首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: This paper proposes a novel method for the extraction and classification of individual motor unit action potentials (MUAPs) from intramuscular electromyographic signals. METHODOLOGY: The proposed method automatically detects the number of template MUAP clusters and classifies them into normal, neuropathic or myopathic. It consists of three steps: (i) preprocessing of electromyogram (EMG) recordings, (ii) MUAP detection and clustering and (iii) MUAP classification. RESULTS: The approach has been validated using a dataset of EMG recordings and an annotated collection of MUAPs. The correct identification rate for MUAP clustering is 93, 95 and 92% for normal, myopathic and neuropathic, respectively. Ninety-one percent of the superimposed MUAPs were correctly identified. The obtained accuracy for MUAP classification is about 86%. CONCLUSION: The proposed method, apart from efficient EMG decomposition addresses automatic MUAP classification to neuropathic, myopathic or normal classes directly from raw EMG signals.  相似文献   

2.
We have developed an effective technique for extracting and classifying motor unit action potentials (MUAPs) for electromyography (EMG) signal decomposition. This technique is based on single-channel and short periodȁ9s real recordings from normal subjects and artificially generated recordings. This EMG signal decomposition technique has several distinctive characteristics compared with the former decomposition methods: (1) it bandpass filters the EMG signal through wavelet filter and utilizes threshold estimation calculated in wavelet transform for noise reduction in EMG signals to detect MUAPs before amplitude single threshold filtering; (2) it removes the power interference component from EMG recordings by combining independent component analysis (ICA) and wavelet filtering method together; (3) the similarity measure for MUAP clustering is based on the variance of the error normalized with the sum of RMS values for segments; (4) it finally uses ICA method to subtract all accurately classified MUAP spikes from original EMG signals. The technique of our EMG signal decomposition is fast and robust, which has been evaluated through synthetic EMG signals and real EMG signals.  相似文献   

3.
Adaptive certainty-based classification for decomposition of EMG signals   总被引:1,自引:0,他引:1  
An adaptive certainty-based supervised classification approach for electromyographic (EMG) signal decomposition is presented and evaluated. Similarity criterion used for grouping motor unit potentials (MUPs) is based on a combination of MUP shapes and two modes of use of motor unit (MU) firing pattern information: passive and active. Performance of the developed classifier was evaluated using synthetic signals of known properties and real signals and compared with the performance of the certainty classifier (CC). Across the sets of simulated and real EMG signals used for comparison, the adaptive certainty classifier (ACC) had both better average performance and lower performance variability. For simulated signals of varying intensity, the ACC had an average correct classification rate (CC r ) of 83.7% with a mean absolute deviation (MAD) of 5.8% compared to 78.3 and 8.7%, respectively, for the CC. For simulated signals with varying amounts of shape and/or firing pattern variability, the ACC had a CC r of 79.7% with a MAD of 4.7% compared to 76.6 and 6.9%, respectively, for the CC. For real signals, the ACC had a CC r of 70.0% with a MAD of 6.3% compared to 64.9 and 6.4%, respectively, for the CC. The test results demonstrate that the ACC can manage both MUP shape variability as well as MU firing pattern variability. The ACC adapts to EMG signal characteristics to create dynamic data driven classification criteria so that the number of MUP assignments made reflects the signal complexity and the number of erroneous assignments is kept sufficiently low. The ability of the ACC to adjust to specific signal characteristics suggests that it can be successfully applied to a wide variety of EMG signals.  相似文献   

4.
目的 利用肌电信号对手部动作进行识别,是控制现代康复假手的关键,其中使用少量电极识别出较多手势又是一难点。为更加充分利用所获得的肌电信息,本文提出一种层级分类方法。方法 首先提出一种基于层级分类的手部肌电信号动作识别方法,该方法首先根据被分类对象的多侧面属性,利用肌电积分值作为特征值,并通过线性判别函数实施预分类;其次建立肌电信号的自回归模型,将模型系数作为特征值,将人工神经网络作为分类器进行细分类;最后进行了对比实验论证。结果 实验结果表明,可以利用2个表面肌电电极以较高的识别率识别出8个常用手部动作。结论 该方法能够以较少的肌电电极识别出较多的动作,比未采用分层方法具有更好的分类效果。  相似文献   

