首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Acute infections provoke insulin resistance. These experiments were designed to study the severity, duration, and mechanisms of insulin resistance caused by acute infections. First, we studied eight patients [mean age, 29 +/- 11 (+/- SD) yr; body mass index, 23 +/- 2 kg/m2] with acute viral or bacterial infections during the acute stage of their infection and 1-3 months after recovery. The rate of glucose infusion required to maintain normoglycemia during hyperinsulinemia (approximately 500 pmol/L) was used as a measure of insulin action. During infection, the glucose requirements in the patients [21 +/- 2 (+/- SE) mumol/kg.min] were 52% less than those in weight- and age-matched normal subjects (44 +/- 2 mumol/kg.min; P less than 0.001). Compared to data from a large group of normal subjects, the resistance to insulin during infection corresponded to that predicted for a weight-matched 84-yr-old normal person or an age-matched obese person with a body mass index of 37 kg/m2. One to 3 months after recovery, the patients' glucose requirements were still significantly lower (37 +/- 3 mumol/kg.min; P less than 0.02) than those in matched normal subjects. To assess the mechanism of insulin resistance, seven additional patients were studied during the acute stage of infection using a low dose insulin infusion (plasma insulin, 215 pmol/L) combined with a [3-3H]glucose infusion and indirect calorimetry. Again, the glucose requirements were 59% lower in the patients (14 +/- 2 mumol/kg.min) than in matched normal subjects (34 +/- 2 mumol/kg.min; P less than 0.001). This decrease was due to a defect in glucose utilization (18 +/- 2 vs. 37 +/- 1 mumol/kg.min; P less than 0.001, patients vs. normal subjects) rather than impaired suppression of glucose production (4 +/- 1 vs. 3 +/- 1 mumol/kg.min, respectively). Total carbohydrate oxidation rates were similar in both groups (16 +/- 2 vs. 14 +/- 1 mumol/kg.min, respectively), whereas the apparent glucose storage was neglible in the patients (2 +/- 1 mumol/kg.min) compared to that in normal subjects (22 +/- 2 mumol/kg.min; P less than 0.001). We conclude that acute infections induce severe and long-lasting insulin resistance, which is localized to glucose-utilizing pathways. The rate of carbohydrate oxidation is normal during infections, whereas the rate of nonoxidative glucose disposal, as determined by indirect calorimetry, is nearly zero. The apparent blockade in glucose storage could result from diminished glycogen synthesis, accelerated glycogenolysis, or both.  相似文献   

2.
As muscle wasting and resistance to insulin-mediated glucose utilization are features of Cushing's syndrome (CS), we examined glucose and amino acid metabolism in six patients with CS and six normal subjects before and during euglycemic hyperinsulinemic clamp studies (plasma insulin concentrations, approximately 0.36, approximately 0.65, and approximately 10.05 mmol/L). The two groups had similar body mass index values. In the postabsorptive state, leucine and alpha-ketoisocaproate (KIC) rates of appearance (Ra), KIC oxidation, and nonoxidized leucine-carbon flux, an index of leucine entering protein (Leu----P), were comparable in CS patients [2.38 +/- 0.14 (+/- SE), 0.22 +/- 0.04, and 2.16 +/- 0.12 mumol/kg.min) and in normal subjects (2.73 +/- 0.25, 0.17 +/- 0.02, and 2.59 +/- 0.22 mumol/kg.min). During the euglycemic clamp studies the leucine and KIC Ra values, KIC oxidation, and Leu----P decreased to a similar extent in both groups. In contrast, insulin-mediated glucose utilization was impaired in the CS patients at each clamp step (P less than 0.05). In summary, postabsorptive whole body leucine metabolism is normal in patients with CS and is normally suppressed by hyperinsulinemia, indicating a dissociation in insulin sensitivity with respect to glucose and amino acid metabolism.  相似文献   

3.
We tested whether FFAs influence glucose uptake by human peripheral tissues in vivo. Whole body glucose uptake, FFA turnover, energy expenditure and substrate oxidation rates, forearm glucose and FFA uptake, and nonoxidative glycolysis (net release of alanine and lactate) were measured in 14 normal male subjects in the basal state (0-240 min; serum insulin, approximately 5 microU/mL) and during euglycemic hyperinsulinemia (240-360 min; approximately 75 microU/mL) on 2 separate occasions, once during elevation of plasma FFA by infusions of Intralipid and heparin (plasma FFA, 4.6 +/- 0.1 vs. 4.2 +/- 0.4 mmol/L; 180-240 vs. 300-360 min) and once during infusion of saline (plasma FFA, 0.50 +/- 0.07 vs. 0.02 +/- 0.07 mmol/L, respectively). In the basal state, whole body glucose disposal remained unchanged, but the fate of glucose was significantly altered toward diminished oxidation (7.3 +/- 0.8 vs. 5.6 +/- 0.5 mumol/kg.min; P less than 0.05, saline vs. Intralipid) and increased nonoxidative glycolysis (P less than 0.05). Elevation of plasma FFA significantly increased forearm glucose uptake (1.0 +/- 0.6 vs. 2.4 +/- 0.7 mumol/kg.min; P less than 0.01) and nonoxidative glycolysis (net release of alanine and lactate, 0.4 +/- 0.5 vs. 1.2 +/- 0.4 mumol glucose equivalents/kg.min; P less than 0.05). During hyperinsulinemia, FFA decreased whole body glucose disposal (38 +/- 2 vs. 30 +/- 3 mumol/kg.min; P less than 0.001) due to a decrease in glucose oxidation (13 +/- 1 vs. 7 +/- 1 mumol/kg.min; P less than 0.01, saline vs. Intralipid), and forearm glucose uptake (31 +/- 4 vs. 24 +/- 6 mumol/kg.min; P less than 0.01, saline vs. Intralipid). Under these conditions, 7 +/- 2% and 3 +/- 1% (P less than 0.05) of forearm glucose uptake could be accounted for by nonoxidative glycolysis in the Intralipid and saline studies, respectively. In summary, 1) elevation of plasma FFA concentrations suppresses the rate of carbohydrate oxidation to a rate that, both basally and during hyperinsulinemia, is similar to that reported for insulin-independent glucose oxidation in the brain; 2) basally, forearm glucose uptake is increased by FFA; and 3) during hyperinsulinemia, FFA inhibit glucose uptake by forearm tissues. We conclude that the interaction between glucose and FFA fuels in human forearm tissues is dependent upon the ambient insulin concentration; the increase in basal glucose uptake would be compatible with the increase need of glucose for FFA reesterification; the decrease in insulin-stimulated glucose uptake supports operation of the glucose-FFA cycle in human forearm tissues.  相似文献   

