首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Employing both anterograde and retrograde axonal tracing, we investigated direct projections from the central amygdaloid nucleus to the basal ganglia in the cat. The anterograde axonal tracing of Phaseolus vulgaris-leucoagglutinin revealed that projection fibers from the central amygdaloid nucleus to the basal ganglia ended in the globus pallidus (the feline homolog to the external segment of the globus pallidus of primates) and substantia nigra. The amygdalopallidal fibers terminated chiefly in the medial most part of the globus pallidus at its caudal level. The amygdalonigral fibers terminated densely in the substantia nigra pars lateralis, and moderately in the dorsolateral part of the substantia nigra pars reticulata; none of them were found to end in the substantia nigra pars compacta. Both of the amygdalopallidal and amygdalonigral projections were ipsilateral. These neuronal connections were confirmed by retrograde axonal tracing of cholera toxin B subunit in the second set of the experiments: The cells of origin of the amygdalopallidal and amygdalonigral projections were located predominantly in the lateral part of the central amygdaloid nucleus, and additionally in the intercalated cell islands of the amygdala. Most of them were of small bipolar or multipolar type. The cells projecting to the globus pallidus were preferentially distributed at the rostral levels of the central nucleus and intercalated cell islands of the amygdaloid complex, while those projecting to the substantia nigra were mainly located at the caudal levels of these amygdaloid subdivisions. In the third set of the experiments, sequential double-antigen immunofluorescence histochemistry for transported cholera toxin B subunit and horseradish peroxidase showed that some single neurons in the lateral part of the central amygdaloid nucleus, particularly at its middle level, issued axon collaterals to both the globus pallidus and substantia nigra pars lateralis. The results of the present study indicate that the central amygdaloid nucleus sends projection fibers to the globus pallidus and substantia nigra possibly to exert a limbic influence upon forebrain motor mechanisms.  相似文献   

2.
The afferent connections of the rat substantia nigra pars lateralis have been studied using the retrograde axonal transport of fluorescent latex microspheres. The most numerous groups of retrogradely labelled nerve cell bodies were observed bilaterally in the parabrachial complex and several hypothalamic nuclei, whereas the parietal neocortex, the fundus striati, the central nucleus of the amygdala and the bed nucleus of the stria terminalis were labelled on the injected side only. The neuronal projections from the central amygdaloid nucleus to the substantia nigra pars lateralis and lateral part of the rostral pars compacta have additionally been confirmed by anterograde tracing using wheat-germ agglutinin coupled to horseradish peroxidase. The presence of some peptides in this pathway was studied by combining the use of the same retrograde tracer with immunofluorescence after intra-amygdaloid injections of colchicine. With this method, we have demonstrated that Met-enkephalin, dynorphin and neurotensin are probably utilized as neurotransmitters or co-transmitters in the neurons of the amygdalo-nigral pathway.  相似文献   

3.
The projections of presumed dopamine-containing neurons in the zona compacta of the substantia nigra and the ventral tegmental area were examined by stereotaxic injections of horseradish peroxidase into diverse cortical and subcortical regions which are known to include dopamine-containing terminals. Neurons in the lateral half of the substantia nigra pars compacta were labelled after injections into the caudolateral aspect of the caudate-putamen, while neurons in the medial part of the substantia nigra pars compacta and lateral aspect of the ventral tegmental area projected to the anteromedial portion of the caudate putamen. Injections of horseradish peroxidase into the amygdala resulted in the appearance of reactive neurons in the anterior portion of the ventral tegmental area, but the more caudally located entorhinal cortex received projections from the posterior half of the ventral tegmental area. Injections of horseradish peroxidase into the frontal cortex, anterior to the genu, produced scattered labelled cells in the rostral half of the ventral tegmental area, whereas more posterior injections into the cingulate cortex resulted in the appearance of reactive cells which were confined to the medial one-quarter of the substantia nigra pars compacta. The near-midline structure, the lateral septum, was innervated by neurons with cell bodies primarily in the medial half of the ventral tegmental area. Injections of horseradish peroxidase into the nucleus accumbens, which contains very high levels of dopamine, resulted in the appearance of many labelled neurons throughout the ventral tegmental area and some reactive neurons in the medial part of the substantia nigra pars compacta. A few labelled cells were also occasionally observed in the contralateral ventral tegmental area after accumbens injections.These results suggest that although there is considerable overlap, and that the same subdivisions within the substantia nigra pars compacta and the ventral tegmental area appear to innervate diverse regions of the forebrain, there also exists a general topographical organization with respect to the projections of these neurons.Injections of horseradish peroxidase into some of the forebrain regions also resulted in the appearance of reactive cells in mesencephalic nuclei not known to contain dopaminergic perikarya. For example, labelled cells were observed in the supramamillary nucleus after injections into the frontal cortex, entorhinal cortex, accumbens and lateral septum. Injections into the amygdala produced reactive cells in the suprageniculate nucleus, the peripeduncular nucleus, and the magnocellular nucleus of the medial geniculate. These latter results are discussed with reference to the possibility that such pathways may mediate the responsiveness of cells in the amygdala to a wide range of sensory stimuli.  相似文献   

