首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 352 毫秒
1.
BACKGROUND: The aim of this study was to investigate the effects of red blood cell (RBC) transfusion on the hemorrheologic properties and microcirculatory hemodynamics in anemic hematology outpatients receiving 2 to 4 RBC units of either “fresh” (leukoreduced storage for less than 1 week) or “aged” (leukoreduced storage for 3‐4 weeks) RBCs. STUDY DESIGN AND METHODS: Measurements were performed before and 30 minutes after RBC transfusion in hematology outpatients. Leukoreduced RBC suspensions were stored in saline‐adenine‐glucose‐mannitol (SAGM) additive solution. Whole blood viscosity was measured using Couette low‐shear viscometry, RBC deformability and aggregability were measured using laser‐assisted optical rotational cell analysis, and microcirculatory density and perfusion were assessed using sidestream dark field imaging. RESULTS: One group of patients (n = 10) received a median (interquartile range) of 3 (2‐3) RBC bags that were stored for 7 (5‐7) days (fresh) and the other group of patients (n = 10) received 3 (3‐3) RBC bags that were stored for 23 (22‐28) days (aged). After transfusion of fresh versus aged RBCs, hematocrit increased to 32 ± 3% versus 31 ± 2% (p < 0.363), whole blood viscosity increased to 4.2 ± 0.4 Pa/sec versus 4.2 ± 0.6 Pa/sec (p < 0.912), RBC deformability index remained unaffected, RBC aggregability index increased to 55 ± 10 versus 55 ± 13 (p = 0.967), microcirculatory flow remained unaffected, and microcirculatory density increased to 19.3 ± 2.5 mm/mm2 versus 18.7 ± 1.9 mm/mm2 (p = 0.595), respectively. CONCLUSION: Storing leukoreduced SAGM‐suspended RBCs for 3 to 4 weeks did not affect their ability to improve hemorrheologic properties and microcirculatory hemodynamics in our small group of anemic hematology outpatients. Larger studies are needed to confirm this finding.  相似文献   

2.
BACKGROUND: Transmission of variant Creutzfeldt‐Jacob disease (vCJD) is a major concern in blood transfusion. The P‐Capt filter has been shown to remove around 4 log ID50 prion infectivity from prion‐spiked human red blood cells (RBCs). STUDY DESIGN AND METHODS: Two independent, single‐center, randomized, open‐label studies were designed to analyze the safety of P‐Capt–filtered RBCs. RBCs prepared from leukoreduced whole blood from 43 eligible subjects were randomly assigned to P‐Capt filtration and/or storage in plasma or SAGM and stored for 28 or 42 days. Stored RBCs were analyzed for in vivo 24‐hour recovery, hemolysis, metabolic variables, blood group antigen expression, neoantigen formation, and safety after autologous infusion. RESULTS: Mean P‐Capt filtration times for leukoreduced RBCs were 41 (SAGM) to 51 (plasma) minutes. Thirteen of 14 subjects receiving P‐Capt–filtered RBCs had 24‐hour RBC recoveries of 75% or more after 42‐day storage, with a mean hemolysis of less than 0.6%. No loss of RBC antigen expression or formation of neoantigens was observed. In both studies, RBCs had white blood cell counts of less than 1 × 106/unit after leukofiltration. P‐Capt prion filtration provided an additional greater than 0.8 log leukoreduction. No serious or unexpected adverse events were observed after infusion of P‐Capt–filtered full‐volume RBC units. CONCLUSIONS: P‐Capt–filtered, stored RBCs demonstrated acceptable viability and no detectable neoantigen expression, immunogenic responses. or safety issues after infusion of a complete unit. The additional filtration time and modest reduction in RBC content are within acceptable levels for implementation in countries with transfusion transmission of vCJD.  相似文献   

