首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A marked histochemical compartmentalization is visible in the substantia nigra of the squirrel monkey in sections stained for acetylcholinesterase (AChE). In nigral regions containing tyrosine hydroxylase-positive neurons, there are AChE-poor and AChE-rich zones, and many of the AChE-poor zones have the form of narrow fingers extending ventrally into an AChE-rich matrix (Jimenez-Castellanos and Graybiel 1987b). The study reported here was carried out to determine whether this histochemical heterogeneity of the primate's substantia nigra is related to the known differentiation within its pars compacta of subdivisions projecting respectively to the caudate nucleus and to the putamen. Retrograde and anterograde labeling in the substantia nigra was elicited by tracer injections placed in the caudate nucleus or putamen and was plotted in relation to patterns of AChE staining and tyrosine hydroxylase immunostaining. Much of the labeling observed was organized according to borders visible with AChE histochemistry: labeled nigral neurons (and afferent fibers) tended to be clustered precisely within the AChE-poor ventrally-extending fingers or to be situated outside these zones. However, projection neurons in these ventrally-extending fingers were not exclusively related either to the caudate nucleus or to the putamen. After injections in the caudate nucleus, labeled neurons were predominantly in the AChE-poor fingers in some cases, but predominantly in AChE-rich nigral zones outside them in other cases. Labeling in and out of the ventrally-extending fingers, and along the edges of the fingers, also occurred following different tracer injections in the putamen. These findings confirm the independent clustering of nigrostriatal neurons projecting respectively to the caudate nucleus and to the putamen. The plan of nigrostriatal connections additionally appears concordant with the histochemical compartmentalization of the substantia nigra that can be detected with acetylthiocholinesterase histochemistry.  相似文献   

2.
Peptidase-containing neurons in rat striatum   总被引:1,自引:0,他引:1  
The effects of surgical lesions on peptidase activity have been studied in the striatonigral system of the rat brain. Knife cuts separating the anterior part of the caudate putamen from the globus pallidus resulted in a decrease in the activity of angiotensin-converting enzyme and alanyl aminopeptidase in both the globus pallidus and substantia nigra. The activity of nigral prolyl endopeptidase and leucyl aminopeptidase was also decreased. An increase in dipeptidyl aminopeptidase and arginyl endopeptidase activity was observed in both the caudate putamen and globus pallidus. These results suggest that the striatal neurons containing angiotensin-converting enzyme or alanyl aminopeptidase project to both the globus pallidus and substantia nigra, and the neurons containing prolyl endopeptidase and/or leucyl aminopeptidase project to the substantia nigra. Dipeptidyl aminopeptidase and arginyl endopeptidase are probably associated with glial function.  相似文献   

3.
Using a newly developed lipid peroxidation-inducing system composed of DOPA and iron, we examined the vulnerability of substantia nigra to peroxidation in comparison with that of caudate-putamen obtained from normal or vitamin E-deficient animals. Histochemical detection of lipid peroxidation revealed that substantia nigra was far more susceptible than caudate putamen to DOPA and iron treatment, which was biochemically supported by measurements of thiobarbituric acid-reactive substances. Vitamin E deficiency accelerated such susceptibility of substantia nigra but had no influence on the histochemical findings observed in caudate-putamen.  相似文献   

4.
Tritiated dopamine synthesized from tritiated tyrosine was estimated simultaneously in the two caudate nuclei and the two substantia nigra of cats anaesthesized with halothane. In control animals, the electrical stimulation of the right forelimb enhanced dopamine release in the right caudate nucleus and decreased dopamine release in the right substantia nigra. Opposite effects were observed in the contralateral structures. Left nigral application of d-amphetamine produced the same effect. However in cats with extensive lesions of the left pericruciate cortex, an increase in the release of dopamine in the left substantia nigra was the only detectable effect of these two treatments. These results suggest that the cortical structures are involved not only in the transfer of information between the two dopaminergic pathways but are also involved with regulation of the release of dopamine in the striatum originating in the substantia nigra. With regard to the role of the thalamic structures in this transfer of information, it is proposed that the thalamostriatal control of the release of dopamine previously suggested is closely dependent on cortical activity.  相似文献   