4.
The rate of lipolysis (glycerol Ra), gluconeogenesis from glycerol, and its contribution to overall hepatic glucose production (glucose Ra) were determined in 10 patients with noninsulin-dependent diabetes mellitus (NIDDM) [body mass index (BMI) 27.2 +/- 1.0 kg/m2, fasting plasma glucose 10.3 +/- 1.2 mmol/L], and in 6 matched control subjects (BMI 27.3 +/- 1.1 kg/m2, fasting plasma glucose 5.3 +/- 0.3 mmol/L) using infusions of [3-3H]glucose (0-600 min) and [U-14C]glycerol (360-600 min). Glycerol Ra was increased in the patients with NIDDM (120 +/- 16 mumol/m2.min) compared to the normal subjects (84 +/- 9 mumol/m2.min, P less than 0.05). Gluconeogenesis from glycerol was 1.7-fold higher in the patients (96 +/- 16 mumol/m2.min) than in the normal subjects (56 +/- 10 mumol/m2.min, P less than 0.05), and explained 9 +/- 1% and 7 +/- 1% (NS) of total glucose Ra in patients with NIDDM and normal subjects, respectively. To determine whether these abnormalities are more pronounced in overweight patients with NIDDM, glucose and glycerol Ra were also determined in 5 obese patients with NIDDM (BMI 36.4 +/- 1.0 kg/m2, fasting plasma glucose 11.3 +/- 1.3 mmol/L). Glycerol Ra (154 +/- 26 mumol/m2.min) was again higher than in the normal subjects (P less than 0.05) but not different from that in the less obese patients with NIDDM. The rate of gluconeogenesis from glycerol (159 +/- 20 mumol/m2.min) was significantly higher in the obese than in the less obese patients with NIDDM (P less than 0.05) but its contribution to total glucose Ra (10 +/- 1%) was similar to that in the less obese patients with NIDDM. When all data were analyzed together, gluconeogenesis from glycerol (r = 0.57, P less than 0.01) but not lipolysis (r = 0.02, NS) correlated with the percentage of lipolysis diverted toward gluconeogenesis suggesting that the rate of gluconeogenesis from glycerol is regulated by intrahepatic mechanisms rather than by glycerol availability. Neither the rate of lipolysis nor the rate of glycerol gluconeogenesis correlated with BMI, serum triglyceride, or insulin concentrations. We conclude that gluconeogenesis from glycerol is increased in patients with NIDDM. This increase appears to be the consequence of both accelerated lipolysis and increased intrahepatic conversion of glycerol to glucose.  相似文献   

5.
Type 2 diabetes is an insulin-resistant state characterized by hyperinsulinemia and accelerated atherosclerosis. In vitro and in vivo studies in rodents have suggested that nitric oxide generation plays an important role in glucose transport and insulin action. We determined nitric oxide synthase (NOS) activity in skeletal muscle of 10 type 2 diabetic (hemoglobin A(1C) = 6.8 +/- 0.1%) and 11 control subjects under basal conditions and during an 80 mU/m(2).min euglycemic insulin clamp performed with vastus lateralis muscle biopsies before and after 4 h of insulin. In diabetics, insulin-stimulated glucose disposal (Rd) was reduced by 50%, compared with controls (5.4 +/- 0.3 vs. 10.4 +/- 0.5 mg/kg.min, P < 0.01). Basal NOS activity was markedly reduced in the diabetic group (101 +/- 33 vs. 457 +/- 164 pmol/min.mg protein, P < 0.05). In response to insulin, NOS activity increased 2.5-fold in controls after 4 h (934 +/- 282 pmol/min.mg protein, P < 0.05 vs. basal), whereas insulin failed to stimulate NOS activity in diabetics (86 +/- 28 pmol/min.mg protein, P = NS from basal). Basal NOS protein content in muscle was similar in controls and diabetics and did not change following insulin. In controls, insulin-stimulated NOS activity correlated inversely with fasting plasma insulin concentration (r = -0.58, P = 0.05) and positively with Rd (r = 0.71, P = 0.03). In control and diabetic groups collectively, Rd correlated with insulin-stimulated NOS activity (r = 0.52, P = 0.02). We conclude that basal and insulin-stimulated muscle NOS activity is impaired in well-controlled type 2 diabetic subjects, and the defect in insulin-stimulated NOS activity correlates closely with the severity of insulin resistance. These results suggest that impaired NOS activity may play an important role in the insulin resistance in type 2 diabetic individuals.  相似文献   