3.
BACKGROUND: Although a subset of recent studies have suggested that red blood cell (RBC) storage length is associated with adverse patient outcomes, others have shown no such relationship. Adults may be transfused with RBC units of different storage lengths, and existing studies do not take into consideration that fresh RBCs may alter responses to concurrently transfused stored RBCs. To test this possibility, we utilized a murine model and investigated transfusion outcomes of fresh, stored, or fresh‐plus‐stored RBCs. STUDY DESIGN AND METHODS: Fresh, 14‐day‐stored or fresh plus 14‐day‐stored leukoreduced RBCs from HOD‐transgenic donors (with RBC‐specific expression of hen egg lysozyme, ovalbumin, and human Duffyb) were transfused into naïve C57BL/6 recipients. Serum cytokines and anti‐HOD alloimmunization were evaluated after transfusion. RESULTS: In six of six experiments (n = 90 mice total), a proinflammatory serum cytokine storm of interleukin‐6, keratinocyte‐derived chemokine/CXCL1, and monocyte chemoattractant protein‐1 was observed in transfusion recipients of stored but not fresh RBCs, along with high degrees of anti‐HOD alloimmunization. However, concurrent transfusion of fresh HOD RBCs along with stored HOD RBCs significantly decreased these adverse outcomes (p < 0.05). CONCLUSIONS: These results are consistent with fresh murine HOD RBCs losing protective properties during storage, and introduce a previously unrecognized variable in RBC storage studies. If translatable to humans, uniform “old blood” groups may be needed in future clinical studies to more accurately investigate the biologic effects of older RBC units.  相似文献   

4.

Background

Small animal models have been previously used in transfusion medicine studies to evaluate the safety of blood transfusion products. Although there are multiple studies on the effects of blood banking practices on human red blood cells (RBCs), little is known about the effect of blood component manufacturing on the quality of rat RBCs.

Methods

Blood from Sprague-Dawley rats and human volunteers (n = 6) was collected in CPD anticoagulant, resuspended in SAGM or AS3, and leukoreduced. In vitro quality was analyzed, including deformability, aggregation, microvesiculation, phosphatidylserine (PS) expression, percent hemolysis, ATP, 2,3-DPG, osmotic fragility, and potassium concentrations.

Results

Compared to human RBCs, rat RBCs had decreased deformability, membrane rigidity, aggregability, and microvesiculation after component manufacturing process. Rat RBCs in SAGM showed higher hemolysis compared to human RBCs in SAGM (rat 4.70 ± 0.83% vs. human 0.34 ± 0.07%; p = 0.002). Rat RBCs in AS3 had greater deformability and rigidity than in SAGM. The number of microparticles/µl and the percentage PS expression were lower in rat RBCs in AS3 than in rat RBCs in SAGM. Hemolysis was also significantly lower in AS3 compared to SAGM (2.21 ± 0.68% vs. 0.87 ± 0.39%; p = 0.028).

Conclusion

Rat RBCs significantly differ from human RBCs in metabolic and membrane-related aspects. SAGM, which is commonly used for human RBC banking, causes high hemolysis and is not compatible with rat RBCs.Key Words: Red blood cells, Additive solutions, Blood manufacturing, Blood banking  相似文献   

5.
BACKGROUND: A semiautomated method of component production from whole blood was implemented at Canadian Blood Services. To assess safety of the new components, the frequency of adverse transfusion events (ATEs) to platelet components (PCs) and red blood cell (RBCs) produced before and after implementation of the new method was surveyed and compared. STUDY DESIGN AND METHODS: This retrospective, observational, noninferiority study was conducted in 12 sentinel hospitals across Canada. The control group received RBCs in additive solution‐3 (AS‐3) and platelet‐rich plasma (PRP)‐produced platelets (PLTs) for 3 to 11 months before implementation of semiautomated production, and the study group received RBCs in saline‐adenine‐glucose‐mannitol (SAGM) and buffy coat (BC)‐produced PLTs for 3 to 11 months after implementation. ATE definitions at each hospital and standard practice for reporting did not change between control and study periods. Data for analysis were obtained from databases and original report forms. RESULTS: The pooled risk ratio of a reaction to SAGM versus AS‐3 RBCs was 0.77 (95% confidence interval [CI], 0.66‐0.90), suggesting that SAGM products had significantly lower reaction rates than AS‐3 products (p < 0.01). Reported allergic reactions to RBCs decreased from 0.07% (AS‐3) to 0.04% (SAGM). For PLTs, the difference in reaction rates between BC and PRP was not significant (p = 0.37), and the pooled risk ratio of BC versus PRP was 1.14 (95% CI, 0.86‐1.50). CONCLUSION: The change in manufacturing method was associated with lower reaction rates to SAGM RBCs than to AS‐3 RBCs. Pooled BC PLTs were noninferior to random‐donor PRP PLTs with respect to ATEs.  相似文献   