4.
Summary The corticonigral projections from area 6 in the raccoon were investigated using the autoradiographic tracing method. Injections of tritiated proline and leucine were made into either medial or lateral area 6 subdivisions. Uniformly distributed silver grains were observed overlying the ipsilateral substantia nigra pars compacta (SNc) while more restricted foci of label indicative of fiber labeling were present in the substantia nigra pars reticulata (SNr). Autoradiographic label was also present in the substantia nigra pars lateralis (SNl), the retrorubral area and the ventral tegmental area of Tsai. The existence of corticonigral projections from area 6 may serve to modulate SNc activity as a whole and provide an important substrate for the cerebral control of movement.Abbreviations cp cerebral peduncle - IP interpeduncular nucleus - PG pontine gray - R red nucleus - RR retrorubral area - SNc substantia nigra, pars compacta - SNl substantia nigra, pars lateralis - SNr substantia nigra, pars reticularis - VTA ventral tegmental area  相似文献   

5.
M Wassef  A Berod  C Sotelo 《Neuroscience》1981,6(11):2125-2139
An antiserum prepared in the rabbit against bovine adrenal gland tyrosine hydroxylase has been used to identify by the immunoperoxidase method dopaminergic neurons in the rat substantia nigra. The purpose of this identification was (i) to assess the storing compartments and the release sites in the dopamine-containing processes of the pars reticulata; (ii) to determine if these processes receive a direct input from the neostriatum.Immunoreactive neurons were present in the three divisions of the substantia nigra (pars compacta, pars lateralis and pars reticulata), but they were much more numerous in pars compacta. The caudal half and the most rostral end of pars reticulata contained single and small clusters of reactive neurons, which were absent from the remaining regions. Processes emerging from the positive neurons, exhibiting also immunoperoxidase reactivity, spread throughout the whole pars reticulata. The ultrastructural study was limited to the region of the pars reticulata free of reactive perikarya, in order to analyze the processes that originate from neurons located in the pars compacta. Five hundred and eighty well-preserved immunoreactive processes were analyzed. Almost all of them (578) displayed cytological features allowing their identification as dendrites. Two of them corresponded to thin unmyelinated, non-synaptic segments of axons, probably in their way to their terminal fields outside the substantia nigra. The large majority of the reactive dendrites (82%) were postsynaptic to one or several axon terminals and did not establish direct appositions with other dendritic elements. Only 4.35% of the labeled dendrites were directly apposed to other reactive or unreactive dendrites. Two of the labeled dendrites (0.35%) contained synaptic-like vesicles. In one of them, the vesicles were clustered against a restricted area of the plasma-membrane, forming an active zone.In two animals, kainic acid was used to destroy neurons located within the central region of the main body of the neostriatum. Their projections were traced to the ipsilateral substantia nigra, in which dopaminergic neurons were visualized by the immunoperoxidase method. The axons originating from the injured neurons in the striatum established direct synaptic contacts with the immunoreactive dendrites in pars reticulata.These findings indicate that (i) there is no dopaminergic recurrent collateral axonal plexus in pars reticulata; (ii) the dopamine-storing compartment in the dendritic processes is not vesicular; the cisterns of the smooth endoplasmic reticulum might be such a compartment; (iii) The differentiation of presynaptic dendrites which establish typical junctional synaptic complexes does not occur in the dopaminergic dendrites present in pars reticulata; (iv) The proportion of presynaptic release sites observed in dopaminergic dendrites (1 active zone out of the 578 analyzed dendrites) is too low to account for the dendritic release revealed by biochemical analysis (Nieoullou, Chéramy &; Glowinski, 1977a). Therefore, the modality of transmitter release from dopaminergic dendrites must be different from that supposed in the vesicular theory; (v) combined anterograde degeneration and immunocytochemistry has allowed us to demonstrate a direct striatal input to the dopamine-containing dendrites present within the pars reticulata.  相似文献   

