首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efferent connections of the brain stem nucleus tegmenti pedunculopontinus were studied in the rat using the techniques of anterograde and retrograde transport of the enzyme horseradish peroxidase, laying particular emphasis on that part of pedunculopontinus which receives direct descending projections from the basal ganglia and related nuclei. In a preliminary series of experiments horseradish peroxidase was injected into either the entopeduncular nucleus or the subthalamic nucleus and, following anterograde transport of enzyme, terminal labelling was identified in nucleus tegmenti pedunculopontinus, surrounding the brachium conjunctivum in the caudal mesencephalon.In a subsequent series of experiments, horseradish peroxidase was injected into that region of nucleus tegmenti pedunculopontinus which receives entopeduncular and subthalamic efferents and its efferent projections were studied by anterograde transport of the enzyme. The results indicate that nucleus tegmenti pedunculopontinus gives rise to widely distributed efferent projections which terminate rostrally in mesencephalic, diencephalic and telencephalic structures and caudally in the pontine tegmentum. In the mesencephalon, terminal labelling was found in the pars compacta of the ipsilateral substantia nigra and sometimes in the adjoining ventral tegmental area. Labelling was also found in the ipsilateral half of the periaqueductal grey. In the diencephalon terminal labelling occurred bilaterally in the subthalamic nucleus and ipsilaterally in the intralaminar nuclei of the thalamus. Further rostrally, terminal labelling was particularly evident in the ipsilateral pallidal complex, especially in the caudal two-thirds of the entopeduncular nucleus and the ventral half of the caudal third of the globus pallidus. Caudal to pedunculopontine injection sites dense labelling was observed in the reticular formation of the pontine tegmentum.In a final series of experiments, confirmation of apparent pedunculopontine efferent projections was sought using the retrograde transport of horseradish peroxidase. Enzyme was injected into sites possibly receiving pedunculopontine efferents and the peribrachial area of the brain stem was examined for retrograde cell labelling. In this way, pedunculopontine projections were confirmed to the globus pallidus, entopeduncular nucleus, subthalamic nucleus, substantia nigra, parafascicular nucleus and pontine reticular formation. Injections into the globus pallidus or subthalamic nucleus gave rise to retrograde cell labelling bilaterally in pedunculopontinus. In addition, retrograde transport studies alone demonstrated projections from pedunculopontinus to the cerebral cortex and to the spinal cord.It is concluded that the nucleus tegmenti pedunculopontinus has reciprocal relationships with parts of the basal ganglia and some functionally related nuclei (in particular, the pallidal complex, subthalamic nucleus and substantia nigra). These connections support the view that nucleus tegmenti pedunculopontinus is likely to be involved in the subcortical regulation and mediation of basal ganglia influences upon the lower motor system. This suggests a potential role for pedunculopontine afferent and efferent pathways in the pathophysiology of basal ganglia related disorders of movement.  相似文献   

2.
A projection from the subthalamic nucleus to the nucleus tegmenti pedunculopontinus has been demonstrated in the rat using retrograde and anterograde transport of horseradish peroxidase. Small, well-localized injections of peroxidase in nucleus pedunculopontinus gave rise to retrogradely labelled cell bodies in the subthalamic nucleus. Injections of peroxidase restricted to the subthalamic nucleus gave terminal labelling in nucleus pedunculopontinus.  相似文献   

3.
The synaptic organization of the feline entopeduncular nucleus was studied electron microscopically. After horseradish peroxidase injections into the ventral anterior and ventral lateral nuclear complex of the thalamus, normal axon terminals synapsing with entopedunculothalamic projection neurons were classified into four types on the basis of the size and shape of synaptic vesicles in them, and types of the postsynaptic membrane differentiation. Type I and type II axon terminals were characterized by symmetrical synaptic contacts, and large ovoid or small ovoid synaptic vesicles, respectively. Type II axon terminals were further classified into two subtypes as to their sizes: one was small (IIa), the other large (IIb). Type III and type IV axon terminals were characterized by asymmetrical synaptic contacts, and large ovoid or small ovoid synaptic vesicles, respectively.