5.
The role of several motor and intralaminar thalamic nuclei in the regulation of dopamine release from terminals and dendrites of the nigrostriatal dopaminergic neurons was investigated in halothane-anaesthetized cats. For this purpose, the effects of the unilateral electrical stimulation of various thalamic nuclei on the release of newly synthesized [3H]dopamine were simultaneously determined in both substantiae nigrae and caudate nuclei using the push-pull cannula method. The electrical stimulation of the motor nuclei was the only one to induce asymmetric changes in the four structures since [3H]dopamine release was enhanced in the ipsilateral caudate nucleus and reduced in the contralateral structure while opposite responses were observed in the corresponding substantiae nigrae. A reduction of [3H]dopamine release occurred in the four structures or only in the contralateral substantia nigra and caudate nucleus following the stimulation of the parafascicularis nucleus and the adjacent posterior part of the nucleus centrum medianum or of the nucleus centralis lateralis and the adjacent paralaminar part of the nucleus medialis dorsalis, respectively. The stimulation of the anterior part of the nucleus centrum medianum, which in contrast to other thalamic nuclei examined, receives few nigral inputs, selectively enhanced [3H]dopamine release in the contralateral substantia nigra. No significant changes in [3H]dopamine release were seen either in the substantiae nigrae or in the caudate nuclei following the stimulation of midline thalamic nuclei. These results indicate that the motor and intralaminar thalamic nuclei exert multiple and selective influences on the release of dopamine from terminals and/or dendrites of the dopaminergic neurons. They also further support a role of thalamic nuclei in the transfer of information from one substantia nigra to the contralateral dopaminergic neurons. The possible involvement of connections between paired thalamic nuclei was underlined by the observations of evoked potentials in contralateral homologous nuclei following unilateral stimulation of motor, or some intralaminar, nuclei. The present report provides new insights on the mechanisms contributing to the reciprocal and/or bilateral regulations of nigrostriatal dopaminergic pathways.  相似文献   

6.
关鹏  王娜  段相林  常彦忠 《解剖学报》2008,39(6):795-799
目的 探讨谷氨酸、γ-氨基丁酸(GABA)对大鼠尾壳核铁代谢的影响.方法 大鼠立体定位后,向大脑黑质分别注射谷氨酸钠(MSG)和GABA,观察大鼠尾壳核铁含量,黑质多巴胺能神经元酪氨酸羟化酶(TH)的变化以及尾壳核的无铁反应元件结构的二价金属离子转运体1(DMT1-IRE)、膜铁转运辅助蛋白(HP)含量的变化.结果 与对照组相比,MSG组大鼠尾壳核铁含量显著增加,GABA组与对照组相比没有显著差异;谷氨酸钠组和GABA组大鼠黑质TH免疫阳性细胞平均吸光度(AA)与对照组相比均无显著差异;与对照组相比,谷氨酸钠组大鼠尾壳核DMT1-IRE表达均显著增加,而GABA组DMT1-IRE表达有明显降低;谷氨酸钠组大鼠尾壳核HP表达显著降低,GABA组HP表达显著增高.结论 黑质的谷氨酸和GABA可能通过影响尾壳核DMT1-IRE和HP的表达影响纹状体尾壳核的铁代谢.  相似文献   

7.
The dopamine (DA) antagonists haloperidol (Hal), chlorpromazine (CPZ) and fluphenazine (Flu) were applied by microiontophoresis from 8-barreled micropipettes while action potentials were recorded from single neurons in the feline caudate nucleus (CN) which fired in response to afferent stimulation. These DA antagonists selectively blocked the 15--25 msec latency action potential elicited by stimulation of the substantia nigra (SN) without affecting responses to cortical or thalamic stimulation. These results suggest that dopamine is the transmitter of the excitatory response of caudate neurons to stimulation of the SN. No evidence for an inhibitory input to the caudate liberating DA was found.  相似文献   