6.
To examine whether an increase in the glucagon concentration is essential for restoring hepatic glucose output following moderate decrements in blood glucose, we used isotope dilution techniques in trained conscious dogs (n = 5) to measure glucose production (Ra) and glucose utilization (Rd) during mild hyperinsulinemia (19 +/- 1 mU/l). In Study A, when insulin was infused to raise plasma insulin (IRI) from 13 +/- 2 to 19 +/- 1 mU/l, basal glucose (93 +/- 3 mg/dl) fell at a rate of 0.37 +/- 0.06 mg/dl/min over 30 min. Ra fell from 2.8 +/- 0.4 mg/kg/min by 0.5 +/- 0.1 mg/kg/min at 20 min (P less than 0.05), but recovered to baseline by 30 min; glucagon (IRG) fell transiently but returned to baseline by 45 min. In Study B, endogenous secretion of IRI and IRG was suppressed by infusion of somatostatin (0.2 microgram/kg/min), while peripheral concentrations were maintained constant by replacing glucagon (0.65 ng/kg/min) and insulin (0.225 mU/kg/min). Steady-state baseline plasma IRI, IRG, glucose and glucose turnover rates were similar to Study A; hyperinsulinemia was then induced as in Study A. Glucose fell by 0.78 +/- 0.19 mg/dl/min over 30 min and, as in Study A, Ra decreased transiently, but recovered to baseline by 30 min. The restoration of Ra occurred in study B despite constant IRG, and preceded later increments in cortisol and catecholamines at 60-90 min. Thus, in both studies A and B, Ra recovered to baseline without an increase in IRG and before the onset of significant hypoglycemia (glucose 83 +/- 1 and 70 +/- 1 mg/dl).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Capillary recruitment in muscles, induced by insulin, has been proposed to be impaired in insulin-resistant states. To elucidate the mechanisms regulating capillary transport of insulin and glucose in type 2 diabetes, we directly calculated the permeability-surface area product (PS) for glucose and insulin in muscle. Intramuscular microdialysis in combination with the forearm model and blood flow measurements was performed in type 2 diabetic male subjects and age- and weight-matched controls during a euglycemic-hyperinsulinemic clamp. During steady-state hyperinsulinemia, arterial plasma glucose was 5.8 +/- 0.1 and 5.9 +/- 0.1 mmol/liter [not significant (NS)] in the obese and type 2 diabetic subjects, respectively. Venous glucose was significantly lower in the obese group compared with the type 2 diabetic subjects, 4.3 +/- 02 vs. 4.9 +/- 0.2 mmol/liter (P < 0.05). Arterial insulin was 1494 +/- 90 and 1458 +/- 132 pmol/liter (NS) in the obese and type 2 diabetic subjects, respectively. The glucose infusion rate during steady-state hyperinsulinemia was 10.8 +/- 0.8 and 7.2 +/- 0.4 mg/kg.min in the obese and diabetic subjects, respectively (P < 0.01). Interstitial-arterial lactate difference was significantly higher in the obese subjects. During steady-state hyperinsulinemia, PS for glucose was significantly higher in the obese subjects (1.1 +/- 0.2 vs. 0.5 +/- 0.1 ml/min.100 g, P < 0.05). Glucose uptake was also significantly higher in the obese subjects (3.0 +/- 0.4 vs. 1.8 +/- 0.3 mumol/min.100 g, P < 0.05). During steady-state hyperinsulinemia, PS for insulin was 0.4 +/- 0.1 and 0.3 +/- 0.1 ml/min.100 g in the obese and diabetic subjects, respectively (NS), and insulin uptake was 258 +/- 54 vs. 168 +/- 24, respectively (NS). When both subject groups were pooled together, a significant correlation was found between PS for glucose and glucose uptake during steady-state hyperinsulinemia. Skeletal muscle blood flow during steady-state hyperinsulinemia was 1.9 +/- 0.2 and 2.3 +/- 0.4 ml/100 g.min in the obese and diabetic subjects, respectively (NS). Blood flow did not increase during hyperinsulinemia in either of the two groups. The present data clearly show that PS for glucose is subnormal during steady-state hyperinsulinemia in insulin-resistant type 2 diabetic subjects. Furthermore, there was a close correlation between glucose uptake and PS for glucose but not between blood flow and PS. We suggest that PS is a more sensitive marker for insulin resistance during hyperinsulinemia than limb flow. The lower capacity for transcapillary passage found in the type 2 diabetic subjects is suggested to further aggravate insulin resistance.  相似文献   

8.
The characteristics of insulin resistance, in Turner syndrome are still unclear. For this purpose in 4 patients with Turner syndrome and in 8 control females we performed an euglycaemic hyperinsulinemic glucose clamp at the following insulin infusion rates (50 and 100 mU/Kg x h), each period lasting 120 min. A simultaneous infusion of D-3-H-glucose allowed us to determine in basal conditions and during the clamp hepatic glucose output and glucose disappearance rate (Rd). In basal conditions plasma glucose (4.8 +/- 0.1 vs 4.6 +/- 0.2 mmol/1 p = NS) and plasma glucagon (102 +/- 7.5 vs 112 +/- 11.3 ng/l p = NS) were similar in both groups despite higher plasma insulin (19 +/- 1.8 vs 7 +/- 2.2 mU/l p less than 0.05) and C-peptide (1.0 less than 0.1 vs 0.8 +/- 0.06 pmol/l p less than 0.05) levels in patients with Turner syndrome. In the last 60 min of the lower insulin infusion rate glucose infusion rate (4.1 +/- 0.3 vs 2.9 +/- 0.4 mg/Kg x min p less than 0.05) and glucose disappearance rate (3.89 +/- 0.12 vs 2.63 +/- 0.11 mg/Kg x min p less than 0.01) were significantly reduced in patients with Turner. On the contrary hepatic glucose output was similarly suppressed in both groups of subjects. Doubling the insulin infusion rate, we obtained similar results in patients and controls respectively. So we conclude that in Turner syndrome the insulin resistance state is mainly due to a muscular receptor defect.  相似文献   

