首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Aim: The aim of the present study was to examine DNA methylation and histone modification changes in hepatocellular carcinomas (HCC). Methods: DNA methylation in the P16, RASSF1a, progesterone receptor (PGR) and estrogen receptor alpha (ERalpha) promoters was determined by quantitative bisulfite-pyrosequencing technique in HCC patients. Histone H3-lysine (K) 4, H3-K9 and H3-K27 modifications in all these four genes were examined by chromatin immunoprecipitation (ChIP) assay in HCC cell lines. Expression of two DNA methyltransferases (DNMT1 and DNMT3b) and three histone methyltransferases (SUV39H1, G9a and EZH2) in HCC patients was measured by real-time polymerase chain reaction. Results: Aberrant DNA methylation was detected in all the HCC. Patients with DNA methylation in the RASSF1a, PGR andERalpha promoters in cancers also had substantial DNA methylation in their non-cancerous liver tissues, whereas DNA methylation in the P16 promoter was cancer specific. Epigenetic states in HCC cell lines showed that silencing of P16 and RASSF1a depended on DNA methylation and histone H3-K9 methylation. However, silencing of the PGR and ERalpha genes was more closely related to H3-K27 methylation rather than DNA methylation. Consistent with the alteration of histone status, higher expression of G9a and EZH2 was found in HCC than in non-cancerous liver tissues (P < 0.01). Conclusion: These data suggest that multiple epigenetic silencing mechanisms are inappropriately active in HCC cells.  相似文献   

3.
Studies have shown that alterations of epigenetics and microRNA (miRNA) play critical roles in the initiation and progression of hepatocellular carcinoma (HCC). Epigenetic silencing of tumor suppressor genes in HCC is generally mediated by DNA hypermethylation of CpG island promoters and histone modifications such as histone deacetylation, methylation of histone H3 lysine 9 (H3K9) and tri‐methylation of H3K27. Chromatin‐modifying drugs such as DNA methylation inhibitors and histone deacetylase inhibitors have shown clinical promise for cancer therapy. miRNA are small non‐coding RNA that regulate expression of various target genes. Specific miRNA are aberrantly expressed and play roles as tumor suppressors or oncogenes during hepatocarcinogenesis. We and other groups have demonstrated that important tumor suppressor miRNA are silenced by epigenetic alterations, resulting in activation of target oncogenes in human malignancies including HCC. Restoring the expression of tumor suppressor miRNA by inhibitors of DNA methylation and histone deacetylase may be a promising therapeutic strategy for HCC.  相似文献   

4.
5.
6.
Fathallah H  Weinberg RS  Galperin Y  Sutton M  Atweh GF 《Blood》2007,110(9):3391-3397
Butyrate is a prototype of histone deacetylase inhibitors that is believed to reactivate silent genes by inducing epigenetic modifications. Although butyrate was shown to induce fetal hemoglobin (HbF) production in patients with hemoglobin disorders, the mechanism of this induction has not been fully elucidated. Our studies of the epigenetic configuration of the beta-globin cluster suggest that DNA methylation and histone H3 acetylation are important for the regulation of developmental stage-specific expression of the beta-like globin genes, whereas acetylation of both histones H3 and H4 seem to be important for the regulation of tissue-specific expression. These studies suggest that DNA methylation may be important for the silencing of the beta-like globin genes in nonerythroid hematopoietic cells but may not be necessary for their silencing in nonhematopoietic cells. Furthermore, our studies demonstrate that butyrate exposure results in a true reversal of the normal developmental switch from gamma- to beta-globin expression. This is associated with increased histone acetylation and decreased DNA methylation of the gamma-globin genes, with opposite changes in the beta-globin gene. These studies provide strong support for the role of epigenetic modifications in the normal developmental and tissue-specific regulation of globin gene expression and in the butyrate-mediated pharmacologic induction of HbF production.  相似文献   