8.
1. One caudate nucleus of the anaesthetized cat was superfused by perfusing the anterior horn of one lateral cerebral ventricle. The perfusates were examined for their content in acetylcholine (ACh), dopamine, homovanillic acid (HVA) and 5-hydroxytryptamine (5-HT), at rest and after a variety of stimuli.2. When prostigmine was added to the perfusion fluid, ACh appeared in the effluent; its concentration tended to rise in the course of an experiment. Various afferent stimuli, all of which caused evoked responses recorded from the contra-lateral caudate nucleus, increased the ACh content of the effluent. Effective stimuli were noise and electrical stimulation of afferent nerves or of certain regions of the brain including the ipsi-lateral substantia nigra.3. The dopamine content of the effluent was extremely low (of the order of 50 pg/min) at rest, but, on occasion, rose sharply when the substantia nigra was stimulated electrically with trains of pulses repeated once every 3 sec. The results were inconsistent.4. Since dopamine in tissue is rapidly transformed enzymically into HVA, the appearance of this acid in the perfusate was examined.5. At rest, HVA was found to appear in the effluent at a rate of 2-8 ng/min. Its concentration was rapidly depressed by increasing the depth of anaesthesia.6. Stimulation of the substantia nigra for periods of 3 or 4 min caused an increment in the HVA content of the effluent lasting 1 hr or more. It was frequently seen when two points of the substantia nigra were stimulated simultaneously, less regularly with only one stimulating electrode, and rarely if this was placed in the most caudal part of the substantia nigra.7. These results strongly support the view that there is a dopaminergic nigro-striatal pathway. The following assumption would explain the erratic appearance of dopamine and the long duration of increments in HVA: many of the axons originating in the substantia nigra end either in the putamen or in parts of the caudate nucleus which are far away from the ventricular surface; any dopamine released from these axons will not reach the ventricular surface at all, and HVA will, at best, reach it very slowly.8. Small amounts of 5-HT appeared in the ventricular perfusate, and the quantity rose after the administration of monoamine oxidase inhibitors. It was not increased by the type of stimuli used in this work to elicit the release of ACh or HVA.  相似文献   

9.
The modulatory action of the caudate on the neural activity of the contralateral nucleus was studied in locally anesthetized, paralysed and artificially ventilated cats. This type of preparation was necessary because of a complete suppression of spontaneous spike activity after subanesthetic doses of general anesthesia. Two types of caudate action potential were characterized according to their waveform: biphasic and triphasic spikes, with a predominance of the former. These waveforms appeared to be independent of recording distance; however, their responses were similar to both central and peripheral stimuli. Caudate stimulation modified the spontaneous activity of the majority of the single units recorded within the opposite nucleus. This effect was mainly inhibitory and keeps up certain somatotopic distribution in the rostrocaudal extent of the nucleus. Kainic lesion of the site of stimulation suppressed the responses in the contralateral caudate nucleus, whereas the responses to substantia nigra and precruciate cortex remained unaltered. On the other hand, stimulation of the precruciate cortex opposite to the recording sites always excited the caudate neurons. The responses evoked by stimulation of ipsilateral substantia nigra and of contralateral sciatic nerve followed a similar pattern to those elicited by caudate stimuli. These results suggest a mostly inhibitory effect of the caudate on neuronal activity within the opposite nucleus, which is reinforced by the action of central and peripheral somatosensory inputs.  相似文献   

10.
11.
Summary Projections from the basal ganglia to the nucleus tegmenti pedunculopontinus pars compacta (TPC) were studied by using anterograde and retrograde tracing techniques with horseradish peroxidase conjugated with wheat germ agglutinin (WGA-HRP) in the cat. Following WGA-HRP injections into the medial TPC area, a substantial number of retrogradely labeled cells were seen in the entopeduncular nucleus (EP) and medial half of the substantia nigra pars reticulata (SNr), whereas following WGA-HRP injections into the lateral TPC area, labeled cells were marked in the caudal half of the globus pallidus (GP) and lateral half of the SNr. To confirm the retrograde tracing study, WGA-HRP was injected into the EP or the caudal GP, and anterograde labeling was observed in the TPC areas. Terminal labeling was located in the medail TPC area in the EP injection case, while terminal labeling was observed in the lateral TPC area in the caudal GP injection case. Projections from the striatum to the pallidal complex (the EP and the caudal GP) were also studied autoradiographically by injecting amino acids into various parts of the caudate nucleus and the putamen. Terminal labeling was distributed over the whole extent of the EP and the rostral GP following injections into the rostral striatum (the head of the caudate nucleus or the rostral part of the putamen), while terminal labeling was distributed over the caudal GP following injections into the caudal striatum (the body of the caudate nucleus or the caudal part of the putamen). From these findings, we conclude that there exists a medio-lateral topography in the projection from the basal ganglia to the TPC: The EP receives afferent projections from the rostral striatum and projects to the medial TPC area, whereas the caudal GP receives projections from the caudal striatum and sends fibers to the lateral TPC area.Abbreviations BC brachium conjunctivum - CD caudate nucleus - CP cerebral peduncle - DBC decussation of the brachium conjunctivum - EP entopeduncular nucleus - GP globus pallidus - IC internal capsule - ICo inferior colliculus - LH lateral habenular nucleus - ML medial lemniscus - PN pontine nuclei - PUT putamen - SCo superior colliculus - SI substantia innominata - SN substantia nigra - SNc substantia nigra pars compacta - SNr substantia nigra pars reticulata - STN subthalamic nucleus - TH thalamus - TPC nucleus tegmenti pedunculopontinus pars compacta  相似文献   