6.
Meyer EK  Dumont DF  Baker S  Dumont LJ 《Transfusion》2011,51(7):1574-1579
BACKGROUND: Red blood cells (RBCs) are Food and Drug Administration (FDA)‐approved for 42‐day storage with the use of additive solutions (ASs). However, adenosine triphosphate (ATP) and 2,3‐diphosphoglycerate (2,3‐DPG) levels in the RBCs decline over this time. These constituents may be restored by treatment with rejuvenation (REJ) solutions. This study was done to assess the response capability of RBCs from 30 to 120 days of storage in three FDA‐licensed RBC storage solutions after incubation with a rejuvenating solution of pyruvate, inosine, phosphate, and adenine. STUDY DESIGN AND METHODS: Three units each of RBCs in approved AS (AS‐1 [Adsol, Fenwal, Inc.], AS‐3 [Nutricel, Medsep Corp.], and AS‐5 [Optisol, Terumo Corp.]) were stored under standard conditions at 1 to 6°C for up to 120 days. Aliquots (4 mL) on Days 30, 42, 60, 80, 100, and 120 (±2 days) were REJ by incubating with Rejuvesol (Encyte Corp.). Control untreated and REJ aliquots were extracted using perchloric acid and stored at ?80°C until assayed for 2,3‐DPG and ATP. RESULTS: RBCs responded to REJ by increasing DPG and ATP contents. The response declined linearly at 0.070 ± 0.008 µmol DPG/g hemoglobin (Hb)/day and 0.035 ± 0.004 µmol ATP/g Hb/day with no differences between ASs. CONCLUSION: We conclude that Rejuvesol is able to restore ATP and 2,3‐DPG levels in RBCs stored up to 120 days in AS. The response diminishes as storage time increases. This rejuvenation (REJ) capability does not seem useful for routine assessment of RBC anabolic capacity in research programs, but may be useful to the investigator when studying unique and novel treatment methods.  相似文献   

7.
BACKGROUND: Ex vivo storage of red blood cells (RBCS) for transfusions is associated with a “storage lesion,” which decreases RBC deformability and increases RBC adhesiveness to vascular endothelium. This may impair microcirculatory flow with deleterious effects on oxygen delivery after transfusion. Previous studies have shown that human RBCs adhere to endothelial monolayers in vitro with prolonged storage and is reduced by prestorage leukoreduction (LR). The objective of this study was to determine whether duration of RBC storage and LR influence RBC adhesion in vivo in capillaries. STUDY DESIGN AND METHODS: Rat RBCs were collected and stored in CPDA‐1 under standard blood bank conditions. Three RBC products were compared: 1) fresh RBCs, less than 24 hours of storage (n = 6); 2) nonleukoreduced (NLR) RBCs stored for 7 days (n = 6); and 3) prestorage LR RBCs stored for 7 days (n = 6). RBCs were labeled with fluorescein isothiocyanate (FITC) 24 hours before transfusion and reinjected in an isovolemic manner into healthy rats. The FITC‐labeled RBCs were visualized in the extensor digitorum longus muscle using intravital video microscopy (20× magnification). The number of RBCs adherent in capillaries was counted 1 hour after transfusion in 10 random fields and the median values were compared with one‐way analysis of variance. RESULTS: Stored RBCs showed increased levels of adherence in capillaries compared to their fresh counterparts (p < 0.05). Prestorage LR decreased RBC adherence to levels equivalent to those of fresh RBCs (p < 0.05 for stored LR vs. stored NLR). CONCLUSION: Rat RBCs stored under conditions that closely mimicked clinical transfusion adhere in capillaries. The decreased RBC adherence with LR suggest a direct effect of white blood cells or their byproducts on RBC deformability and/or adhesiveness to microvascular endothelium. Further study will examine the mechanism of adherence and the impact it has on microcirculatory flow and oxygen delivery in the critically ill host.  相似文献   