6.
The precise neuronal localization of D1 receptors in the substantia nigra has been studied autoradiographically in the rat by measuring the alterations of [3H]SCH 23390 binding site densities in this brain area after 6-hydroxydopamine (6-OHDA) induced destruction of nigrostriatal dopaminergic neurons and after ibotenate-induced lesion of striatal afferents. 6-OHDA-induced nigral lesion provoked a total loss of [3H]SCH 23390 binding sites in the pars compacta and pars lateralis (but not in the pars reticulata) of the substantia nigra. In contrast, ibotenate-induced striatal lesion caused a large diminution of the [3H]ligand binding site density in the pars reticulata but not in the pars compacta and pars lateralis of the substantia nigra. These results suggest that D1 receptors in the pars compacta or pars lateralis of the substantia nigra are located on the dopaminergic perikarya whereas those D1 receptors present in the pars reticulata of the substantia nigra lie on the terminals of nigral afferents of striatal origin.  相似文献   

7.
A combination of fluorescent retrograde tracing and immunofluorescence histochemistry for tyrosine hydroxylase was employed to re-examine the origin of the dopaminergic innervation of the amygdala in the rat. The present data show that the major input source of this innervation includes the subparafascicular thalamic nucleus as well as the substantia nigra pars compacta and ventral tegmental area, but not the substantia nigra pars lateralis.  相似文献   

8.
R P Vertes 《Neuroscience》1984,11(3):669-690
The origins of projections within the medial forebrain bundle from the upper brainstem were examined with the horseradish peroxidase technique. Labeled cells were found in approximately 15 upper brainstem nuclei following injections of a conjugate of horseradish peroxidase and wheat germ agglutinin at various levels of the medial forebrain bundle. Labeled nuclei included (from caudal to rostral): dorsal and ventral parabrachial nuclei; Kolliker-Fuse nucleus; dorsolateral tegmental nucleus; A7 (lateral pontine tegmentum medial to lateral lemniscus); median and dorsal raphe nuclei; distinct group of cells oriented mediolaterally in the dorsal pontine tegmentum below the central gray; B9 (ventral midbrain tegmentum dorsal to medial lemniscus); retrorubral nucleus; nucleus of Darkschewitsch, interfascicular nucleus; rostral and caudal linear nuclei; ventral tegmental area; medial part of substantia nigra, pars compacta; and the supramammillary nucleus. With the exception of the ventral parabrachial nucleus, Kolliker-Fuse, A7, B9 and substantia nigra, pars compacta, each of the nuclei mentioned above sent strong projections along the medial forebrain bundle to the rostral forebrain. Sparse labeling was observed throughout the pontine and midbrain reticular formation. With the exception of the dorsal raphe nucleus, projections to the most anterior regions of the medial forebrain bundle (level of the anterior commissure) essentially only arose from presumed dopamine-containing nuclei-retrorubral nucleus (A8 area), interfascicular nucleus, rostral and caudal linear nuclei, substantia nigra pars compacta, and ventral tegmental area. Evidence was reviewed indicating that major forebrain sites of termination for these dopaminergic nuclei are structures that have been collectively referred to as the 'ventral striatum'. It is concluded from the present findings that several pontine and mesencephalic cell groups are in a position to exert a strong, direct effect on structures in the anterior forebrain and that the medial forebrain bundle is the main communication route between the upper brainstem and the forebrain.  相似文献   