5.
ObjectiveThe profusion of data accumulating in the form of medical records could be of great help for developing medical decision support systems. The objective of this paper is to present a methodology for designing data-driven medical diagnostic tools, based on neural network classifiers.MethodsThe proposed approach adopts the radial basis function (RBF) neural network architecture and the non-symmetric fuzzy means (NSFM) training algorithm, which presents certain advantages including better approximation capabilities and shorter computational times. The novelty in this work consists of adapting the NSFM algorithm to train RBF classifiers, and suitably tailoring the evolutionary simulated annealing (ESA) technique to optimize the produced RBF models. The integration of ESA is critical as it helps the optimization procedure to escape from local minima, which could arise from the application of the traditional simulated annealing algorithm, and thus discover improved solutions. The resulting method is evaluated in nine different medical benchmark datasets, where the common objective is to train a suitable classifier. The evaluation includes a comparison with two different schemes for training classifiers, including a standard RBF training technique and support vector machines (SVMs). Accuracy% and the Matthews Correlation Coefficient (MCC) are used for comparing the performance of the three classifiers.ResultsResults show that the use of ESA helps to greatly improve the performance of the NSFM algorithm and provide satisfactory classification accuracy. In almost all benchmark datasets, the best solution found by the ESA-NSFM algorithm outperforms the results produced by the SFM algorithm and SVMs, considering either the accuracy% or the MCC criterion. Furthermore, in the majority of datasets, the average solution of the ESA-NSFM population is statistically significantly higher in terms of accuracy% and MCC at the 95% confidence level, compared to the global optimum solution that its rivals could achieve. As far as computational times are concerned, the proposed approach was found to be faster compared to SVMs.ConclusionsThe results of this study suggest that the ESA-NSFM algorithm can form the basis of a generic method for knowledge extraction from data originating from different kinds of medical records. Testing the proposed approach on a number of benchmark datasets, indicates that it provides increased diagnostic accuracy in comparison with two different classifier training methods.  相似文献   

6.
研究一种利用径向基函数(RBF)神经网络识别冠心病心电信号模式的方法。讨论了径向基函数中心的选取,构造了改进的RBF网络对训练样本和测试样本进行识别。结果表明,此项研究中采用的神经网络能对训练样本和测试样本正确地进行模式识别,训练方法能够自适应的确定聚类个数,从而确定聚类中心,避免了K均值聚类方法中因K值选取的不同而造成的误差。此方法收敛速度快,是一种有效的识别冠心痛心电信号的方法。  相似文献   

7.
目的传统多元多尺度熵在量化有限长数据时会造成部分数据丢失,同时传统算法对阈值的过分依赖也会造成整个系统产生不稳定的现象,二者皆会使最终结果产生较大的误差,因此本文提出一种多元多尺度模糊熵算法。方法对传统多元多尺度样本熵的粗粒化方式进行改进,采用滑动均值滤波使粗粒化后各尺度上的时间序列与原始时间序列长度一致,减小了所计算多元多尺度熵的离散性。此外,本文算法在保持多元样本熵中硬阈值优点的同时,通过定义模糊隶属度函数来统计两复合延迟向量距离略大于阈值的情况。结果本算法既降低了传统方法对阈值的依赖性,又很好地解决了传统阈值所导致的不稳定现象。最后用仿真数据对该算法进行验证,并将其应用于帕金森患者步态复杂度的评价和分类。结论实验结果表明多元多尺度模糊熵的识别效果明显优于传统多元多尺度熵。  相似文献   

8.
The thalassaemias are blood disorders with hereditary transmission. Their distribution is global, with particular incidence in areas affected by malaria. Their diagnosis is mainly based on haematologic and genetic analyses. The aim of this study was to differentiate between persons with the thalassaemia trait and normal subjects by inspecting characteristics of haemochromocytometric data.  相似文献   