12.
R M Beckstead 《Neuroscience》1987,20(2):557-576
A portion of the nigrostriatal projection that originates from presumably dopaminergic neurons in the caudal pars compacta of the substantia nigra and the suprajacent pars dorsalis (retrorubral area), was shown by [3H]amino acid autoradiographic tracing to distribute nonhomogeneously in the head of the caudate nucleus, such that zones of high density termination are in register with the archipelago of substance P cell clusters revealed immunohistochemically in the same and adjacent tissue sections of the cat's brain. Axons from this same portion of the substantia nigra distribute densely at caudal levels of the putamen where again substance P-immunoreactive striatal cells are numerous. In nearby tissue sections from the same cases, tyrosine hydroxylase-like immunoreactivity suggested only subtle variations in the density of the catecholamine axon network within the striatum. Thus, whereas dopamine axons are distributed densely throughout the striatum, those originating from cells in the caudal pars compacta et dorsalis of the substantia nigra and ending in the head of the caudate nucleus appear to terminate preferentially within the substance P cell clusters. These data suggest that the striatal substance P cells, which send their axons selectively to the entopeduncular nucleus and substantia nigra, but much less so the globus pallidus, are a major target of nigrostriatal dopamine transmission. This result is discussed with respect to the anatomical, neurochemical and functional organization of the striatifugal projection system.  相似文献   

13.
S E Tagerud  A C Cuello 《Neuroscience》1979,4(12):2021-2029
In order to eliminate the 5-hydroxytryptaminergic input to the substantia nigra lesions were placed in the dorsal and medial raphe nuclei in a number of rats. The release of exogenously applied [3H]dopamine from the partially denervated substantia nigra was determined in vitro and found to be very similar to the release observed from slices of control substantia nigra. These results lend further support to the theory that the release of exogenously applied [3H]dopamine at the level of the substantia nigra occurs mainly from dopaminergic dendrites, rather than from terminals of 5-hydroxytryptamine-containing neurons.A veratridine-induced release of [3H]dopamine from the pars reticulata of the substantia nigra is also described. An almost complete blockade of veratridine (3.0 μM) stimulation was observed with 100 nM tetrodotoxin. Similar effects of veratridine and tetrodotoxin were also observed on [3H]dopamine release from slices of corpus striatum. These results suggest that dendrites of the dopaminergic neurones in the substantia nigra contain fast, tetrodotoxin-sensitive sodium channels.  相似文献   

14.
The presence of cytochrome P-450 in rat brain was studied by immunohistochemistry, using antibodies to cytochrome P-450 purified from livers of phenobarbital- or 3-methylcholanthrene-treated rats. Immunoreactive nerves were observed only in brain sections incubated with immunoglobulin-G to 3-methylcholanthrene-induced cytochrome P-450. This immunoreactivity was abolished by preabsorption of the antibody with highly purified rat liver cytochrome P-450c, the major cytochrome P-450 isozyme induced by 3-methylcholanthrene, but was not affected by other cytochrome P-450 isozymes induced by phenobarbital, isosafrole or pregnenolone-16-carbonitrile.