9.
Dopaminergic neurons of the substantia nigra pars compacta are excited by nicotine and acetylcholine, and possess both high-affinity nicotine binding sites and intense acetylcholinesterase activity, consistent with a cholinoceptive role. A probable source of cholinergic afferents is the pedunculopontine nucleus, which forms part of a prominent group of cholinergic perikarya located caudal to the substantia nigra in the tegmentum. Although pedunculopontine efferents, many of them cholinergic, project to the substantia nigra pars compacta, it has not been established whether they terminate in this structure. In the first experiment, which combined retrograde tracing with immunohistochemical visualization of cholinergic neurons, cholinergic cells in and around the pedunculopontine nucleus were found to send projections to the substantia nigra. This projection was almost completely ipsilateral. Subsequent experiments employed anaesthetized rats; kainate was microinfused into tegmental sites in order to stimulate local cholinergic perikarya, and concurrently, extracellular recordings were made of single dopaminergic neurons in the substantia nigra. Consistent with our anatomical findings, unilateral microinfusion of kainic acid in or near the pedunculopontine nucleus increased the firing rate of dopaminergic neurons situated remotely in the ipsilateral substantia nigra. The kainate-induced excitation of nigral dopaminergic neurons was dose-related and was prevented by intravenous administration of the centrally-acting nicotinic cholinergic antagonist mecamylamine. These results suggest that cholinergic perikarya in the vicinity of the pedunculopontine tegmental nucleus innervate dopaminergic neurons in the substantia nigra pars compacta via nicotinic receptors.  相似文献   

10.
本实验用神经元逆行荧光标记和单胺荧光组化联合法研究了大白鼠杏仁核内多巴胺能神经纤维的起源及投射特点。一侧杏仁核注射荧光标记物后,同侧黑质致密部背内份和被盖腹侧区背外份有较多的多巴胺神经元被标记。黑质外侧部、A_8群所在部位及对侧黑质致密部和被盖腹侧区亦有少数多巴胺细胞被标记。同侧黑质致密部和被盖腹侧区内还观察到少数非多巴胺能逆行标记细胞。杏仁核与同侧尾壳核、伏隔核或额前皮质配对注射不同荧光标记物后,同侧被盖腹侧区与黑质致密部的背侧区与腹侧区之间有不少多巴胺神经元被逆行荧光双标记。  相似文献   

11.
Summary Amygdalotegmental projections were studied in 26 cats after injections of horseradish peroxidase (HRP) in the diencephalon, midbrain and lower brain stem and in 6 cats after injection of 3H-leucine in the amygdala. Following HRP injections in the posterior hypothalamus, periaqueductal gray (PAG) and tegmentum many retrogradely labeled neurons were present in the central nucleus (CE) of the amygdala, primarily ipsilaterally. Injections of HRP in the posterior hypothalamus and mesencephalon also resulted in the labeling of neurons in the basal nucleus, pars magnocellularis.Following 3H-leucine injections in CE and adjacent structures autoradiographically labeled fibers were present in the stria terminalis and ventral amygdalofugal pathways. In the mesencephalon heavily labeled fiber bundles were located lateral to the red nucleus. Labeled fibers and terminals were distributed to the mesencephalic reticular formation, substantia nigra, ventral tegmental area and PAG. In the pontine and medullary tegmentum the bulk of passing fibers was located laterally in the reticular formation. Many labeled fibers and terminals were distributed to the parabrachial nuclei, locus coeruleus, nucleus subcoeruleus and lateral tegmental fields. Many terminals were also present in the solitary nucleus and dorsal motor nucleus of the vagus nerve.The location of the cells of origin and the distribution of the terminals of the amygdalotegmental projection suggest that this pathway plays an important role in the integration of somatic and autonomic responses associated with affective defense.Abbreviations A nucleus ambiguus - AL lateral amygdaloid nucleus - AQ cerebral aqueduct - BC brachium conjunctivum - BL basal amygdaloid nucleus, pars magnocellularis - BM basal amygdaloid nucleus, pars parvocellularis - BP brachium pontis - CE central amygdaloid nucleus - CI internal capsule - CN cochlear nucleus - CO cortical amygdaloid nucleus - CP cerebral peduncle - DCN dorsal column nuclei - DMV dorsal motor nucleus of the vagus nerve - E entopeduncular nucleus - F fornix - FLA longitudinal association bundle - GP globus pallidus - H hippocampal formation - 1C inferior colliculus - INJ injection site - LC locus coeruleus - IO inferior olive - LG lateral geniculate nucleus - LRN lateral reticular nucleus - LT lateral tegmental field - M medial amygdaloid nucleus - MB mammilary body - MG medial geniculate nucleus - ML medial lemniscus - MT medial tegmental field - MV motor nucleus of the trigeminus - OC optic chiasm - OT optic tract - P putamen - PAG periaqueductal gray - PB parabrachial nuclei - PC posterior commissure - PH posterior hypothalamus - PT pyramidal tract - PV principal sensory nucleus of the trigeminus - PYR pyriform cortex - R red nucleus - RF reticular formation - S solitary nucleus - SC nucleus subcoeruleus - SN substantia nigra - SO superior olive - SOL solitary nucleus - SPV spinal trigeminal complex - ST stria terminalis - VC vestibular complex - VTA ventral tegmental area - VII facial nucleus - XII hypoglossal nucleus  相似文献   