9.
This study was designed to evaluate whether chronic deficiency of pancreatic glucagon in patients with diabetes secondary to total pancreatectomy (PX) is responsible for the commonly observed increase in blood concentrations of gluconeogenic precursors (alanine, lactate, and pyruvate). Seven PX patients were studied on two different occasions: 1) after an overnight insulin infusion (0.15 mU/kg.min) and 2) after an overnight insulin/glucagon infusion (2 ng/kg.min). Five type 1 diabetic individuals were also studied after a similar overnight insulin infusion. In the morning of each study day, [6-3H]glucose and [1-14C]glucose were rapidly injected for determination of total glucose turnover rate [( 6-3H]glucose) and glucose recycling (difference between [6-3H]glucose and [1-14C]glucose turnover rate). Basal concentrations of hormones, glucose, and intermediary metabolites were measured. After overnight insulin infusion, plasma glucose concentration (3.8 +/- 0.4 vs. 6.8 +/- 1.4 mmol/L), turnover rate (8.4 +/- 1.0 vs. 13.7 +/- 1.9 mumol/kg.min), and percent glucose recycling (5.6 +/- 3.9% vs. 19.0 +/- 3.8%) were significantly lower in PX patients than in type 1 diabetic individuals (P less than 0.05-0.01). On the contrary, blood alanine (459 +/- 93 vs. 263 +/- 28 mumol/L), lactate (1157 +/- 109 vs. 818 +/- 116 mumol/L), and pyruvate (71 +/- 8 vs. 42 +/- 3 mumol/L) were significantly higher than those values in type 1 diabetic patients (P less than 0.05-0.01). Insulin/glucagon infusion increased plasma glucose concentration (8.7 +/- 1.5 mmol/L), total turnover (18.1 +/- 1.7 mumol/kg.min), and percent recycling (20.4 +/- 6.6%) to values similar to those in type 1 diabetic subjects. The change in glucose metabolism was associated with a significant drop in blood concentrations of alanine (179 +/- 24 mumol/L), lactate (611 +/- 25 mumol/L), and pyruvate (30 +/- 3 mumol/L; all P less than 0.05-0.01 vs. insulin infusion alone). In PX patients, the glucose turnover rate was inversely correlated with blood concentrations of both alanine (r = 0.67) and lactate (r = 0.71; P less than 0.01). In conclusion, chronic deficiency of pancreatic glucagon in PX patients 1) is associated with a decreased rate of glucose turnover, 2) causes a marked impairment in glucose recycling (an index of the activity of hepatic gluconeogenesis), and 3) increases blood concentrations of alanine, lactate, and pyruvate. All abnormalities are reversed by glucagon.  相似文献   

10.
Peripheral and hepatic insulin antagonism in hyperthyroidism   总被引:3,自引:0,他引:3  
Eight hyperthyroid and eight normal subjects underwent 2-h oral glucose tolerance tests (OGTT) and euglycemic clamp studies to assess the presence of peripheral and hepatic insulin antagonism in hyperthyroidism. Although the mean total glucose area during the OGTT was similar in the hyperthyroid patients and normal subjects [16.4 +/- 0.8 (+/- SE) vs. 15.8 +/- 0.7 mmol/L.h], the mean insulin area was significantly elevated in the hyperthyroid group (1413 +/- 136 vs. 1004 +/- 122 pmol/L.h; P less than 0.05). Basal hepatic glucose production was measured during the second hour of a primed [3-3H]glucose infusion. A two-insulin dose euglycemic clamp study with [3-3H]glucose and somatostatin (500 micrograms/h) was carried out during the next 6 h. The insulin infusion rate was 0.05 mU/kg.min during the third, fourth, and fifth hours and 0.60 mU/kg.min during the sixth, seventh, and eighth hours. Hepatic glucose production and glucose utilization were measured during the final 0.5 h of each clamp period. Serum C-peptide concentrations were measured in the initial sample and in the last sample of each clamp period. The mean equilibrium serum insulin concentrations were similar in both groups during the final 0.5 h of the low (90 +/- 8 vs. 79 +/- 6 pmol/L) and high (367 +/- 11 vs. 367 +/- 15 pmol/L) insulin infusion rates. Basal serum C-peptide levels were significantly increased in the hyperthyroid patients (596 +/- 17 vs. 487 +/- 43 pmol/L; P less than 0.05) but were suppressed equally in both groups at the end of both clamp periods. The MCRs of insulin were similar in the hyperthyroid and normal subjects during the low (6.7 +/- 1.1 vs. 5.6 +/- 0.5 mL/kg.min) and high (11.9 +/- 0.4 vs. 12.1 +/- 0.5 mL/kg.mm) insulin infusion rates. Glucose production was significantly increased in the hyperthyroid patients during the basal state (17.6 +/- 0.9 vs. 11.5 +/- 0.5 mumol/kg.min; P less than 0.001) and remained elevated during the final 0.5 h of the low (12.1 +/- 1.1 vs. 5.9 +/- 1.7; P less than 0.01) and high (3.2 +/- 1.2 vs. 0.5 +/- 0.3; P less than 0.05) insulin infusion rates. Peripheral insulin action, assessed by Bergman's sensitivity index, was significantly decreased in the hyperthyroid patients (7.4 +/- 2.2 vs. 15.6 +/- 2.1 L/kg min-1/pmol/L; P less than 0.02). In conclusion, hyperthyroidism is characterized by 1) hyperinsulinemia after oral glucose loading, 2) increased basal hepatic glucose production, 3) impairment of insulin-mediated suppression of hepatic glucose production, and 4) antagonism to insulin-stimulated peripheral glucose utilization.  相似文献   