To determine the origin of each type of terminal, electrolytic lesions of the caudate nucleus or the subthalamic nuclear region were combined with horseradish peroxidase injections into the thalamus or the subthalamic nuclear region. After electrolytic lesions of the caudate nucleus, degeneration was seen in type I axon terminals contacting entopedunculothalamic projection neurons. Following electrolysis or horseradish peroxidase injection into the subthalamic nuclear region, type IIa and type IV axon terminals showed degenerations or horseradish peroxidase labelling. Such terminals also synapsed with entopedunculothalamic projection neurons. It was demonstrated that these projection neurons relay the striatal or subthalamic inputs directly to the thalamus. After horseradish peroxidase injection into the thalamus, many labelled type II axon terminals were observed to synapse with entopedunculothalamic projection neurons. Type III axon terminals were left unchanged throughout these experiments. In addition, the entopeduncular neuron was observed to receive convergent inputs from both the caudate nucleus and probably the subthalamic nucleus. Axoaxonal synapses were also found to be involved in the synaptic triad.

These results indicate that type I axon terminals originate from the caudate nucleus, part of type IIa and type IV axon terminals originate from the subthalamic nucleus or caudal to the subthalamic nuclear region, and part of type IIa and type IIb terminals come from intrinsic axon collaterals.  相似文献   


4.
The afferent projections to the peribrachial region in the rat were studied using retrograde and anterograde transport of horseradish peroxidase. Particular attention was paid to descending projections from the basal ganglia and related nuclei to the region of nucleus tegmenti pedunculopontinus. Following injection of peroxidase into nucleus tegmenti pedunculopontinus, few retrogradely-labelled neurons were found in the entopeduncular nucleus proper, but larger numbers were found with a wide distribution within the boundaries of the internal capsule and cerebral peduncle. Labelled cells were also consistently observed in the amygdala, the caudal globus pallidus, the subthalamus including zona incerta and subthalamic nucleus, the hypothalamus, the substantia nigra and the ventral tegmental area. Following iontophoretic injections of horseradish peroxidase into the entopeduncular nucleus, lateral hypothalamus, subthalamic nucleus or ventral tegmental area, terminal labelling was observed in and around the branchium conjunctivum in an area apparently corresponding to nucleus tegmenti pedunculopontinus in the rat.  相似文献   

5.
The corticosubthalamic and subthalamocortical projections were examined in the cat by anterograde and retrograde axonal transport of horseradish peroxidase (HRP). Injections of HRP into the gyrus proreus, gyrus sigmoideus anterior and the part lateral to the sulcus cruciatus gave rise to anterogradely labelled terminals in all parts of the ipsilateral subthalamic nucleus in a topographical manner. Injections of HRP into these cerebral cortices as well as the gyrus sigmoideus posterior, the posterior part of the gyrus coronalis and the middle part of the gyrus ectosylvius produced retrogradely labelled neurons in the medial half of the ipsilateral subthalamic nucleus in a topographical manner. These findings suggest that the subthalamic nucleus acts as a link not only in the pallido-subthalamo-pallidal loop but also in the corticosubthalamo-cortical pathways.  相似文献   

6.
V.H. Perry 《Neuroscience》1980,5(5):915-927
Injections of tritiated leucine into the superior colliculus of the rat were used to study the efferents of the colliculus. The superficial layers of the colliculus project to the lateral posterior nucleus, the lateral geniculate nucleus and the pretectum. Two distinct subdivisions of the lateral posterior nucleus were found, a caudomedial region which receives a bilateral projection from the superior colliculus and an anterolateral region which receives a unilateral projection from the superior colliculus. Injections of horseradish peroxidase into the lateral prestriate visual cortex showed that the lateral posterior nucleus sends a dense projection to this area. There was no evidence that the caudomedial and anterolateral parts of the lateral posterior nucleus project to different regions of the lateral prestriate cortex.The tectothalamocortical pathway in the rat provides a major route outside the geniculostriate projection by which visual information from the retina can reach the cortex.  相似文献   