12.
The most prominent progressive neurodegenerative movement disorder, Parkinson's disease, is attributed to selective loss of dopamine neurons in the substantia nigra pars compacta, resulting in severe deficiency of dopamine. The homeo-domain gene, Pit x 3, is essential for proper development of midbrain dopaminergic neurons in the substantia nigra pars compacta and might be involved in midbrain dopaminergic survival pathways. The mGluR1-signaling downstream-effector phospholipase C beta 4 was identified in a suppression subtractive hybridization screen comparing wild-type and Pit x 3-deficient Aphakia midbrain dopaminergic neurons. Expression pattern analysis revealed that phospholipase C beta 4 was expressed in midbrain dopaminergic neurons of the substantia nigra pars compacta and part of the ventral tegmental area, whereas expression of mGluR1alpha was predominantly observed in the more vulnerable midbrain dopaminergic neurons in the lateral substantia nigra pars compacta. However, clear expression of phospholipase C beta 4 in spared midbrain dopaminergic neurons of Aphakia mice located in the ventral tegmental area, indicated that induction and maintenance of phospholipase C beta 4 expression is Pit x 3-independent in these neurons. Furthermore, we report here a normal distribution of midbrain dopaminergic cell bodies and axonal projection to the striatum in phospholipase C beta 4-/- mice, indicating that signaling of phospholipase C beta 4 is not essential for the survival of midbrain dopaminergic neurons.  相似文献   

13.
Summary Injections of HRP in the nucleus raphe magnus and adjoining medial reticular formation in the cat resulted in many labeled neurons in the lateral part of the bed nucleus of the stria terminalis (BNST) but not in the medial part of this nucleus. HRP injections in the nucleus raphe pallidus and in the C2 segment of the spinal cord did not result in labeled neurons in the BNST. Injections of 3H-leucine in the BNST resulted in many labeled fibers in the brain stem. Labeled fiber bundles descended by way of the medial forebrain bundle and the central tegmental field to the lateral tegmental field of pons and medulla. Dense BNST projections could be observed to the substantia nigra pars compacta, the ventral tegmental area, the nucleus of the posterior commissure, the PAG (except its dorsolateral part), the cuneiform nucleus, the nucleus raphe dorsalis, the locus coeruleus, the nucleus subcoeruleus, the medial and lateral parabrachial nuclei, the lateral tegmental field of caudal pons and medulla and the nucleus raphe magnus and adjoining medial reticular formation. Furthermore many labeled fibers were present in the solitary nucleus, and in especially the peripheral parts of the dorsal vagal nucleus. Finally some fibers could be traced in the marginal layer of the rostral part of the caudal spinal trigeminal nucleus. These projections appear to be virtually identical to the ones derived from the medial part of the central nucleus of the amygdala (Hopkins and Holstege 1978). The possibility that the BNST and the medial and central amygdaloid nuclei must be considered as one anatomical entity is discussed.Abbreviations AA anterior amygdaloid nucleus - AC anterior commissure - ACN nucleus of the anterior commissure - ACO cortical amygdaloid nucleus - AL lateral amygdaloid nucleus - AM medial amygdaloid nucleus - APN anterior paraventricular thalamic nucleus - AQ cerebral aqueduct - BC brachium conjunctivum - BIC brachium of the inferior colliculus - BL basolateral amygdaloid nucleus - BNSTL lateral part of the bed nucleus of the stria terminalis - BNSTM medial part of the bed nucleus of the stria terminalis - BP brachium pontis - CA central nucleus of the amygdala - Cd caudate nucleus - CI inferior colliculus - CL claustrum - CN cochlear nucleus - CP posterior commissure - CR corpus restiforme - CSN superior central nucleus - CTF central tegmental field - CU cuneate nucleus - D nucleus of Darkschewitsch - EC external cuneate nucleus - F fornix - G gracile nucleus - GP globus pallidus - HL lateral habenular nucleus - IC interstitial nucleus of Cajal - ICA internal capsule - IO inferior olive - IP interpeduncular nucleus - LC locus coeruleus - LGN lateral geniculate nucleus - LP lateral posterior complex - LRN lateral reticular nucleus - MGN medial geniculate nucleus - MLF medial longitudinal fascicle - NAdg dorsal group of nucleus ambiguus - NPC nucleus of the posterior commissure - nV trigeminal nerve - nVII facial nerve - OC optic chiasm - OR optic radiation - OT optic tract - P pyramidal tract - PAG periaqueductal grey - PC cerebral peduncle - PO posterior complex of the thalamus - POA preoptic area - prV principal trigeminal nucleus - PTA pretectal area - Pu putamen - PUL pulvinar nucleus - R red nucleus - RF reticular formation - RM nucleus raphe magnus - RP nucleus raphe pallidus - RST rubrospinal tract - S solitary nucleus - SC suprachiasmatic nucleus - SCN nucleus subcoeruleus - SI substantia innominata - SM stria medullaris - SN substantia nigra - SO superior olive - SOL solitary nucleus - SON supraoptic nucleus - spV spinal trigeminal nucleus - spVcd spinal trigeminal nucleus pars caudalis - ST stria terminalis - TRF retroflex tract - VC vestibular complex - VTA ventral tegmental area of Tsai - III oculomotor nucleus - Vm motor trigeminal nucleus - VI abducens nucleus - VII facial nucleus - Xd dorsal vagal nucleus - XII hypoglossal nucleus  相似文献   