The most abundant concentration of nerve fibers with cytochrome P-450 immunoreactivity was observed in the globus pallidus. Immunoreactive fibers were also observed in the caudate putamen, amygdala, septum, ventromedial nucleus of the hypothalamus, medial forebrain bundle, ansa lenticularis, and ventromedial portion of the internal capsule and crus cerebri. Cell bodies with cytochrome P-450 immunoreactivity were observed in the caudate putamen and in the perifornical area of the hypothalamus. The cytochrome P-450 immunoreactive fibers in the globus pallidus and caudate putamen do not appear to emanate from cell bodies in the substantia nigra, since there was no reduction in the density of these fibers after unilateral stereotaxic electrolytic destruction of the substantia nigra (zona compacta and reticulata). Our data suggest that these striatal nerve processes are derived from cell bodies within the caudate putamen itself.

The present results indicate that rat brain contains a form of cytochrome P-450 with antigenic relatedness to the hepatic 3-methylcholanthrene-inducible cytochrome P-450c. This cytochrome P-450 isozyme was detected in brain areas which metabolize morphine and convert estradiol and estrone into catecholestrogens, which suggests an important role for this enzyme in the metabolism of both ex´ogenous and endogenous compounds in brain.  相似文献   


15.
The question of origin of the excitatory and inhibitory responses that occur in neostriatal neurons following electrical stimulation of the substantia nigra is complicated by the possible spread of stimulus currents to numerous unspecifiable systems of neuronal elements. The present work begins to address this problem through the study of conduction properties of specific nigral and perinigral neurons in the cat. Neurons of pars compacta of substantia nigra and of the retrorubral area were found to have similar latencies for antidromic activation, whether from caudate nucleus stimuli (6.8–8 ms) or medial forebrain bundle stimulation (2.4–6.4 ms).The soma-dendritic features of both pars compacta and retrorubral neurons (revealed by intracellular injection of horseradish peroxidase) resembled the sparsely-branched, medium-sized substantia nigra neurons known from Golgi studies to have long dendrites with scattered and mainly distally-located spine-like appendages. Two types of pars compacta neurons were found; one with an ascending axon lacking collateral branches, and another with a descending axon that issued collaterals which terminated in the compacta, in pars reticulata, and possibly in retrorubral areas. Despite failure to detect as ascending axonal trajectory for this latter neuron, both types of pars compacta cells responded antidromically to stimulation of the caudate nucleus or medial forebrain bundle.The conduction time for impulse propagation in axons of pars compacta or retrorubral neurons suggests that either may mediate at least some of the excitatory responses that are known to occur in neostriatal neurons following stimulation of the substantia nigra in the cat. However, these conduction times are not compatible with the production of other excitatory responses which are commonly observed in the cat striatum at latencies shorter than 6 to 7 ms following stimulation of the substantia nigra.  相似文献   

16.
The human striatum, which receives dopaminergic innervation from the substantia nigra and ventral tegmental area (cell groups A8, A9 and A10), has structural and functional subdivisions both rostrocaudally and dorsoventrally. These relate to motor and non-motor origins of cortical projections and the specific areas of the substantia nigra and ventral tegmental area providing dopaminergic innervation. In the present study, we have evaluated the distribution of a number of dopaminergic parameters in the caudate, putamen and nucleus accumbens at separate coronal levels in a post mortem study in a series of elderly normal individuals aged 55-94 years, with analysis of the effect of post mortem variables. Dopamine D1 receptor density displayed a rostrocaudally declining gradient in the putamen but not in the caudate, such that at levels posterior to the anterior commissure, there was significantly lower D1 binding in the putamen compared to the caudate. The density of dopamine D2 receptors was similar in the putamen and caudate, increasing rostrocaudally. The density of dopamine uptake sites exhibited an increasing rostrocaudal gradient in the caudate, especially ventrally, but not in the putamen, where binding was more constant. The dopamine D3 receptor was concentrated in the ventral striatum, particularly the nucleus accumbens, although there was no evidence of a rostrocaudal gradient. With respect to striosome-matrix compartmentalization, there was no complete segregation, although D1 and D3 receptors were concentrated in striosomes, whereas D2 receptors and uptake sites showed higher density in the matrix. Levels of dopamine were similar in the caudate and putamen, and were significantly elevated at levels including the nucleus accumbens and the anterior commissure. Homovanillic acid and the metabolic index (homovanillic acid/dopamine ratio) were significantly higher in the putamen compared to the caudate, especially at levels from and caudal to the anterior commissure. These distributions of dopamine receptors and metabolic indicators, reflecting the different functional domains of the striatum, are relevant to the interpretation of current in vivo imaging of the dopamine transporter and receptors in neurological and psychiatric disorders. They provide information to assist in the detection of perturbations in expression, in specific diseases, at particular points on rostrocaudal, lateromedial and dorsoventral axes, a level of resolution beyond current neuroimaging capability.  相似文献   

