endothelial cells, but not in control cells. The level of COX-2 expression following transforming growth factor-beta1 treatment was less in endoglin than in mock transfected L6E9 myoblasts and was higher in human endothelial cells silenced for endoglin expression. Our results indicate that endoglin is involved in the regulation of COX-2 activity. Furthermore, reduced endoglin levels and associated impaired NO production may be responsible, at least in part, for augmented COX-2 expression and activity in the Eng(+/-) mice.  相似文献   

15.
Interleukin 2 regulates its own receptors.   总被引:41,自引:6,他引:41       下载免费PDF全文
The cell surface density of high-affinity membrane receptors for the T-lymphocytotrophic hormone interleukin 2 (IL-2) determines the rate of T-cell-cycle progression. Since 10-fold greater numbers of IL-2 receptor molecules were found by using a radiolabeled monoclonal antibody reactive with IL-2 receptors (anti-Tac) compared with binding of IL-2, the functional relationship of the binding sites recognized by both of these ligands was assessed. In the presence of cycloheximide, IL-2 binding sites declined with a half-time (t1/2) of 2.6 hr, whereas the decay of anti-Tac binding sites was much slower (t 1/2 = 6.4 hr). Moreover, after limited membrane proteolysis, the half-time for the reappearance of IL-2 binding sites was remarkably similar to its decay (t 1/2 = 2.2 hr), while Tac antigen reappearance was markedly retarded, returning to only 20% of original levels within 5 hr after proteolysis. Addition of homogeneous immunoaffinity-purified IL-2 to cell populations that expressed equivalent IL-2 and anti-Tac binding sites resulted in a time- and temperature-dependent 8- to 10-fold enhancement of Tac epitope expression and, simultaneously, a 20-30% diminishment of detectable high-affinity IL-2 binding sites. As the magnitude of the IL-2-dependent proliferative response correlated with the density of high-affinity IL-2 binding sites, rather than Tac antigen levels, quantitation of Tac epitope density does not provide a reliable indication of IL-2-responsiveness among activated T-cell populations. Instead, IL-2-receptor interactions actually promote the loss of IL-2 responsiveness by diminishing the density of high-affinity binding sites at the time that Tac antigen levels are increased.  相似文献   

16.
17.
To study the potential usefulness of technetium-99m hexakis-2-methoxy-2-methylpropyl-isonitrile (Tc-MIBI) as a cardiac perfusion imaging agent, the left circumflex coronary arteries of 12 dogs were partially occluded. Eight additional control dogs had no coronary artery stenosis. Myocardial Tc-MIBI activities in the left circumflex and left anterior descending zones were continuously monitored by miniature implantable radiation detectors for 4 hr after administration of the isotope. The dogs were then killed. Serial gamma camera images were also acquired during the study. Heart rate, arterial blood pressure, pressure distal to the stenosis, and cardiac output did not change significantly during the experiment. Microsphere-determined regional myocardial blood flow was significantly reduced in the left circumflex distribution in the 12 dogs with coronary artery stenoses. In the 12 dogs with left circumflex coronary artery stenoses, the 4 hr fractional Tc-MIBI clearances from the normal and ischemic zones were minimal and equivalent (0.15 +/- 0.05 vs 0.15 +/- 0.07). In the eight control dogs, 4 hr fractional Tc-MIBI clearances from the left anterior descending and left circumflex artery zones were minimal and equivalent (0.11 +/- 0.06 vs 0.10 +/- 0.07). Four hour fractional Tc-MIBI clearance from the blood was 0.98 +/- 0.03 for the dogs with stenosis and 0.97 +/- 0.02 for the dogs without stenosis. One additional dog had complete occlusion of the left circumflex coronary artery followed by administration of Tc-MIBI and scandium-46-labeled microspheres. This heart was immediately sectioned and counted to determine the relationship of regional blood flow to Tc-MIBI distribution (r = .92).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
辅助性T细胞17(Th17)是近年发现的新CD4 +T细胞亚群,主要通过分泌细胞因子白细胞介素17趋化中性粒细胞在气道募集而促进非Th2优势型哮喘的发生。甲基化-CpG结合域蛋白在DNA甲基化中具有调控作用,且能通过调控Th17分化而影响哮喘的进展。文中主要综述了近年甲基化-CpG结合域蛋白2调控Th17优势...  相似文献   

20.
Glutamate receptors (GluRs) are the most abundant mediators of the fast excitatory neurotransmission in the human brain. Agonists will, after activation of the receptors, induce different degrees of desensitization. The efficacy of agonists strongly correlates with the agonist-induced closure of the ligand-binding domain. However, the differences in desensitization properties are less well understood. By using high-resolution x-ray structure of the GluR2 flop (GluR2o) ligand-binding core protein in complex with the partial glutamate receptor agonist (S)-2-amino-3-(3-hydroxy-5-tert-butyl-4-isothiazolyl)propionic acid [(S)-thio-ATPA], we show that (S)-thio-ATPA induces an 18 degrees closure of the binding core similar to another partial agonist, (S)-2-amino-3-(4-bromo-3-hydroxy-5-isoxazolyl)propionic acid [(S)-Br-HIBO]. Despite the similar closure of the ligand-binding domain, we find in electrophysiological studies that (S)-thio-ATPA induced a 6.4-fold larger steady-state current than (RS)-Br-HIBO, and rapid agonist applications show that (S)-thio-ATPA induces a 3.6-fold higher steady-state/peak ratio and a 2.2-fold slower desensitization time constant than (RS)-Br-HIBO. Structural comparisons reveal that (S)-Br-HIBO, but not (S)-thio-ATPA, induces a twist of the ligand-binding core compared with the apostructure, and the agonist-specific conformation of Leu-650 correlates with the different kinetic profiles pointing at a key role in defining the desensitization kinetics. We conclude that, especially for intermediate efficacious agonists, the desensitization properties are influenced by additional ligand-induced factors beyond domain closure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号