14.
The present study was undertaken to provide anatomical evidence, in the rat, for a direct projection from the cerebellum towards structures, other than the red nucleus, which belong to the ventral midbrain tegmentum, by using the retrograde as well as the anterograde horseradish peroxidase transport method. Following unilateral injection in the ventral midbrain tegmentum of horseradish peroxidase, free or conjugated to wheat germ agglutinin, sparing the red nucleus, retrogradely labeled neurons were found in the contralateral cerebellar lateral nucleus and, at lower density, in the interpositus nucleus. No labeled neurons were found in the fastigial nucleus of either side. Anterogradely labeled axons from lectin coupled horseradish peroxidase injection sites in the lateral and interpositus nuclei reached the contralateral ventral midbrain tegmentum. Terminal labeling was observed in the entire red nucleus as well as in the lateral division of the ventral tegmental area of Tsai, in the dorsal region of the substantia nigra pars compacta, and in the medial part of the retrorubral field. No terminal labeling was found in the caudal linear nucleus, interfascicular nucleus, peripeduncular nucleus, rostral linear nucleus of the raphe, substantia nigra pars lateralis and the substantia nigra pars reticulata. Terminal labeling was also not observed in the ventral midbrain tegmentum following horseradish peroxidase injection in lateral and interpositus nuclei of rats pretreated with kainic acid. In conclusion, it is noteworthy that, besides the red nucleus, the sole structures of ventral midbrain tegmentum receiving cerebellar efferents are those with a higher density of dopaminergic cells.  相似文献   

15.
The topographic organization of the nigral cells sending axons to the striatum, amygdala and inferior colliculus was studied in the rat substantia nigra pars lateralis by using retrograde fluorescent tracers. Nigral perikarya projecting to the inferior colliculus were located dorsolaterally within the substantia nigra pars lateralis, whereas nigral perikarya projecting to the striatum or to the amygdala were mostly situated ventromedially within the substantia nigra pars lateralis. The transmitter substances of the nigrotectal cells were examined by combining a retrograde tracing method with immunohistochemistry for tyrosine hydroxylase or glutamate decarboxylase. Nigral neurons projecting to the inferior colliculus lacked tyrosine hydroxylase immunoreactivity, but exhibited immunoreactivity for glutamate decarboxylase. The substantia nigra pars lateralis is made up of different neuronal populations: one projecting to the inferior colliculus and another directed to the striatum and amygdala. The pars lateralis pathway to the inferior colliculus utilized GABA as a neurotransmitter, whereas the previously characterized nigral cells projecting to the striatum and superior colliculus use GABA and dopamine as neurotransmitters.  相似文献   