17.
We and other workers found markedly increased levels of proinflammatory cytokines and apoptosis-related proteins in parkinsonian brain. Although the pathogenesis of Parkinson's disease (PD) remains enigmatic, apoptosis might be involved in the degeneration of dopaminergic neurons in PD. To investigate the possible presence of other inflammatory cytokines and/or apoptosis-related protein, the levels of p53 protein, interferon-gamma, and NF-kappaB were measured for the first time in the brain (substantia nigra, caudate nucleus, putamen, cerebellum, and frontal cortex) from control and parkinsonian patients by a highly sensitive sandwich enzyme-linked immunosorbent assay. The p53 protein level in the caudate nucleus was significantly higher in parkinsonian patients than in controls (P<0.05), whereas this protein in the substantia nigra, putamen, and cerebral cortex showed no significant difference between parkinsonian and control subjects. The interferon-gamma level was significantly higher in the nigrostriatal dopaminergic regions (substantia nigra, caudate nucleus, and putamen) in parkinsonian patients than in the controls (P<0.05), but was not significantly different in the cerebellum or frontal cortex between the two groups. In accordance with previous immunohistochemical analysis, the NF-kappaB level in the nigrostriatal dopaminergic regions was significantly higher in parkinsonian patients than in the controls (P<0.05). These data suggest that the significant increase in the levels of p53 protein, interferon-gamma, and NF-kappaB reflect apoptosis and the inflammatory state in the parkinsonian brain and that their elevation is involved in the degeneration of the nigrostriatal dopaminergic neurons.  相似文献   

18.
Levels of N-acetyl-aspartyl-glutamate measured by high-pressure liquid chromatography were found to be very high in the cat substantia nigra, particularly in the pars compacta, while those in the caudate nucleus were much lower. In halothane-anaesthetized cats implanted with push-pull cannulae, N-acetyl-aspartyl-glutamate (10(-8) M) induced a marked and prolonged release of newly synthesized [3H]dopamine, when infused into the posterior but not into the anterior part of the caudate nucleus. In contrast, in the presence of tetrodotoxin (10(-6) M), N-acetyl-aspartyl-glutamate (10(-8) M) reduced the residual release of [3H]dopamine; this effect was also more pronounced in the posterior than in the anterior part. In the conditions used, as indicated by experiments with [3H]N-acetyl-aspartyl-glutamate no glutamate was formed from the infused N-acetyl-aspartyl-glutamate. Ibotenate (10(-5) M) induced changes in [3H]dopamine release in both the absence and presence of tetrodotoxin, which were closely similar to those observed with N-acetyl-aspartyl-glutamate. Responses induced by either N-acetyl-aspartyl-glutamate or ibotenate were not mediated by N-methyl-D-aspartate receptors since N-methyl-D-aspartate stimulated the release of [3H]dopamine only when used in a high concentration (10(-4) M) and applied in a magnesium-free superfusion medium in both the presence of glycine (10(-6) M) and strychnine (10(-6) M). In addition, the stimulatory effect of N-methyl-D-aspartate persisted in the presence of tetrodotoxin; it was of similar amplitude in both parts of the caudate nucleus and of shorter duration than that evoked by either N-acetyl-aspartyl-glutamate or ibotenate alone. N-Acetyl-aspartyl-glutamate interacted with dopaminergic neurons not only presynaptically in the caudate nucleus but also in the substantia nigra since a marked increase in [3H]dopamine release was observed both from local dendrites and from nerve terminals in the ipsilateral caudate nucleus when N-acetyl-aspartyl-glutamate (10(-7) M) was infused locally into the substantia nigra pars compacta. No effect could be seen in contralateral structures. The isomer of natural N-acetyl-aspartyl-glutamate, beta-N-acetyl-aspartyl-glutamate (10(-7) M), had no effect on [3H]dopamine release when applied similarly in the substantia nigra, thus confirming the specificity of the action of N-acetyl-aspartyl-glutamate.  相似文献   