8.
BACKGROUND: The use of a functionally closed system (ACP215, Haemonetics) for the glycerolization and deglycerolization of red blood cell (RBC) units allows for prolonged postthaw storage. In this study, the postthaw quality of previously frozen, deglycerolized RBCs resuspended in saline-adenine-glucose-mannitol (SAGM) or additive solution AS-3 was investigated. STUDY DESIGN AND METHODS: Leukoreduced RBC units were frozen with 40 percent glycerol and stored at -80 degrees C for at least 14 days. The thawed units were deglycerolized with the ACP215, resuspended in SAGM or AS-3, and stored at 2 to 6 degrees C for up to 21 days. RESULTS: The mean +/- standard deviation in vitro freeze-thaw-wash recovery was 81 +/- 5 percent. During storage, hemolysis of deglycerolized cells remained below 0.8 percent for 2 days in SAGM and for 14 days in AS-3. This difference was explained by the protective effect of citrate, which is present in AS-3. Cells stored in AS-3 showed a lower glycolytic activity and a faster decline in adenosine 5'-triphosphate (ATP) than cells in SAGM. Increasing the internal pH of cells before storage in AS-3 by use of phosphate-buffered saline (PBS) in the deglycerolization procedure resulted in elevated lactate production and better maintenance of intracellular ATP content. After 3 weeks of storage, the ATP content of PBS-washed cells amounted to 2.5 +/- 0.5 micromol per g of hemoglobin (Hb), whereas for saline/glucose-washed cells this value was decreased to 1.0 +/- 0.3 micromol per g of Hb. CONCLUSIONS: Leukoreduced, deglycerolized RBCs can be stored for 48 hours in SAGM. Improved ATP levels during refrigerated storage can be observed with thawed cells, resuspended in AS-3, when PBS is used as a washing solution.  相似文献   

9.
BACKGROUND: This study was designed to assess the effects of changes in storage temperature of frozen RBCs such as might occur during a malfunction of the -80 degrees C mechanical freezer or during shipment. STUDY DESIGN AND METHODS: Fifteen participants donated blood for autologous transfusion of RBCs; all RBCs were frozen with 40-percent (wt/vol) glycerol. Five subjects received RBCs that were stored at -80 degrees C alone before transfusion. Five subjects received RBCs that were stored initially at -80 degrees C, then at -40 degrees C for 4 weeks, and finally at -80 degrees C before transfusion. Five subjects received RBCs that were stored at -80 degrees C, then at -20 degrees C for 2 weeks, and finally at -80 degrees C before transfusion. After deglycerolization, the RBCs were stored at 4 degrees C in a sodium chloride-glucose solution for 3 days before transfusion. RESULTS: No significant differences were observed in freeze-thaw recovery, freeze-thaw-wash recovery, 24-hour posttransfusion survival, index of therapeutic effectiveness, or RBC ATP levels. Greater hemolysis and reduced RBC K+ levels were observed in the units stored at -80 degrees C/-40 degrees C/-80 degrees C and in those stored at -80 degrees C/ -20 degrees C/-80 degrees C compared with the units stored at -80 degrees C alone, but these differences did not affect the 24-hour posttransfusion survival. CONCLUSIONS: The results of this study indicated that RBCs frozen with 40-percent (wt/vol) glycerol can be stored at -40 degrees C for 4 weeks or at -20 degrees C for 2 weeks between periods of frozen storage at -80 degrees C with satisfactory results.  相似文献   

10.
Removal of white cells from red cells by transfusion through a new filter   总被引:4,自引:0,他引:4  
The effectiveness of a new filter (RC100) for the preparation of white cell-depleted red cells (RBCs) at the bedside was evaluated in vitro and in vivo using three RBC products: standard RBC concentrate (CPDA units), RBCs suspended in saline-adenine-glucose-mannitol additive solution after the removal of plasma (SAGM units), and RBCs suspended in SAGM after the removal of plasma and buffy coat (SAGM-BC units). Median RBC recovery was at least 92 percent when 2 units were administered through one filter; median values for residual white cells and platelets were less than or equal to 20 × 10(6) and less than or equal to 2.5 × 10(9) per 2 units, respectively. The in vivo study was carried out in 80 multiply transfused patients with thalassemia, 35 of whom had experienced frequent nonhemolytic transfusion reactions when given standard or buffy coat-free RBCs. During the 6-month study, each patient was given two transfusions of each type of RBC product One febrile nonhemolytic transfusion reaction occurred in each of two patients receiving SAGM-BC units, but in no other case. If the flow rate is not reduced, the median transfusion time is 35 minutes per CPDA unit and 15 minutes per SAGM and SAGM-BC unit. It is concluded that the transfusion of RBCs through the RC100 is a simple and effective procedure to administer white cell-depleted RBCs prepared at the bedside.  相似文献   