16.
Previous [3H]thymidine studies in Nisslstained sections in rats established that the substantia nigra pars compacta and the ventral tegmental area originate sequentially according to an anterolateral to posteromedial neurogenetic gradient. We investigated whether that same pattern is found in mice in the dopaminergic neurons in each of these structures. Using tyrosine hydroxylase immunostaining combined with [3H]thymidine autoradiography, the time of origin of dopaminergic midbrain neurons in the retrorubral field, the substantia nigra pars compacta, the ventral tegmental area, and the interfascicular nucleus was determined in postnatal day 20 mice. The dams of the experimental animals were injected with [3H]thymidine on embryonic days (E) 11–E12, E12–E13, E13–E14, and E14–E15. The time of origin profiles for each group indicated significant differences between populations. The retrorubral field and the substantia nigra pars compacta arose nearly simultaneously and contained the highest proportion of neurons, 49 to 37%, generated on or before E11. Progressively fewer early-generated neurons were found in the ventral tegmental area (20%), and the interfascicular nucleus (8.5%). In addition, anterior dorsolateral neurons in the substantia nigra and ventral tegmental area were more likely to be generated early than the posterior ventromedial neurons. These findings indicate that mouse and rat brains have nearly identical developmental patterns in the midbrain, and neurogenetic gradients in dopaminergic neurons are similar to those found in Nissl studies in rats.  相似文献   

17.
Amygdala dysfunction has been reported among patients with various psychiatric disorders, and dopamine is critical to the amygdala's ability to mediate fear conditioning. Recent work indicates that the midbrain dopaminergic neurons have heterogeneous receptor and membrane channel profiles, as well as differential physiologic responses to discrete stimuli. To begin understanding how dopamine affects amygdala physiology and pathology in higher primates, we mapped the inputs from the midbrain dopaminergic neurons to various amygdala nuclei in the monkey using retrograde and anterograde tracing techniques, and single and double immunofluorescence histochemistry for tracer and tyrosine hydroxylase, a dopamine marker. Our results show that the primate amygdala as a whole receives broad input, mostly from the dorsal tier of the substantia nigra, pars compacta, and the A8-retrorubral field. Input from the A10-ventral tegmental area, while present, was less prominent. These results differ from data in the rat, where the midline A10-ventral tegmental area is a major source of dopamine to the amygdala “mesolimbic” pathway. Both the “amygdala proper” and the “extended amygdala” receive the majority of their input from the dorsal tier of the substantia nigra and A8-retrorubral field, but the extended amygdala receives additional modest input from the ventral tier. In addition, the “extended amygdala” structures have a denser input than the “amygdala proper,” with the exception of the lateral core of the central nucleus, which receives no input. Our anterograde studies confirm these findings, and revealed fine, diffuse terminal fibers in the amygdala proper, but a denser network of fibers in the extended amygdala outside the lateral core of the central nucleus. These results indicate that the entire extent of the dorsal tier beyond the A10-ventral tegmental area may regulate the amygdala in primates, and subsequently serve as a source of dysfunction in primate psychopathology.  相似文献   

18.
The cellular origin and degree of collateralization of the subcortical afferents to the caudate nucleus and the putamen in squirrel monkeys (Saimiri sciureus) were studied using the following combinations of fluorescent retrograde tracers: Evans blue and DAPI-Primuline, Fast blue and Nuclear yellow, True blue and Nuclear yellow. After the injections, cells containing the tracer delivered in caudate nucleus (caudate-labeled cells) and others labeled with the complementary tracer injected in putamen (putamen-labeled cells) occur in large number in intralaminar nuclei, substantia nigra pars compacta, midbrain raphe nuclei and central midbrain tegmentum. In addition, a small to moderate number of putamen-labeled cells is found in external pallidum, pulvinar and laterodorsal thalamic nuclei, and basolateral amygdaloid nucleus, whereas some caudate and putamen-labeled cells are scattered in ventral tegmental area and locus coeruleus. However, very few double-labeled cells are present in all these structures. In rostral intralaminar nuclei, the labeled cells are not confined to the known cytoarchitectonic boundaries of the nuclei but impinge slightly upon ventrolateral and mediodorsal nuclei. At this level, the caudate-labeled cells lie more dorsally and medially relative to putamen-labeled cells, but a high degree of intermingling exists and some double-labeled cells occur particularly in nucleus centralis lateralis. In caudal intralaminar nuclei, caudate-labeled cells are strictly confined to parafascicular nucleus and putamen-labeled cells present only in centre median, without any overlap between the two neuronal populations. In substantia nigra pars compacta, clusters of caudate-labeled cells are closely intermingled with clusters of putamen-labeled cells according to a complex mosaic-like pattern that varies along the rostrocaudal extent of the structure. Overall, however, caudate-labeled cells predominate rostrodorsally and putamen-labeled cells are more abundant caudoventrally in substantia nigra pars compacta, with only a few double-labeled cells. Some caudate and putamen-labeled cells are also scattered in contralateral substantia nigra pars compacta. In dorsal raphe nucleus, putamen-labeled cells tend to occupy a more lateral position relative to caudate-labeled cells, with again very few double-labeled neurons. The caudate and putamen-labeled cells are less numerous and more closely intermingled in nucleus centralis superior. Numerous striatal afferent cells are also found bilaterally in the peribrachial region of midbrain tegmentum, comprising the pedunculopontine nucleus area. There, the putamen-labeled cells are slightly more numerous than the caudate-labeled cells with less than 10% of these neurons being double-labeled.