7.
Lee HA  Cho HM  Lee DY  Kim KC  Han HS  Kim IK 《Hypertension》2012,59(3):621-626
The renin-angiotensin system has been implicated in the development of hypertension and damages several organs. The expressions of the components of a local renin-angiotensin system (RAS) in the hypertensive rats differ from those of the normotensive rats. We hypothesized that local tissue-specific upregulation of angiotensin-converting enzyme 1 (ACE1) in hypertension is caused by epigenetic changes. Adrenal gland, aorta, heart, kidney, liver, and lung tissues were excised from normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs). Ace1 mRNA and protein expressions were measured by real-time PCR and Western blot, respectively. Promoter methylation was revealed by bisulfite sequencing. Histone modifications, such as histone 3 acetylation (H3Ac), fourth lysine trimethylation (H3K4me3), and ninth lysine dimethylation (H3K9me2), were quantified by chromatin immunoprecipitation (ChIP), followed by real-time PCR. The expressions and associations of chromatin remodeling genes were analyzed by real-time PCR and ChIP, respectively. Local tissues from SHRs showed higher expressions of Ace1 mRNA and protein than those from the WKY rats. Ace1 promoter was mostly unmethylated in all of the tissues from both strains. The Ace1 promoter regions of SHR tissues were more enriched with H3Ac and H3K4me3, except in the lungs. The adrenal glands, hearts, and kidneys of SHRs showed less enrichment with H3K9me2. Valsartan treatment in SHRs decreased local Ace1 mRNA and protein expressions, which were accompanied by higher H3K9me2, as well as less H3Ac and H3K4me3. In conclusion, ACE1 is upregulated in local tissues of SHRs via histone code modifications.  相似文献   

8.
9.
10.
11.
12.
Context and Objective: Epigenetic dysregulation is implicated in pituitary neoplasia as the cause of silencing of several tumor suppressor genes. However, the upstream mediators of such events remain unknown. Design: We examined the three members of the DNA methyltransferase (DNMT) enzyme family in normal and neoplastic human and mouse pituitary cells. Setting: This study was performed at a university-affiliated cancer research institute. Main Outcome Measures: Gene expression, promoter DNA methylation, histone modifications, and cell proliferation were determined. Results: In contrast to DNMT1 and DNMT3a, DNMT3b was expressed at relatively higher levels in neoplastic pituitary cells. However, examination of the human DNMT3b 5' region showed uniformly low DNA methylation levels with little difference between normal and tumor samples. Through pharmacological methylation inhibition or histone deacetylation inhibition, we identified that DNMT3b gene expression is subject to histone modifications. Down-regulation of DNMT3b resulted in induction of retinoblastoma, p21, and p27, and reduction in cell proliferation. These targeted effects were associated with enhanced histone 3 acetylation and diminished histone methylation. Conclusion: Our findings identify DNMT3b as a putative mediator of epigenetic control through histone modifications of gene expression in pituitary cells.  相似文献   

13.

Background and purpose

High de novo expression of MUC5AC (a gastric-type secreted mucin) is observed in many types of pancreatobiliary neoplasms, including precursor lesions. In this study, we show that the DNA methylation pattern is intimately correlated with MUC5AC expression in ten cancer cell lines (breast, lung, pancreas, and colon).

Methods

The CpG methylation status of the MUC5AC promoter from ?3855 to +321 was mapped using MassARRAY analysis, which utilizes base-specific cleavage of nucleic acids. ChIP assays and micro-RNA (miRNA) microarray expression profiling were also carried out in both MUC5AC-positive cells and in those with no or low MUC5AC expression.

Results

In the distal region from ?3718 to ?3670 of the promoter, MUC5AC-negative cancer cells (e.g., MDA-MB-453) were highly methylated, whereas MUC5AC-positive cells (e.g., MCF-7) had low methylation levels. The modification status of histone H3 lysine 9 (H3-K9) was also closely related to MUC5AC expression. Expression levels of miRNAs in the cancer cells were not correlated with MUC5AC expression.