9.
心音是诊断心血管疾病常用的医学信号之一。本文对心音正常/异常的二分类问题进行了研究,提出了一种基于极限梯度提升(XGBoost)和深度神经网络共同决策的心音分类算法,实现了对特征的选择和模型准确率的进一步提升。首先,本文对预处理后的心音信号进行心音分割,在此基础上提取了5个大类的特征,前4类特征采用递归特征消除法进行特征选择,作为XGBoost分类器的输入,最后一类为梅尔频率倒谱系数(MFCC),作为长短时记忆网络(LSTM)的输入。考虑到数据集的不平衡性,本文在两种分类器中皆使用了加权改进的方法。最后采用异质集成决策方法得到预测结果。将本文所提心音分类算法应用于PhysioNet网站在2016年发起的PhysioNet心脏病学挑战赛(CINC)所用公开心音数据库,以测试灵敏度、特异性、修正后的准确率以及F得分,结果分别为93%、89.4%、91.2%、91.3%,通过与其他研究者应用机器学习、卷积神经网络(CNN)等方法的结果比较,在准确率和灵敏度上有明显提高,证明了本文方法能有效地提高心音信号分类的准确性,在部分心血管疾病的临床辅助诊断应用中有很大的潜力。  相似文献   

10.
‘The objective of this study is to investigate the potential of classification and regression trees (CARTs) in discriminating benign from malignant endometrial nuclei and lesions. The study was performed on 222 histologically confirmed liquid based cytological smears, specifically: 117 benign cases, 62 malignant cases and 43 hyperplasias with or without atypia. About 100 nuclei were measured from each case using an image analysis system; in total, we collected 22783 nuclei. The nuclei from 50% of the cases (the training set) were used to construct a CART model that was used for knowledge extraction. The nuclei from the remaining 50% of cases (test set) were used to evaluate the stability and performance of the CART on unknown data. Based on the results of the CART for nuclei classification, we propose two classification methods to discriminate benign from malignant cases. The CART model had an overall accuracy for the classification of endometrial nuclei equal to 85%, specificity 90.68%, and sensitivity 72.05%. Both methods for case classification had similar performance: overall accuracy in the range 94–95%, specificity 95%, and sensitivity 91–94%. The results of the proposed system outperform the standard cytological diagnosis of endometrial lesions. This study highlights interesting diagnostic features of endometrial nuclear morphology and provides a new classification approach for endometrial nuclei and cases. The proposed method can be a useful tool for the everyday practice of the cytological laboratory. Diagn. Cytopathol. 2014;42:582–591. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
12.
The purpose of the paper is the evaluation of a radial basis function neural network as a tool for computer aided coronary artery disease diagnosis based on the results of the traditional ECG exercise test. The research was performed using 776 data records from an exercise test (297 records from healthy patients and 479 from ill patients) confirmed by coronary arteriography results. Each record described the state of the patient, provided input data for the neural network, included the level and slope of an ST segment of a 12-lead ECG signal made at rest and after effort, heart rate, blood pressure, load during the test, and occurrence of coronary pain, coronary arteriography, correct output pattern for the neural network, and verified the existence (or not) of more than 50% stenosis of the particular coronary vessels. Radial basis function neural networks for coronary artery disease diagnosis were optimised by choosing the type of radial function, the method of training (setting the number of centres and their dimensions), and regularisation. The best network correctly recognised over 97% of cases from a 400-element test set, diagnosing not only the patients' condition (simple ‘sane-sick’ diagnosis), but also pointing out individual sick/stenosed vessels.  相似文献   

13.
Summary One hundred and sixty-two consecutive cases of malignant lymphoma were collected from two diagnostic centres in north and south Iran. Tissue samples were examined by immunohistological methods, and the non-Hodgkin's lymphomas were classified according to the updated Kiel classification. The distribution of the different types of malignant lymphoma in this study is compared with the situation in Western countries.  相似文献   

14.
Tumor classification is an important application domain of gene expression data. Because of its characteristics of high dimensionality and small sample size (SSS), and a great number of redundant genes not related to tumor phenotypes, various feature extraction or gene selection methods have been applied to gene expression data analysis. Wavelet packet transforms (WPT) and neighborhood rough sets (NRS) are effective tools to extract and select features. In this paper, a novel approach of tumor classification is proposed based on WPT and NRS. First the classification features are extracted by WPT and the decision tables are formed, then the attributes of the decision tables are reduced by NRS. Thirdly, a feature subset with few attributes and high classification ability is obtained. The experimental results on three gene expression datasets demonstrate that the proposed method is effective and feasible.  相似文献   