7.
The projection of the ventromedial nucleus of the thalamus to the neocortex was studied in cat by means of anterograde and retrograde transport of horseradish peroxidase, by the depth profile of evoked thalamocortical field potentials, and by superfusion of the cortex with manganese to block transmitter release. Horseradish peroxidase injected into the ventromedial nucleus was anterogradely transported to the outer third of layer I in the neocortex, extending from the depth of the cruciate sulcus anterior to the olfactory bulb and tract. The region of projection from the ventromedial nucleus extended mediolaterally from the medial wall of the proreus gyrus to the ventral tip of the coronal gyrus. Horseradish peroxidase injections or applications in these areas of the neocortex resulted in the retrograde labeling of neurons in the ventromedial nucleus. Injections in many other cortical areas did not result in labeled neurons in this nucleus. Stimulation of the ventromedial nucleus with single pulses elicited surface-negative waves in the medial part of the precruciate region that had superficial isoelectric points. Superfusion of the precruciate area with manganese resulted in the suppression of the ventromedial-evoked wave, whereas control extracellular waves in deeper layers were unaffected. An additional additional finding was that horseradish peroxidase injections in the ventromedial nucleus led to a dense reciprocal retrograde labeling of neurons in layer VI of that part of the cortex to which the ventromedial nucleus projects. We conclude that, in cat, (1) the ventromedial nucleus projects to layer I of the cerebral cortex anterior to the cruciate sulcus and receives a dense reciprocal projection from layer VI; (2) stimulation of neurons in the ventromedial nucleus causes depolarization of structures in layer I and these neurons are responsible for recruiting responses in the anterior cortex.  相似文献   

8.
H.J.W. Nauta 《Neuroscience》1979,4(12):1853-1873
The efferent projections of the external pallidal segment (‘globus pallidus’), and the internal pallidal segment (entopeduncular nucleus) were studied in separate experiments in the cat by the auto-radiographic tracing method. Injections of tritiated amino acids into the external pallidal segment resulted in labelling of axon systems distributed not only to the subthalamic nucleus but also in sparser density to the nucleus reticularis thalami, the substantia nigra, the caudate nucleus, the putamen, and as yet undefined areas of the cortex. Injections of tritiated amino acids into the internal pallidal segment resulted in labelling of axon systems distributed to the ventrolateral-ventroanterior complex of the thalamus, to the centrum medianum, the lateral habenular nucleus, and the mesencephalic nucleus tegmenti pedunculopontinus, pars compacta. Less prominent termination may also occur in the parafas-cicular nucleus, the nuclei of the fields of Forel, and in the mesencephalic tegmentum rostral to the nucleus tegmenti pedunculopontinus, pars compacta.The fact that this and previous studies show that the projections of the pallidal complex are more widespread than would be expected if it was only involved in motor functions, raises questions about the functional organization of the basal ganglia. These are discussed in the following paper.  相似文献   

9.
The synaptic responses of entopeduncular and nigral cells to subthalamic stimulation were studied with extracellular recording techniques in rats with and without chronic lesions. Entopeduncular output cells were identified by antidromic activation from the lateral habenula, ventral anterior thalamic nucleus and tegmenti pedunculopontine nucleus. Nigral cells projecting to superior colliculus were identified by antidromic discharge. Stimulation of the subthalamic nucleus produced a short latency suppression of spontaneous activity (10-60 ms duration) of 89% of the entopeduncular cells tested in chronically lesioned rats. Of these cells, 50% were identified as projecting to lateral habenula. On the other hand, subthalamic nucleus stimulation produced a short latency excitation of 73% of the nigral cells tested (4.16 +/- 0.07 ms). Forty-eight percent of these cells projected to superior colliculus. The subthalamic fibres which terminate in entopeduncular nucleus and substantia nigra, come from the same neuronal population since the majority, if not all, rat subthalamic neurones send branched projections to both these nuclei. Therefore, the two different types of responses recorded in these nuclei are elicited by the activation of a single neuronal population. This dual effect could be easily explained if one of the responses is mediated by local interneurones. If not, the same transmitter induces the two responses. The entopeduncular nucleus and substantia nigra which are the main target nuclei of the subthalamic nucleus, are also the only known outputs of the striatum. The subthalamic efferent cells could thus modulate the activity of the entire striatal descending output. It is noteworthy that this subthalamic control is different in entopeduncular nucleus than in substantia nigra.  相似文献   