Conclusion

Our results indicate that MUC5AC is regulated by CpG methylation and histone H3-K9 modification of the MUC5AC promoter distal region, but not by miRNAs. An understanding of the epigenetic regulation of MUC5AC may be of importance for the diagnosis of carcinogenic risk in the pancreatobiliary system.  相似文献   

14.
15.
De novo methylation of CpG islands is a common phenomenon in human cancer, but the mechanisms of cancer-associated DNA methylation are not known. We have used tiling arrays in combination with the methylated CpG island recovery assay to investigate methylation of CpG islands genome-wide and at high resolution. We find that all four HOX gene clusters on chromosomes 2, 7, 12, and 17 are preferential targets for DNA methylation in cancer cell lines and in early-stage lung cancer. CpG islands associated with many other homeobox genes, such as SIX, LHX, PAX, DLX, and Engrailed, were highly methylated as well. Altogether, more than half (104 of 192) of all CpG island-associated homeobox genes in the lung cancer cell line A549 were methylated. Analysis of paralogous HOX genes showed that not all paralogues undergo cancer-associated methylation simultaneously. The HOXA cluster was analyzed in greater detail. Comparison with ENCODE-derived data shows that lack of methylation at CpG-rich sequences correlates with presence of the active chromatin mark, histone H3 lysine-4 methylation in the HOXA region. Methylation analysis of HOXA genes in primary squamous cell carcinomas of the lung led to the identification of the HOXA7- and HOXA9-associated CpG islands as frequent methylation targets in stage 1 tumors. Homeobox genes are potentially useful as DNA methylation markers for early diagnosis of the disease. The finding of widespread methylation of homeobox genes lends support to the hypothesis that a substantial fraction of genes methylated in human cancer are targets of the Polycomb complex.  相似文献   

16.
17.
Polycomb-mediated repression and DNA methylation are important epigenetic mechanisms of gene silencing. Recent evidence suggests a functional link between the polycomb repressive complex (PRC) and Dnmts in cancer cells. Here we provide evidence that Lsh, a regulator of DNA methylation, is also involved in normal control of PRC-mediated silencing during embryogenesis. We demonstrate that Lsh, a SNF2 homolog, can associate with some Hox genes and regulates Dnmt3b binding, DNA methylation, and silencing of Hox genes during development. Moreover, Lsh can associate with PRC1 components and influence PRC-mediated histone modifications. Thus Lsh is part of a physiological feedback loop that reinforces DNA methylation and silencing of PRC targets.  相似文献   

18.
Background  Trimethylation of histone H3 lysine 27 (H3K27me3) is a posttranslational modification that is highly correlated with genomic silencing. In gastric cancer (GC), global and gene-specific DNA methylation changes have been demonstrated to occur. However, to date, our understanding of the alterations in H3K27me3 in GC is incomplete. This study aimed to investigate the variations in H3K27me3 in CpG island regions between gastric cancerous and matched non-cancerous tissues. Methods  H3K27me3 variations were analyzed in eight pairs of GC and adjacent normal tissues, from eight GC patients, using a chromatin immunoprecipitation linked to the microarray (ChIP-chip) approach. ChIP–real time PCR was used to validate the microrray results. In addition, DNA methylation status also was further analyzed by methyl-DNA immunoprecipitation quantitative PCR. Results  One hundred twenty-eight (119 increased and 9 decreased H3K27me3) genes displaying significant H3K27me3 differences were found between GC and adjacent normal tissues. The results of ChIP–real time PCR coincided well with those of microarray. Aberrant DNA methylation can also be found on selected randomly positive genes (MMP15, UNC5B, SHH, AFF3, and RB1). Conclusion  Our study indicates that there are significant alterations of H3K27me3 in gastric cancerous tissues, which may help clarify the molecular mechanisms involved in the pathogenesis of GC. Such novel findings show the significance of H3K27me3 as a potential biomarker or promising target for epigenetic-based GC therapies. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. L. Zhang and K. Zhong contributed equally to this report.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号