15.
16.
Cai X  Wei J  Wen G  Li J 《生物医学工程学杂志》2011,28(6):1213-1216
针对基因表达谱样本数据少、维度高、噪声大的特点,维数约减十分必要。由于基因表达谱数据是以一种高维非线性的向量存在,传统的降维方法使得一些本质维数较低的高维数据无法投影到低维空间中,为此本文引入一种改进距离的局部线性嵌入(LLE)算法对其进行降维。由于原始的LLE方法对近邻个数参数非常敏感,为了增强算法对近邻参数的鲁棒性,文中提出了一种改进距离来度量样本点之间的距离,从而降低了样本点分布不均匀对算法的影响。实验结果表明,改进距离的LLE方法能够有效地提取分类特征信息,并能够在保持较高的分类正确率的前提下大幅度地降低基因数据的维数。  相似文献   

17.
18.
Biomedical prediction based on clinical and genome-wide data has become increasingly important in disease diagnosis and classification. To solve the prediction problem in an effective manner for the improvement of clinical care, we develop a novel Artificial Neural Network (ANN) method based on Matrix Pseudo-Inversion (MPI) for use in biomedical applications. The MPI-ANN is constructed as a three-layer (i.e., input, hidden, and output layers) feed-forward neural network, and the weights connecting the hidden and output layers are directly determined based on MPI without a lengthy learning iteration. The LASSO (Least Absolute Shrinkage and Selection Operator) method is also presented for comparative purposes. Single Nucleotide Polymorphism (SNP) simulated data and real breast cancer data are employed to validate the performance of the MPI-ANN method via 5-fold cross validation. Experimental results demonstrate the efficacy of the developed MPI-ANN for disease classification and prediction, in view of the significantly superior accuracy (i.e., the rate of correct predictions), as compared with LASSO. The results based on the real breast cancer data also show that the MPI-ANN has better performance than other machine learning methods (including support vector machine (SVM), logistic regression (LR), and an iterative ANN). In addition, experiments demonstrate that our MPI-ANN could be used for bio-marker selection as well.  相似文献   

19.
Abstract

For many years, heart function has been measured by the electrocardiogram (ECG) signal, while sounds produced in the heart can also contain information indicating normal or abnormal heart function. What has caused to restrict the use of the phonocardiography (PCG) signal was the lack of mastery of experts in the interpretation of these sounds, as well as its high potential for noise pollution. PCG is a non-invasive signal for monitoring physiological parameters of cardiac, which can make heart disease diagnostics more efficient. In recent years, attempts have been made to use PCG to detect heart disease independently without a need to match with the ECG. We propose a hybrid algorithm including empirical mode decomposition (EMD), Hilbert transform and Gaussian function for detecting heart sounds to distinguish first (S1) and second (S2) cardiac sounds by eliminating the effect of cardiac murmurs. In this article, 250 normal and 250 abnormal sound signals were examined. The overall positive predictivity of normal and abnormal S1 and S2 is 98.98%, 98.78, 98.78 and 98.37, respectively. Our results showed that the proposed method has a high potential for heart sounds determination, while maintains its simplicity and has a reasonable computational time.  相似文献   

20.
Diagnosis of several neurological disorders is based on the detection of typical pathological patterns in the electroencephalogram (EEG). This is a time-consuming task requiring significant training and experience. Automatic detection of these EEG patterns would greatly assist in quantitative analysis and interpretation. We present a method, which allows automatic detection of epileptiform events and discrimination of them from eye blinks, and is based on features derived using a novel application of independent component analysis. The algorithm was trained and cross validated using seven EEGs with epileptiform activity. For epileptiform events with compensation for eyeblinks, the sensitivity was 65 ± 22% at a specificity of 86 ± 7% (mean ± SD). With feature extraction by PCA or classification of raw data, specificity reduced to 76 and 74%, respectively, for the same sensitivity. On exactly the same data, the commercially available software Reveal had a maximum sensitivity of 30% and concurrent specificity of 77%. Our algorithm performed well at detecting epileptiform events in this preliminary test and offers a flexible tool that is intended to be generalized to the simultaneous classification of many waveforms in the EEG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号