11.
BACKGROUND: It has been suggested that red blood cell (RBC) senescence is accelerated under blood bank conditions, although neither protein profile of RBC aging nor the impact of additive solutions on it have been studied in detail. STUDY DESIGN AND METHODS: RBCs and vesicles derived from RBCs in both citrate‐phosphate‐dextrose (CPD)–saline‐adenine‐glucose‐mannitol (SAGM) and citrate‐phosphate‐dextrose‐adenine (CPDA) were evaluated for the expression of cell senescence markers (vesiculation, protein aggregation, degradation, activation, oxidation, and topology) through immunoblotting technique and immunofluorescence or immunoelectron microscopy study. RESULTS: A group of cellular stress proteins exhibited storage time– and storage medium–related changes in their membrane association and exocytosis. The extent, the rate, and the expression of protein oxidation, Fas oligomerization, caspase activation, and protein modifications in Band 3, hemoglobin, and immunoglobulin G were less conspicuous and/or exhibited significant time retardation under storage in CPD‐SAGM, compared to the CPDA storage. There was evidence for the localization of activated caspases near to the membrane of both cells and vesicles. CONCLUSIONS: We provide circumstantial evidence for a lower protein oxidative damage in CPD‐SAGM–stored RBCs compared to the CPDA‐stored cells. The different expression patterns of the senescence markers in the RBCs seem to be accordingly related to the oxidative stress management of the cells. We suggest that the storage of RBCs in CPD‐SAGM might be more alike the in vivo RBC aging process, compared to storage in CPDA, since it is characterized by a slower stimulation of the recognition signaling pathways that are already known to trigger the erythrophagocytosis of senescent RBCs.  相似文献   

12.
BACKGROUND: Current additive solutions (ASs) for red blood cells (RBCs) do not maintain constant 2,3‐diphosphoglycerate (DPG) and adenosine triphosphate (ATP) levels during cold storage. We have previously shown that with a new AS called phosphate‐adenine‐glucose‐guanosine‐gluconate‐mannitol (PAGGGM), both 2,3‐DPG and ATP could be maintained throughout storage for 35 days. STUDY DESIGN AND METHODS: In this study, the mechanism underlying the effect of PAGGGM on RBC storage was studied in more detail. By using double‐erythrocytapheresis units (leukoreduced), a direct comparison could be made between the current AS saline‐adenine‐glucose‐mannitol (SAGM) and the experimental solution PAGGGM. During cold storage, several in vitro characteristics were analyzed. RESULTS: In agreement with our previous findings with single RBCs, PAGGGM maintained 2,3‐DPG and ATP levels for 35 days of cold storage. Furthermore, glucose consumption and lactate production were higher in PAGGGM units during the first 21 days of cold storage. Fructose‐1,6‐diphophate and dihydroxyacetone phosphate levels were also increased during the first 21 days of storage in PAGGGM units. CONCLUSION: These results indicate that it is likely that phosphofructokinase (PFK) activity is enhanced in PAGGGM units relative to SAGM units. After 21 days, PFK activity also decreases in PAGGGM units, but sufficient metabolic reserve in these units prevents depletion of 2,3‐DPG and ATP.  相似文献   