11.
Tissue sensitivity to insulin (euglycemic insulin clamp technique), hepatic glucose production (3-[3H]glucose infusion) and insulin binding to erythrocyte receptors were studied in 14 newly diagnosed type 1 diabetic patients after the disappearance of ketosis and after 3 months of insulin therapy. The control group consisted of 14 normal subjects. During the two insulin clamp studies, plasma glucose in the diabetic patients was maintained at 5.0 +/- 0.04 (SEM) mmol/liter and 4.9 +/- 0.05 mmol/liter, with corresponding steady state free insulin levels of 90 +/- 4 mU/liter, and 67 +/- 6 mU/liter (P less than 0.02) during the first and second study, respectively. The decline in free insulin levels was due to the development of insulin antibodies during insulin therapy (10 +/- 0.1% vs. 18 +/- 2%, P less than 0.001, serum insulin-binding capacity during the first and second study, respectively). In the normal subjects, steady state plasma glucose and insulin levels were 4.9 +/- 0.1 mmol/liter and 89 +/- 4 mU/liter, respectively. The rate of glucose metabolism (M) in the diabetic patients during the first study (5.13 +/- 0.65 mg/kg X min) was 35% lower than that in the normal subjects (7.94 +/- 0.50 mg/kg X min, P less than 0.005). After 3 months of insulin therapy, M increased by 35% to 6.92 +/- 0.58 mg/kg X min, which was comparable to that in the normal subjects. To compensate for the difference in plasma free insulin levels, we calculated an index for insulin sensitivity by dividing M by the ambient insulin concentration (I). During the 3 months of insulin therapy, M/I rose 2-fold to 11.63 +/- 1.10 mg/kg X min per mU insulin/liter X 100, which was similar to that in normal subjects (9.16 +/- 0.67 mg/kg X min per mU insulin/liter X 100). Five diabetic patients had a partial clinical remission, as determined by normal fasting C-peptide levels. In these patients, insulin sensitivity was 35-50% greater than in those who failed to have a remission (P less than 0.05). Basal hepatic glucose production in the diabetic patients during the first study (2.78 +/- 0.14 mg/kg X min) was 56% higher than in the normal subjects (1.78 +/- 0.04 mg/kg X min, P less than 0.001), and remained unchanged during insulin therapy. During the hyperinsulinemia induced by the clamp, hepatic glucose production was totally suppressed in both the diabetic and control subjects.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
To investigate the effect of a sustained (7-d) decrease in plasma free fatty acid (FFA) concentration in individuals genetically predisposed to develop type 2 diabetes mellitus (T2DM), we studied the effect of acipimox, a potent inhibitor of lipolysis, on insulin action and adipocytokine concentrations in eight normal glucose-tolerant subjects (aged 40 +/- 4 yr, body mass index 26.5 +/- 0.8 kg/m(2)) with at least two first-degree relatives with T2DM. Subjects received an oral glucose tolerance test (OGTT) and 120 min euglycemic insulin clamp (80 mU/m(2).min) with 3-[(3)H] glucose to quantitate rates of insulin-mediated whole-body glucose disposal (Rd) and endogenous (primarily hepatic) glucose production (EGP) before and after acipimox, 250 mg every 6 h for 7 d. Acipimox significantly reduced fasting plasma FFA (515 +/- 64 to 285 +/- 58 microm, P < 0.05) and mean plasma FFA during the OGTT (263 +/- 32 to 151 +/- 25 microm, P < 0.05); insulin-mediated suppression of plasma FFA concentration during the insulin clamp also was enhanced (162 +/- 18 to 120 +/- 15 microm, P < 0.10). Following acipimox, fasting plasma glucose (5.1 +/- 0.1 vs. 5.2 +/- 0.1 mm) did not change, whereas mean plasma glucose during the OGTT decreased (7.6 +/- 0.5 to 6.9 +/- 0.5 mm, P < 0.01) without change in mean plasma insulin concentration (402 +/- 90 to 444 +/- 102 pmol/liter). After acipimox Rd increased from 5.6 +/- 0.5 to 6.8 +/- 0.5 mg/kg.min (P < 0.01) due to an increase in insulin-stimulated nonoxidative glucose disposal (2.5 +/- 0.4 to 3.5 +/- 0.4 mg/kg.min, P < 0.05). The increment in Rd correlated closely with the decrement in fasting plasma FFA concentration (r = -0.80, P < 0.02). Basal EGP did not change after acipimox (1.9 +/- 0.1 vs. 2.0 +/- 0.1 mg/kg.min), but insulin-mediated suppression of EGP improved (0.22 +/- 0.09 to 0.01 +/- 0.01 mg/kg.min, P < 0.05). EGP during the insulin clamp correlated positively with the fasting plasma FFA concentration (r = 0.49, P = 0.06) and the mean plasma FFA concentration during the insulin clamp (r = 0.52, P < 0.05). Plasma adiponectin (7.1 +/- 1.0 to 7.2 +/- 1.1 microg/ml), resistin (4.0 +/- 0.3 to 3.8 +/- 0.3 ng/ml), IL-6 (1.4 +/- 0.3 to 1.6 +/- 0.4 pg/ml), and TNFalpha (2.3 +/- 0.3 to 2.4 +/- 0.3 pg/ml) did not change after acipimox treatment.We concluded that sustained reduction in plasma FFA concentration in subjects with a strong family history of T2DM increases peripheral (muscle) and hepatic insulin sensitivity without increasing adiponectin levels or altering the secretion of other adipocytokines by the adipocyte. These results suggest that lipotoxicity already is well established in individuals who are genetically predisposed to develop T2DM and that drugs that cause a sustained reduction in the elevated plasma FFA concentration may represent an effective modality for the prevention of T2DM in high-risk, genetically predisposed, normal glucose-tolerant individuals despite the lack of an effect on adipocytokine concentrations.  相似文献   