10.
Summary Injections of 3H-leucine were made in the entopeduncular nucleus or dentate nucleus of the cerebellum in eight cats. The terminal projection zones of both pathways in the thalamus were studied using the sagittal plane and their relationships to one another as well as to cytoarchitectural boundaries of thalamic nuclei were compared. The data indicate that the territories controlled by the two projection systems are almost entirely segregated. The segregation is mainly along the antero-posterior axis as the main pallidal projection zone occupies the medio-ventral VA while the main dentate projection zone lies posterior to it in the VL. Furthermore, the dorsolateral part of the VA not occupied by pallidal projections receives dentate projections. In the VM, both afferent systems terminate in the lateral part of the nucleus with pallidal territory located anteriorly and dentate territory located posteriorly, again without overlap. As the delineations of nuclear subdivisions in the ventral thalamus of the cat have been a subject of some controversy, it is suggested that the boundaries of the VA, VL and VM in the cat thalamus be defined on the basis of basal ganglia and cerebellar projection zones.Abbreviations used in the Text and in Fig. 5 AM anterior medial nucleus - AV anterior ventral nucleus - BC brachium conjunctivum - CA anterior commissure - CC crus cerebri - CP posterior commissure - CD caudate nucleus - CE centrum medianum - CLN central lateral nucleus - DN dentate nucleus - EPN entopeduncular nucleus - FF Forel's field - FN fastigial nucleus - FR fasciculus retroflexus - HL lateral habenular nucleus - HM medial habenular nucleus - INA anterior interposite nucleus - INP posterior interposite nucleus - IC internal capsule - LD lateral dorsal nucleus - LG lateral geniculate body - MD medial dorsal nucleus - MTT mamillothalamic tract - NR red nucleus - OT optic tract - PAC paracentral nucleus - PF parafascicular nucleus - PV pulvinar - RT reticular thalamic nucleus - SM submedian nucleus - SN substantia nigra - SNr substantia nigra pars reticularis - STN subthalamic nucleus - VF ventral posterior nucleus - VA ventral anterior nucleus - VL ventral lateral nucleus - VM ventral medial nucleus - ZI zona incerta Supported in part by a grant from the American Parkinson Disease Association and NIH grant R01NS19280  相似文献   

11.
Using a monoclonal antibody against choline acetyltransferase, neurons of the rat entopenduncular nucleus were found to express choline acetyltransferase immunoreactivity. These cholinergic cells were located mostly in the rostral portion of the entopeduncular nucleus with a marked decrease towards its caudal portion. To identify their target sites, a retrograde fiber tracing technique was combined with immunohistochemistry for choline acetyltransferase. After injection of wheatgerm agglutinin conjugated with horseradish peroxidase into the habenula, some of the entopedunculo-habenular cells were found to be immunoreactive for choline acetyltransferase. The cells in the peripallidal region (the substantia innominata, nucleus basalis magnocellularis and ansa lenticularis) with choline acetyltransferase immunoreactivity did not contain horseradish peroxidase. Following injection of fluorescent tracer into the frontal cerebral cortex, retrogradely labeled cells were observed in the rostral part of the entopedunucular nucleus. A majority of these entopedunculo-cortical cells exhibited choline acetyltransferase immunoreactivity, similar to the cells of the peripallidal region projecting to the neocortex. Employing two different fluorescent tracers, entopedunculo-cortical cells were shown to constitute a distinct cell population from the numerous entopedunculo-habenular cells. The present study demonstrated, in the rat entopeduncular nucleus, the presence of cholinergic neurons that projected to the neocortex and habenula.  相似文献   

12.
Injection of large amounts of a mixture of horseradish peroxidase and wheat germ agglutinin-horseradish peroxidase conjugate into the upper cervical segments of the spinal cord in the Japanese monkey (Macaca fuscata) led to the retrograde labeling of a small number of neuronal cell bodies within the rostral part of the subthalamic nucleus of Luys. Direct projection from the subthalamic nucleus to the spinal cord appeared to be much less prominent in the Japanese monkey than in the cat and rat.  相似文献   