13.
BACKGROUND: In transfusion medicine, frozen red blood cells (RBCs) are an alternative for liquid‐stored RBCs. Little is known about the rheologic properties (i.e., aggregability and deformability) of thawed RBCs. In this study the rheologic properties of high‐glycerol frozen RBCs and postthaw stored in saline‐adenine‐glucose‐mannitol medium were compared to those of conventionally liquid‐stored and fresh RBCs. STUDY DESIGN AND METHODS: Fresh RBCs were obtained from healthy volunteers. Leukoreduced liquid‐stored and thawed deglycerolized RBC units were obtained from the Sanquin Blood Bank. RBCs were tested for aggregability (aggregation index [AI]), deformability (elongation index [EI]), and various hematologic variables. RESULTS: The AI of thawed RBCs was reduced, compared to fresh and liquid‐stored RBCs (p < 0.05). The EI of stored RBCs was significantly enhanced over a shear stress range of 2.0 to 50 Pa compared to fresh RBCs (p < 0.05). No significant differences in EI between thawed and 21‐ or 35‐day liquid‐stored RBCs were observed. The osmotic fragility, hemolysis, mean cell volume, and mean cell hemoglobin concentration of thawed RBCs were markedly altered, compared to fresh and liquid‐stored RBCs (p < 0.05). The adenosine triphosphate (ATP) content of thawed RBCs was similar to 3‐ or 21‐day liquid‐stored and fresh RBCs. CONCLUSIONS: Thawed RBCs are more fragile than conventionally liquid‐stored and fresh RBC. The freeze‐thaw‐wash process, however, did not adversely affect the aggregability and deformability or the ATP content of thawed RBCs. Based on the rheologic properties, cryopreserved RBCs are a valuable alternative to liquid‐stored RBCs.  相似文献   

14.
BACKGROUND: In preliminary studies, anaerobic red blood cell (RBC) storage reduced oxidative damage and phosphatidylserine exposure while maintaining adenosine triphosphate levels. The purpose of this study was to compare the 24-hour recovery and life span of autologous RBCs stored 6 and 9 weeks using OFAS3 additive solution in an anaerobic environment, compared to control RBCs aerobically stored in AS-3 for 6 weeks.
STUDY DESIGN AND METHODS: Eight subjects were entered into a randomized, crossover study. Whole blood was collected from each subject twice separated by 12 weeks or more into CP2D and leukoreduced. Controls were stored in AS-3. Test units in OFAS3 were oxygen depleted with argon then stored 9 weeks in an anaerobic chamber at 1 to 6°C. At the end of each storage period, RBCs were labeled with 51Cr and 99mTc and reinfused to the subject following standard methods to determine double-label recovery and life span. Hypotheses tests were conducted using paired, repeated-measures analysis of variance.
RESULTS: Recovery for the anaerobically stored test RBC was significantly better than control at 6 weeks (p = 0.023). Test units at 9 weeks were not different than the 6-week control units (p = 0.73). Other in vitro measures of RBC characteristics followed the same trend. Two test units at 9 weeks had hemolysis of greater than 1 percent.
CONCLUSION: Anaerobically stored RBCs in OFAS3 have superior recovery at 6 weeks compared to the controls and equivalent recovery at 9 weeks with no change in life span. Anaerobic storage of RBCs may provide improved RBCs for transfusion at 6 weeks of storage and may enable extending storage beyond the current 42-day limit.  相似文献   

15.
BACKGROUND: The progressive deterioration of red blood cell (RBC) rheologic properties during refrigerated storage may reduce the clinical efficacy of transfusion of older units. STUDY DESIGN AND METHODS: This article describes the development of a microfluidic device designed to test the rheologic properties of stored RBCs by measuring their ability to perfuse an artificial microvascular network (AMVN) comprised of capillary‐size microchannels arranged in a pattern inspired by the real microvasculature. In the AMVN device, the properties of RBCs are evaluated by passing a 40% hematocrit suspension of RBCs through the network and measuring the overall perfusion rate. RESULTS: The sensitivity of the AMVN device to the storage‐induced change in rheologic properties of RBCs was tested using five prestorage leukoreduced RBC units stored in AS‐1 for 41 days. The AMVN perfusion rate for stored RBCs was 26 ± 4% (19%‐30%) lower than for fresh RBCs. Washing these stored RBCs in saline improved their performance by 41 ± 6% (the AMVN perfusion rate for washed stored RBCs was still 15 ± 2% lower than for fresh RBCs). CONCLUSIONS: The measurements performed using the AMVN device confirm a significant decline in the rheologic properties of RBCs in units nearing expiration and demonstrate the sensitivity of the device to these storage‐induced changes. The AMVN device may be useful for testing the effect of new storage conditions, additive solutions, and rejuvenation strategies on the rheologic properties of stored RBCs in vitro.  相似文献   