13.
The plasma disappearance rate of sulfobromophthalein (VBSP; mumol/kg/min) was measured in 15 Gilbert's syndrome patients and 12 control subjects after intravenous injection of two different doses (0.59 and 5.90 mumol/kg) of the dye. Plasma disappearance rate was significantly reduced in Gilbert's syndrome patients after administration of 0.59 mumol sulfobromophthalein/kg (0.119 +/- 0.016 vs. 0.146 +/- 0.018 mumol/kg/min; mean +/- S.D.; p less than 0.001), whereas no difference was found with the higher dose (0.754 +/- 0.040 vs. 0.767 +/- 0.072 mumol/kg/min). Significant reduction was also found after administration to four Gilbert's syndrome patients and four control subjects of 0.29 and 2.95 mumol sulfobromophthalein (0.060 +/- 0.005 mumol/kg/min vs. 0.077 +/- 0.07 mumol/kg/min and 0.480 +/- 0.012 mumol/kg/min vs. 0.591 +/- 0.015 mumol/kg/min, respectively; p less than 0.01). Competition studies with combined administration of sulfobromophthalein (0.59 mumol/kg) and different doses of rifamycin SV (0.59, 1.47 and 2.95 mumol/kg) showed a significant (p less than 0.001) reduction in plasma disappearance rate in Gilbert's syndrome patients but not in controls. The rifamycin SV dose at which a 50% inhibition in plasma disappearance rate was observed was 0.8 mumol/kg. The apparent affinity (Km) of the hepatic transport was higher in Gilbert's syndrome patients than in control subjects (3.61 +/- 0.37 mumol sulfobromophthalein/kg vs. 2.76 +/- 0.29 mumol sulfobromophthalein/kg, mean +/- S.D.; p less than 0.01), whereas no difference was found in Vmax (0.95 +/- 0.11 mumol sulfobromophthalein/kg vs. 0.93 +/- 0.10 mumol sulfobromophthalein/kg/min, mean +/- S.D.; N.S.).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The influence of continuous sc insulin infusion therapy for 6 weeks on sensitivity to insulin (euglycemic clamp technique) and hepatic glucose production (3-[3H]glucose technique) was measured in 10 type 1 diabetic patients whose mean duration of diabetes was 8 yr. Mean diurnal blood glucose fell from 8.5 +/- 0.8 (SEM) mmol/liter to 6.0 +/- 0.6 mmol/liter (P less than 0.05) and glycosylated hemoglobin from 10.5 +/- 0.4% to 8.7 +/- 0.3%. Insulin requirements declined by 23% from 47 +/- 4 U/day prepump to 36 +/- 2 U/day after 6 weeks of pump therapy (P less than 0.01). During the insulin clamp, plasma insulin was maintained at approximately 90 mU/liter and plasma glucose at approximately 5.0 mmol/liter in all studies. The rate of glucose metabolism in diabetic patients during conventional therapy (4.65 +/- 0.41 mg/kg X min) was 35% lower than in normal subjects (7.20 +/- 0.42 mg/kg X min, n = 14, P less than 0.001). After 6 weeks of pump therapy, total glucose uptake increased by 27% to 5.90 +/- 0.60 mg/kg X min, P less than 0.05 vs. prepump). This was still 18% lower than in the normal subjects (P less than 0.05). Basal hepatic glucose production in the diabetic patients during conventional therapy (3.07 +/- 0.14 mg/kg X min) was 70% higher than in the normal subjects (1.79 +/- 0.07 mg/kg X min, n = 7, P less than 0.001). After 6 weeks of pump therapy, hepatic glucose production fell to 2.48 +/- 0.19 mg/kg X min (P less than 0.05), which was still 40% higher than in the normal subjects (P less than 0.01). Basal hepatic glucose production was directly related to the fasting plasma glucose level (r = 0.67, P less than 0.001) and inversely proportional to fasting insulin concentration (r = -0.48, P less than 0.05) in the diabetic patients. Specific tracer insulin binding to erythrocytes in the diabetic patients (19.4 +/- 1.5%) was comparable to that in the normal subjects (19.6 +/- 1.2%) and remained unchanged during pump therapy. Thus the improved metabolic control resulting from pump therapy is associated with enhancement in sensitivity to insulin, and reduction in basal hepatic glucose production.  相似文献   