13.
In the present study the cells of origin of basal ganglia projections to the brain stem have been studied with the horseradish peroxidase technique in the lizard, Varanus exanthematicus. Injections of horseradish peroxidase were made at various levels of the brain stem from the mesodiencephalic border to the obex as well as in the tectum mesencephali. Efferent libers from the telencephalon to the diencephalon and the brain stem were found to arise predominantly from the striatum. From the present data it seems likely that the basal ganglia in Varanus exanthematicus as in other reptiles consist of two parts, a rostral ‘striatal’ part with projections mainly to the diencephalon and mesencephalon including the substantia nigra and a caudal ‘pallidal’ part with projections to the intercollicular nucleus and the rhombencephalic reticular formation.Injections of horseradish peroxidase into various parts of the rhombencephalic reticular formation have shown rather extensive projections from diencephalic and mesencephalic structures which receive afferents from the striatum: the posterior entopeduncular nucleus, the intercollicular nucleus and the substantia nigra were found to project as far caudal as the nucleus reticularis inferior. The substantia nigra shows, as regards its fiber connections, striking similarities to the mammalian substantia nigra, whereas the intercollicular nucleus possibly represents the reptilian homologue of the mammalian pedunculopontine nucleus.Injections of horseradish peroxidase into the tectum mesencephali have shown labeled cells in the nucleus of the posterior commissure, the posterior entopeduncular nucleus and the substantia nigra, all centers which are known to receive afferents from the striatum. Thus, the striatum can influence bisynaptically the reptilian homologue of the mammalian superior colliculus.It can be concluded that the striatum of the lizard, Varanus exanthematicus, has extensive direct as well as indirect projections to centers which influence the motor apparatus of the brain stem and spinal cord. Thus in reptiles it seems likely that the striatum exerts its influence on motor activity mainly via descending projections, in contrast to mammals where both descending and ascending striatal efferent pathways occur.  相似文献   

14.
Summary Corticofugal projections were examined by means of the autoradiographic tracer method in 21 macaca fascicularis. The labeled material was injected into the main body representation areas of the precentral motor cortex and into various regions of Brodmann's areas 6, 8 and 9 of the frontal lobe. The ipsilateral subthalamic nucleus receives a moderately strong and somato-topically organized projection from Woolsey's precentral motor cortex. This projection is mainly restricted to the lateral moiety. The remaining nucleus is occupied by less intensive projections from premotor and prefrontal areas. It is concluded that the subthalamic nucleus is a convergence site of pallidal and corticomotor and frontal projections. Cortical afferents may exert an influence on the pallido-subthalamic-pallidal inhibitory feedback loop.  相似文献   

15.
Summary Projections from the basal ganglia to the nucleus tegmenti pedunculopontinus pars compacta (TPC) were studied by using anterograde and retrograde tracing techniques with horseradish peroxidase conjugated with wheat germ agglutinin (WGA-HRP) in the cat. Following WGA-HRP injections into the medial TPC area, a substantial number of retrogradely labeled cells were seen in the entopeduncular nucleus (EP) and medial half of the substantia nigra pars reticulata (SNr), whereas following WGA-HRP injections into the lateral TPC area, labeled cells were marked in the caudal half of the globus pallidus (GP) and lateral half of the SNr. To confirm the retrograde tracing study, WGA-HRP was injected into the EP or the caudal GP, and anterograde labeling was observed in the TPC areas. Terminal labeling was located in the medail TPC area in the EP injection case, while terminal labeling was observed in the lateral TPC area in the caudal GP injection case. Projections from the striatum to the pallidal complex (the EP and the caudal GP) were also studied autoradiographically by injecting amino acids into various parts of the caudate nucleus and the putamen. Terminal labeling was distributed over the whole extent of the EP and the rostral GP following injections into the rostral striatum (the head of the caudate nucleus or the rostral part of the putamen), while terminal labeling was distributed over the caudal GP following injections into the caudal striatum (the body of the caudate nucleus or the caudal part of the putamen). From these findings, we conclude that there exists a medio-lateral topography in the projection from the basal ganglia to the TPC: The EP receives afferent projections from the rostral striatum and projects to the medial TPC area, whereas the caudal GP receives projections from the caudal striatum and sends fibers to the lateral TPC area.Abbreviations BC brachium conjunctivum - CD caudate nucleus - CP cerebral peduncle - DBC decussation of the brachium conjunctivum - EP entopeduncular nucleus - GP globus pallidus - IC internal capsule - ICo inferior colliculus - LH lateral habenular nucleus - ML medial lemniscus - PN pontine nuclei - PUT putamen - SCo superior colliculus - SI substantia innominata - SN substantia nigra - SNc substantia nigra pars compacta - SNr substantia nigra pars reticulata - STN subthalamic nucleus - TH thalamus - TPC nucleus tegmenti pedunculopontinus pars compacta  相似文献   