16.
BACKGROUND: It is unknown whether the use of volumetric infusion pumps for the transfusion of red blood cells (RBCs) or platelet (PLT) concentrates (PCs) affects the quality of the blood components. We therefore investigated the in vitro quality of these components after use of infusion pumps. STUDY DESIGN AND METHODS: Ten different volumetric infusion pumps were used to simulate transfusion with RBCs and PCs. To prevent donor‐dependent differences multiple units were pooled and divided into equal portions. The storage time of RBCs was 30 to 35 days (n = 10 experiments), and for PCs, either 2 (n = 5) or 7 days (n = 5). For RBCs an infusion rate of 100 or 300 mL/hr was used, and for PCs, 600 mL/hr. Transfusions without an infusion pump served as a reference. RESULTS: None of the infusion pumps induced an increase of free hemoglobin, annexin A5 binding, or formation of echinocytes in RBCs compared to reference units. In 2‐ and 7‐day‐old PCs no effect was shown on PLT concentration, annexin A5 binding, mean PLT volume, and morphology score compared to the reference. The CD62P expression of 2‐day‐old PCs was significantly lower after transfusion compared to the reference, that is, 11.7 ± 2.1% versus 8.1 ± 1.3% (p < 0.01). CONCLUSION: There was no adverse effect on the in vitro quality of RBCs or PCs after simulated transfusion using volumetric infusion pumps. A decrease in PLT activation was observed, which can probably be explained by capturing of activated or damaged PLTs in the 200‐µm filter present in the infusion system.  相似文献   

17.
BACKGROUND: The plasticizer di‐2‐ethylhexyl phthalate (DEHP) is a common component in medical plastics. There is motivation to replace this component; however, DEHP is necessary to prevent excessive hemolysis in stored red blood cells (RBCs). Our objective is to evaluate a candidate replacement plasticizer (Hexamoll, di‐isononyl cyclohexane‐1,2‐dicarboxylic acid [DINCH], BASF Corp.) compared to DEHP in an in vitro feasibility study. We hypothesize that the candidate will provide at least equivalent protection against hemolysis for RBCs stored for 42 days and periodic mixing of RBCs will add additional protection against hemolysis. STUDY DESIGN AND METHODS: Whole blood was collected into citrate‐phosphate‐dextrose; combined into pools of 2 ABO identical whole blood units; and divided, leukoreduced, centrifuged, and separated into plasma and RBCs. Additive solution was added, and the RBCs were stored for 42 days at 1 to 6°C. In three parts of this study, split pools were paired as DINCH‐polyvinyl chloride (PVC) with weekly mixing versus DINCH‐PVC with no mixing, DINCH‐PVC mixed versus DEHP‐PVC no mix, and DINCH‐PVC versus DEHP‐PVC with neither mixed. A standard panel of in vitro RBC characteristics was determined on Days 0 and 42. RESULTS: Mixing DINCH‐PVC weekly improved Day 42 hemolysis (0.36 ± 0.07% vs.0.56 ± 0.15%, p = 0.002), and mixed DINCH‐PVC bags were noninferior to unmixed DEHP‐PVC bags (p ≤ 0.05). DINCH‐PVC bags stored without weekly mixing were inferior to unmixed DEHP‐PVC bags for hemolysis on Day 42, although no individual bag exceeded 0.8% hemolysis. CONCLUSION: Periodic mixing of RBCs stored in DINCH‐PVC provides additional protection against hemolysis. Unmixed DINCH‐PVC bags were inferior to DEHP‐PVC bags for prevention of hemolysis, but remain a candidate for replacement DEHP in RBC storage bags.  相似文献   