15.
Insulin resistance in patients with cardiac hypertrophy.   总被引:14,自引:0,他引:14  
OBJECTIVE: Animal studies suggest that left ventricular hypertrophy might be associated with insulin resistance and alterations in glucose transporters. We have previously demonstrated myocardial insulin resistance in patients with post-ischemic heart failure. The aim was to investigate whether myocardial insulin resistance could be demonstrated in human cardiac hypertrophy in the absence of hypertension, diabetes and coronary artery disease. METHODS: Eleven normotensive nondiabetic patients with cardiac hypertrophy due to aortic stenosis and angiographically normal coronary arteries were compared to 11 normal volunteers. Myocardial glucose uptake (MGU) was measured with positron emission tomography and [18F]2-fluoro-2-deoxy-D-glucose during fasting (low insulinemia) or during euglycemic-hyperinsulinemic clamp (physiologic hyperinsulinemia). Myocardial biopsies were obtained in order to investigate changes in insulin-independent (GLUT-1) and insulin-dependent (GLUT-4) glucose transporters. RESULTS: During fasting, plasma insulin (7 +/- 1 vs. 6 +/- 1 mU/l) and MGU (0.12 +/- 0.05 vs. 0.11 +/- 0.04 mumol/min/g) were comparable in patients and controls. By contrast, during clamp, MGU was markedly reduced in patients (0.48 +/- 0.02 vs. 0.70 +/- 0.03 mumol/min/g, p < 0.01) despite similar plasma insulin levels (95 +/- 6 vs. 79 +/- 6 mU/l). A decreased GLUT-4/GLUT-1 ratio was shown by Western blot analysis in patients. CONCLUSIONS: Insulin resistance seems to be a feature of the hypertrophied heart even in the absence of hypertension, coronary artery disease and diabetes and may be explained, at least in part, by abnormalities in glucose transporters.  相似文献   

16.
BACKGROUND: Glucagon-like peptide-1 (GLP-1) is an intestinal insulinotropic hormone that augments glucose-induced insulin secretion in patients with type 2 diabetes. It has also been proposed that a substantial component of the glucose-lowering effects of GLP-1 occurs because this hormone enhances insulin-mediated glucose disposal. However, interpretations of the studies have been controversial. This study determines the effect of GLP-1 on insulin-mediated glucose disposal in elderly patients with type 2 diabetes. METHODS: Studies were conducted on 8 elderly patients with type 2 diabetes (age range, 76 +/- 1 years; body mass index, 28 +/- 1 kg/m(2)). Each subject underwent two 180-minute euglycemic (insulin infusion rate, 40 mU/m(2)/min) insulin clamps in random order. Glucose production (Ra) and disposal (Rd) rates were measured using tritiated glucose methodology. In one study, glucose and insulin alone were infused. In the other study, a primed-continuous infusion of GLP-1 was administered at a final rate of 1.5 pmol x kg(-1) x min(-1) from 30 to 180 minutes. RESULTS: Glucose values were similar between the control and GLP-1 infusion studies. 120- to 180-minute insulin values appeared to be higher during the GLP-1 infusion study (control, 795 +/- 63 pmol/l; GLP-1, 1140 +/- 275 pmol/l; p = not significant [NS]). The higher insulin values were largely due to 2 subjects who had substantial insulin responses to GLP-1 despite euglycemia and hyperinsulinemia. The 120- to 180-minute insulin values were similar in the other 6 subjects (control, 746 +/- 35 pmol/l; GLP-1, 781 +/- 41 pmol/l; p = NS). Basal (control, 2.08 +/- 0.05 mg/kg/min; GLP-1, 2.13 +/- 0.04 mg/kg/min; p = NS) and 120- to 180-minute (control, 0.50 +/- 0.18 mg/kg/min; GLP-1, 0.45 +/- 0.14 mg/kg/min; p = NS) Ra was similar between studies. The 120- to 180-minute Rd values were higher during the GLP-1 infusion studies (control, 4.73 +/- 0.39 mg/kg/min; GLP-1, 5.52 +/- 0.43 mg/kg/min; p <.01). When the 2 subjects who had significant insulin responses to GLP-1 during the euglycemic clamp were excluded, the 120- to 180-minute Rd values were still higher in the GLP-1 infusion study (control, 5.22 +/- 0.32 mg/kg/min; GLP-1, 6.05 +/- 0.37 mg/kg/min; p <.05). CONCLUSIONS: We conclude that GLP-1 may enhance insulin sensitivity in elderly patients with diabetes.  相似文献   

17.
Somatostatin does not alter insulin-mediated glucose disposal   总被引:1,自引:0,他引:1  
We examined the effect of somatostatin (SRIH) infusion on insulin-mediated glucose disposal (Rd) in normal young subjects (n = 8) to determine the influence of SRIH on insulin action. Paired 3-h euglycemic insulin clamp studies were performed in random order employing insulin alone (25 mU/m2 X min) or insulin with SRIH (250 micrograms/h) and replacement of basal glucagon (0.4 ng/kg X min). Basal plasma glucose, insulin, glucagon (IRG), and GH concentrations, hepatic glucose production, and Rd were similar on each occasion. Steady state (10-180 min) plasma insulin insulin alone, 283 +/- 10 (+/- SEM); insulin, IRG, and SRIH, 284 +/- 10 pmol/L) and glucagon levels (insulin alone, 84 +/- 7; insulin, IRG, and SRIH, 82 +/- 7 ng/L) were similar. Hepatic glucose production (insulin alone, 0.66 +/- 0.12; insulin, IRG, and SRIH, 0.78 +/- 0.48 mg/kg X min) and Rd (insulin alone, 8.16 +/- 0.62; insulin, IRG, and SRIH, 8.17 +/- 0.61 mg/kg X min) were not different at steady state. We conclude that SRIH infusion with glucagon replacement does not augment insulin-mediated glucose disposal in normal young subjects at physiological insulin levels.  相似文献   