19.
Summary Electrical stimulation of the substantia nigra of rats elicits a burst of small amplitude waves with a latency of 4–6 ms that may last for 10–15 ms throughout much of the neostriatum. Frontal cortex stimulation also elicits a burst response, which can occlude the substantia nigra response. The substantia nigra evoked burst response was still present after chronic neocortical ablation or thalamic transection or both treatments combined. The response corresponds to the first sharp negative wave of the substantia nigra evoked neostriatal field potential. Single substantia nigra evoked action potentials were recorded in neostriatum with a mean latency of 9.8 ms, ranging from 4–22 ms. These action potentials were considered to be antidromic because 1) they were occluded during appropriate collision intervals by orthodromic action potentials elicited by frontal cortex stimulation. Subthreshold frontal cortex conditioning stimulation did not alter the threshold for activation from substantia nigra. The refractory period for the axon was at least as long as that for the soma and ranged between 0.8–2.0 ms. The antidromic responses failed to follow low frequency stimulation (< 40 Hz for 3000 ms). This failure occurred in the axon between substantia nigra and globus pallidus. The burst response and first sharp negative wave of the field potential probably represent the antidromic activation of the ubiquitous and densely packed medium spiny neostriatal projection neurons. These responses 1) occur at the same latency, 2) respond in the same manner to twin pulse and repetitive stimulation and 3) are occluded by frontal cortex stimulation in the same manner as antidromic action potentials.  相似文献   

20.
Alpha-synuclein is a presynaptic protein that normally participates in the homeostasis of synaptic vesicles. Missense mutations in its gene cause the protein to participate actively in the development of heritable forms of Parkinson's disease. Moreover, its metabolism is perturbed in all cases of Parkinson's disease where alpha-synuclein accumulates in a filamentous form in the Lewy body nerve cell lesion. Lewy bodies also develop in other common neurodegenerative disorders, like dementia with Lewy bodies and Lewy body variant of Alzheimer's disease. In the present study, we have studied the detailed distribution of alpha-, beta- and gamma-synuclein in the rat CNS. Alpha-synuclein was not observed in perikarya, but was distributed with high intensity in nerve terminals in the caudate and putamen and ventral pallidum, where beta-synuclein was much weaker and less densely distributed in the caudate and putamen. Gamma-synuclein was not found in the caudate and putamen. Alpha-synuclein was robustly distributed in the substantia nigra pars reticulata, but was very weak or virtually absent from the perikarya of the neurons in the pars compacta. In contrast, beta-synuclein was very weak or absent from the substantia nigra. gamma-Synuclein was absent from the terminals of substantia nigra pars reticulata, but sparsely distributed gamma-synuclein-containing neurons were detected in the substantia nigra pars compacta. In the brainstem, alpha-synuclein as well as gamma-synuclein were present in the locus coeruleus with high intensity, while beta-synuclein was very weak. In addition, alpha-synuclein was intense in the vagus nucleus, but weak in the oculomotor, facial, hypoglossal, accessory and ambiguous nuclei, where beta-synuclein was very intensely present. Furthermore, gamma-synuclein was localized in the terminals and in cell bodies of the Edinger-Westphal nucleus, the red nucleus, locus coeruleus, and most cranial nerve-related nuclei. In the spinal cord, alpha- and gamma-synucleins were intensely present in laminae I and II and in the preganglionic sympathetic nuclei, whereas beta-synuclein was very weak. These results indicate that alpha-synuclein is abundant in central catecholaminergic regions. Beta-synuclein is more localized in the somatic cholinergic components, while it is particularly weak or absent from catecholaminergic neurons. Gamma-synuclein appears to be present in both cholinergic and catecholaminergic regions, but very weak in the forebrain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号