Our findings suggest that the subcortical afferents to caudate and to putamen in primates arise largely from different neurons in thalamus and midbrain. These two types of striatal afferent neurons are distributed according to various patterns that are much more complex than could have been inferred from current knowledge of the topographical organization of striatal afferents.  相似文献   


19.
Zhang J  Stanton DM  Nguyen XV  Liu M  Zhang Z  Gash D  Bing G 《Neuroscience》2005,135(3):829-838
Increasing evidence suggests that abnormal iron handling may be involved in the pathogenesis of Parkinson's disease. The present study investigates the role of iron and the iron-storage protein ferritin in inflammation-induced degeneration of dopaminergic neurons of the substantia nigra pars compacta. Injection of lipopolysaccharide into the globus pallidus of young and middle-aged rats substantially decreased tyrosine hydroxylase immunostaining in substantia nigra pars compacta four weeks after injection. Loss of tyrosine hydroxylase expression was accompanied by increased iron and ferritin levels in glial cells of the substantia nigra pars reticulata. Despite greater increases in nigral iron levels, ferritin induction was less pronounced in older rats, suggesting the regulation of ferritin was compromised with age. Automated movement tracking analyses showed that young rats recovered from LPS-induced locomotor deficits within four weeks, yet older rats failed to improve on measures of speed and total distance moved. Intrapallidal lipopolysaccharide injection also increased expression of alpha-synuclein and ubiquitin in tyrosine hydroxylase-positive neurons of the substantia nigra pars compacta. These results suggest that pallidal inflammation significantly increases stress on dopamine-containing neurons in the substantia nigra pars compacta. Alterations in nigral iron levels and protein handing may increase the vulnerability of nigral neurons to degenerative processes.  相似文献   

20.
J L Fudge  S N Haber 《Neuroscience》2001,104(3):807-827
The 'extended amygdala', a forebrain continuum implicated in complex motivational responses, is comprised of the bed nucleus of the stria terminalis and its sublenticular extension into the centromedial amygdala. Dopamine is also involved in motivated behavior, and is increased in several brain regions by emotionally relevant stimuli. To examine how the extended amygdala influences the dopamine cells, we determined the organization of inputs from subdivisions of the bed nucleus of the stria terminalis and sublenticular extended amygdala to the dopamine subpopulations in monkeys. Inputs from the bed nucleus of the stria terminalis and corresponding regions of the sublenticular extended amygdala are differentially organized. The medial bed nucleus of the stria terminalis and its medial sublenticular extension have a mediolateral organization with the densest inputs to the medial substantia nigra, pars compacta, and relatively few inputs to the central and lateral substantia nigra. In contrast, the lateral bed nucleus of the stria terminalis (and its continuation into the sublenticular extended amygdala) projects across the mediolateral extent of the substantia nigra. The subnuclei of the lateral bed nucleus of the stria terminalis also have differential projections to the dopamine cells. While the central core of the lateral bed nucleus of the stria terminalis has restricted inputs, the surrounding dorsolateral, capsular and juxtacapsular subdivisions project strongly to the dorsal tier dopamine neurons. The posterior subdivision of the lateral bed nucleus of the stria terminalis and its continuation into the central sublenticular extended amygdala project more broadly to both the dorsal tier and densocellular region of the ventral tier.From these results we suggest that specific subdivisions of the bed nucleus of the stria terminalis have differential influences on the dopamine subpopulations, influencing dopamine responses in diverse brain regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号