18.
A recent report suggested that the glucose-free fatty acid (FFA) cycle may contribute to steroid-induced insulin resistance in rats, and that glucose tolerance could be restored to normal when FFA levels were lowered with nicotinic acid. To test this hypothesis in man, we measured insulin sensitivity (by euglycemic insulin clamp in combination with indirect calorimetry and infusion of tritiated glucose) before and after short-term administration of a nicotinic-acid derivative (Acipimox) in 10 steroid-treated, kidney transplant patients with insulin resistance. Thirty-five healthy subjects served as controls. Six of them received Acipimox. Total body glucose metabolism was reduced in steroid-treated patients compared with control subjects (41.7 +/- 3.3 v 50.0 +/- 2.2 mumol/kg lean body mass [LBM].min, P less than .05). The reduction in insulin-stimulated glucose uptake was mainly due to an impairment in nonoxidative glucose metabolism (primarily glucose storage as glycogen) (18.3 +/- 2.8 v 27.2 +/- 2.2 mumol/kg LBM.min, P less than .01). Acipimox lowered basal FFA concentrations (from 672 +/- 63 to 114 +/- 11 mumol/L, P less than .05) and the rate of lipid oxidation measured in the basal state (1.5 +/- 0.2 to 0.6 +/- 0.1 mumol/kg LBM.min, P less than .01) and during the clamp (0.7 +/- 0.2 to 0.03 +/- 0.2 mumol/kg LBM.min, P less than .05). In addition, Acipimox administration normalized total glucose disposal (to 54.4 +/- 4.4 mumol/kg LBM.min), mainly due to enhanced nonoxidative glucose metabolism (to 28.9 +/- 3.9 mumol/kg LBM.min) in steroid-treated patients (both P less than .05 v before Acipimox).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The effect of physiologic hyperinsulinemia on the net balance of lactate, glucose, and free fatty acids across the heart was studied in eight normal postabsorptive conscious dogs. After obtaining basal measurements of myocardial substrate balance, arterial plasma insulin was increased from 8 +/- 1 to 68 +/- 14 microU/mL while blood glucose was maintained constant (64 +/- 1 mg/dL) using the hyperinsulinemic euglycemic clamp. Myocardial lactate uptake increased nearly fourfold, from 5.8 +/- 1.8 to 22.4 +/- 2.9 mumol/min (P less than .005). Despite a small increase in arterial lactate concentration from 0.46 +/- 0.08 to 0.79 +/- 0.11 mmol/L (P less than .02), the lactate extraction fraction increased from 23% +/- 7% to 54% +/- 2% (P less than .001) indicating an increased efficiency of lactate extraction. Euglycemic hyperinsulinemia led to a comparable increase in myocardial glucose uptake (6.7 +/- 2.3 to 18.2 +/- 3.7 mumol/min, P less than .05). Arterial free fatty acid concentrations fell from 1.06 +/- 0.13 to 0.35 +/- 0.06 mmol/L (P less than .001) with a concomitant decline in the myocardial uptake of free fatty acids from 18.5 +/- 5.3 to 5.8 +/- 2.9 mumol/min (P less than .05). These results indicate that physiologic hyperinsulinemia increases lactate as well as glucose uptake in normal heart muscle.  相似文献   

20.
To evaluate the contribution of the splanchnic area to the carbohydrate abnormalities associated with chronic uremia, the splanchnic exchange of glucose and gluconeogenic substrates was quantitated basally and after an iv glucose load in nine uremic patients with impaired glucose tolerance and seven control subjects. In the basal state, blood glucose and splanchnic glucose production were similar in the two groups. During glucose infusion (33 mumol/kg.min for 90 min), blood glucose reached significantly higher levels in the uremic patients than in controls (P less than 0.02). Plasma insulin increased slightly more in uremic patients than in controls (P less than 0.05 at 15 min). Both basal and postglucose glucagon levels were 2- to 3-fold higher in uremic patients than in normal subjects (P less than 0.05-0.02). In both groups, splanchnic glucose balance switched from net output in the basal state (-9.4 +/- 0.5 and -8.0 +/- 1.1 mumol/kg.min in normals and uremics, respectively) to net uptake with glucose infusion. However, this response was less marked in the uremic patients than in normal subjects (P less than 0.05-0.02 at 30 and 90 min). The cumulative net splanchnic glucose balance over the 90-min study period was 538 +/- 55 mumol/kg in normal subjects and 279 +/- 89 in uremic subjects (P less than 0.05). A net splanchnic lactate uptake was present in the basal state in normal (4.2 +/- 0.5 mumol/kg.min) and uremic subjects (3.4 +/- 0.5). During glucose infusion, in normal subjects splanchnic lactate exchange switched to a net output (-4.0 +/- 1.6 mumol/kg.min), whereas in the uremic group it remained as a net uptake (1.1 +/- 0.7) throughout the study period. Splanchnic gluconeogenic amino acid uptake was similar in the two groups in the basal state (1.8 +/- 0.1 mumol/kg.min and 2.2 +/- 0.2 in normal and uremic subjects, respectively). Glucose infusion caused a marked fall in amino acid uptake by liver in normal subjects, whereas no change was observed in the uremic group (0.9 +/- 0.3 and 1.9 +/- 0.2 mumol/kg.min, respectively). Splanchnic glycerol uptake was not different in the two groups in the basal state (0.75 +/- 0.2 and 1.1 +/- 0.2 mumol/kg.min) and decreased to a similar extent during glucose infusion. We conclude the following. 1) In uremic patients with glucose intolerance but normal fasting glycemia, the splanchnic metabolism of glucose and gluconeogenic substrates is normal in the postabsorptive state.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号