16.
The sources and distribution of subcortical afferents to the anterior neocortex were investigated in the rat using the horseradish peroxidase technique. Injections into the prefrontal cortex labelled, in addition to the mediodorsal thalamic nucleus, neurons in a total of fifteen subcortical nuclei, distributed in the basal telencephalon, claustrum, amygdala, thalamus, subthalamus, hypothalamus, mesencephalon and pons. Of these, the projections from the zona incerta, the lateroposterior thalamic nucleus, and the parabrachial region of the caudal mesencephalon to the prefrontal cortex have not previously been described.Different parts of the mediodorsal thalamic nucleus project to different areas of the frontal cortex. Thus, horseradish peroxidase injections in the most ventral pregenual part of the medial cortex labelled predominantly neurons in the medial anterior and dorsomedial posterior parts of the mediodorsal nucleus; injections into the more dorsal pregenual area labelled only neurons in the lateral and ventral parts of the nucleus; injections placed supragenually labelled neurons in the dorsolateral posterior part of the nucleus; and injections into the dorsal bank of the anterior rhinal sulcus labelled neurons in the centromedial part of the nucleus.Several other subcortical nuclei had projections overlapping with that of the mediodorsal thalamic nucleus. Five different types of such overlap were distinguished: (1) cell groups labelled after horseradish peroxidase injections into one of the subfields of the projection area of the mediodorsal nucleus (defined as the prefrontal cortex), but not outside this area (parataenial nucleus of the thalamus); (2) cell groups labelled both after injection into a subfield of the projection area of the mediodorsal nucleus and after injections in a restricted area outside this area (anteromedial, ventral and laterposterior thalamic nuclei); (3) cell groups labelled after injections into all subfields of the mediodorsal nucleus projection area, but not outside this area (ventral tegmental area, basolateral nucleus of amygdala); (4) cell groups labelled after injections into any area of the anterior neocortex, including the mediodorsal nucleus projection area (parabrachial neurons of the posterior mesencephalon); (5) cell groups labelled after all neocortical injections investigated (claustrum, magnocellular nuclei of the basal forebrain, lateral hypothalamus, zona incerta, intralaminar thalamic nuclei, nuclei raphe dorsalis and centralis superior, and locus coeruleus).We can draw the following conclusions from these and related findings. First, because of the apparent overlap of projections of the mediodorsal, the anteromedial and ventral thalamic nuclei in the rat, parts of the prefrontal cortex can also be called ‘cingulate’ and ‘premotor’. Second, on the basis of projections from parts of the mediodorsal nucleus, the prefrontal cortex of the rat can be subdivided into areas corresponding to those in other species. Third, the neocortex receives afferents from a large number of subcortical cell groups outside the thalamus, distributed from the telencephalon to the pons; however, the prefrontal cortex seems to be the only neocortical area innervated by the ventral tegmental area and amygdala. Finally, neither the prefrontal cortex nor the mediodorsal thalamic nucleus receives afferents from regions directly involved in sensory and motor functions.  相似文献   