18.
BACKGROUND: Red blood cell (RBC) alloimmunization can be a serious complication of blood transfusion, but factors influencing the development of alloantibodies are only partially understood. Within FDA‐approved time limits, RBCs are generally transfused without regard to length of storage. However, recent studies have raised concerns that RBCs stored for more than 14 days have altered biologic properties that may affect medical outcomes. To test the hypothesis that storage time alters RBC immunogenicity, we utilized a murine model of RBC storage and alloimmunization. STUDY DESIGN AND METHODS: Blood from transgenic HOD donor mice, which express a model antigen (hen egg lysozyme [HEL]) specifically on RBCs, was filter leukoreduced and stored for 14 days under conditions similar to those used for human RBCs. Fresh or 14‐day‐stored RBCs were transfused into wild‐type recipients. The stability of the HOD antigen and posttransfusion RBC survival were analyzed by flow cytometry. RBC alloimmunization was monitored by measuring circulating anti‐HEL immunoglobulin levels. RESULTS: Transfusion of 14‐day‐stored, leukoreduced HOD RBCs resulted in 10‐ to 100‐fold higher levels of anti‐HEL alloantibodies as detected by enzyme‐linked immunosorbent assay than transfusion of freshly collected, leukoreduced RBCs. RBC expression of the HOD antigen was stable during storage. CONCLUSIONS: These findings demonstrate that HOD murine RBCs become more immunogenic with storage and generate the rationale for clinical trials to test if the same phenomenon is observed in humans. Length of storage of RBCs may represent a previously unappreciated variable in whether or not a transfusion recipient becomes alloimmunized.  相似文献   

19.
BACKGROUND: Misuse of autologous blood transfusions in sports remains undetectable. The metabolites of the plasticizer di‐(2‐ethylhexyl)phthalate (DEHP) were recently proposed as markers of blood transfusion, based on high urinary concentrations of these compounds observed in patients subjected to blood transfusion. This study evaluates DEHP metabolites in urine for detecting autologous blood transfusion. STUDY DESIGN AND METHODS: One blood bag was drawn from moderately trained subjects and the red blood cells (RBCs) were reinfused after different storage periods. Group 1 (12 subjects) was reinfused after 14 days, and Group 2 (13 subjects), after 28 days of storage. Urine samples were collected before and after reinfusion for determination of the concentrations of three DEHP metabolites, mono‐(2‐ethylhexyl)phthalate, mono‐(2‐ethyl‐5‐hydroxyhexyl)phthalate, and mono‐(2‐ethyl‐5‐oxohexyl)phthalate. RESULTS: Concentrations of DEHP metabolites on the days before reinfusion were in agreement with those described after common environmental exposure. A few hours after the reinfusion a significant increase was observed for all metabolites in all volunteers. Concentrations 1 day later were still higher (p < 0.05) than before reinfusion. Variations in urine dilution supported normalization by specific gravity. Concentrations of DEHP metabolites tended to be higher after longer storage times of RBCs. CONCLUSION: Autologous transfusion with RBCs stored in plastic bags provokes an acute increase in the urinary concentrations of DEHP metabolites, allowing the detection of this doping malpractice. The window of detection is approximately 2 days. The method might be applied to urine samples submitted for antidoping testing.  相似文献   

20.
BACKGROUND: RBC ATP concentrations are the most important correlate of RBC viability. Tests were performed to determine whether increased AS volume, pH, and phosphate content increased stored RBC ATP concentrations. STUDY DESIGN AND METHODS: In three studies, packed RBCs were pooled in groups of 3 or 4 units and realiquoted as combined units to reduce intradonor differences. Pooled units were stored in the licensed ASs, AS-1 or AS-5, which contain saline, adenine, glucose, and mannitol (SAGM), or in experimental ASs (EASs) containing SAGM and disodium phosphate. Ten pools were stored in AS-1 at RBC concentrations equivalent to 100, 200, or 300 mL of AS. Six pools were stored in 100, 200, 300, or 400 mL volumes of EAS-61. Ten pools were stored in 100 mL of AS-5, 200 mL of EAS-61, or 300 mL of EAS-64. RBC ATP concentration and other measures of RBC metabolism and function were measured weekly. RESULTS: RBC ATP concentrations decreased sooner with storage in increasing volumes of AS-1. In EAS-61 and EAS-64, RBC ATP concentrations initially increased and stayed elevated longer with increasing AS volume. CONCLUSIONS: The addition of disodium phosphate to SAGM AS increases the RBC ATP concentrations. Reducing storage Hct appears to have a separate beneficial effect in reducing hemolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号