17.
The projections of presumed dopamine-containing neurons in the zona compacta of the substantia nigra and the ventral tegmental area were examined by stereotaxic injections of horseradish peroxidase into diverse cortical and subcortical regions which are known to include dopamine-containing terminals. Neurons in the lateral half of the substantia nigra pars compacta were labelled after injections into the caudolateral aspect of the caudate-putamen, while neurons in the medial part of the substantia nigra pars compacta and lateral aspect of the ventral tegmental area projected to the anteromedial portion of the caudate putamen. Injections of horseradish peroxidase into the amygdala resulted in the appearance of reactive neurons in the anterior portion of the ventral tegmental area, but the more caudally located entorhinal cortex received projections from the posterior half of the ventral tegmental area. Injections of horseradish peroxidase into the frontal cortex, anterior to the genu, produced scattered labelled cells in the rostral half of the ventral tegmental area, whereas more posterior injections into the cingulate cortex resulted in the appearance of reactive cells which were confined to the medial one-quarter of the substantia nigra pars compacta. The near-midline structure, the lateral septum, was innervated by neurons with cell bodies primarily in the medial half of the ventral tegmental area. Injections of horseradish peroxidase into the nucleus accumbens, which contains very high levels of dopamine, resulted in the appearance of many labelled neurons throughout the ventral tegmental area and some reactive neurons in the medial part of the substantia nigra pars compacta. A few labelled cells were also occasionally observed in the contralateral ventral tegmental area after accumbens injections.These results suggest that although there is considerable overlap, and that the same subdivisions within the substantia nigra pars compacta and the ventral tegmental area appear to innervate diverse regions of the forebrain, there also exists a general topographical organization with respect to the projections of these neurons.Injections of horseradish peroxidase into some of the forebrain regions also resulted in the appearance of reactive cells in mesencephalic nuclei not known to contain dopaminergic perikarya. For example, labelled cells were observed in the supramamillary nucleus after injections into the frontal cortex, entorhinal cortex, accumbens and lateral septum. Injections into the amygdala produced reactive cells in the suprageniculate nucleus, the peripeduncular nucleus, and the magnocellular nucleus of the medial geniculate. These latter results are discussed with reference to the possibility that such pathways may mediate the responsiveness of cells in the amygdala to a wide range of sensory stimuli.  相似文献   

18.
Injections of the anterograde tracer Phaseolus vulgaris-leucoagglutinin within the ventromedial thalamic nucleus resulted in many filled fibres in the frontal areas of rat cerebral cortex. The fibres were restricted to the upper part of layer I except in a small area of motor cortex where terminals were also found in deeper layers. Terminals were also seen in the striatum, in parts of the mesencephalic reticular formation and occasionally in the contralateral ventromedial nucleus. There is some topographical order in the projection with medial and dorsal areas well represented in medial cortex while lateral parts of ventromedial nucleus are more directly related to the cortical area that receives the ventrolateral thalamic nucleus projection. Electron microscopic examination showed the terminals in layer I of cortex making synaptic contact with dendritic spines and small dendritic profiles that showed a very dense postsynaptic specialization. Neurons in the ventromedial nucleus could be antidromically driven from electrode positions along strips of cortex which could not be easily related to any known organizational pattern in the cortex. Thalamic neurons responding antidromically to only one stimulation site were more common when the stimulation was within motor cortical areas, suggesting that in this region a more restricted pattern of termination is the rule.  相似文献   

19.
大白鼠缰核传入纤维的起源——HRP法研究   总被引:1,自引:0,他引:1  
用HRP法研究18例大白鼠缰核的传入纤维起源,结果表明:内侧缰核主要接受隔伞核和隔三角核的投射;外侧缰核内侧部主要接受前脑基底部诸结构的投射,而其外侧部主要接受脚内核的投射。缰核各部分同时也接受少量来自斜角核和正中中缝核的传入纤维。  相似文献   

20.
Summary Injections of the wheat germ agglutinin — horse-radish peroxidase complex into the lateral reticular nucleus reveal that in addition to the well known contralateral rubroreticular connection, there is also a small but clear cut ipsilateral projection. Cells of various sizes participate in this ipsilateral pathway, and the retrogradely labelled neurons lie dispersed throughout the entire red nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号