首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cortical, thalamic, and amygdaloid projections of the rat anterior and posterior insular cortices were examined using the anterograde transport of biocytin. Granular and dysgranular posterior insular areas between bregma and 2 mm anterior to bregma projected to the gustatory thalamic nucleus. Granular cortex projected to the subjacent dysgranular cortex which in turn projected to the agranular (all layers) and granular cortices (layers I and VI). Both granular and dysgranular posterior areas projected heavily to the dysgranular anterior insular cortex. Agranular posterior insular cortex projected to medial mediodorsal nucleus, agranular anterior insular and infralimbic cortices as well as granular and dysgranular posterior insula. No projections to the amygdala were observed from posterior granular cortex, although dysgranular cortex projected to the lateral central nucleus, dorsolateral lateral nucleus, and posterior basolateral nucleus. Agranular projections were similar, although they included medial and lateral central nucleus and the ventral lateral nucleus. Dysgranular anterior insular cortex projected to lateral agranular frontal cortex and granular and dysgranular posterior insular regions. Agranular anterior insular cortex projected to the dysgranular anterior and prelimbic cortices. Anterior insuloamygdaloid projections targeted the rostral lateral and anterior basolateral nuclei with sparse projections to the rostral central nucleus. The data suggest that the anterior insula is an interface between the posterior insular cortex and motor cortex and is connected with motor-related amygdala regions. Amygdaloid projections from the posterior insular cortex appear to be organized in a feedforward parallel fashion targeting all levels of the intraamygdaloid connections linking the lateral, basolateral, and central nuclei . J. Comp. Neurol. 399:440–468, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
We have previously described the origins of neocortical inputs to the lateral nucleus of the macaque monkey amygdala based on retrograde tracing studies. Here we report results from studies that have attempted to confirm the projections from several candidate afferent regions using (3)H-amino acid autoradiography as an anterograde tracer. We have charted, based on the results of 33 separate injections, the topographic distribution of cortical projections throughout the amygdala. Areas TE and TEO of the inferotemporal cortex, portions of the superior temporal gyrus, and the granular region of the insula project primarily to the lateral nucleus, with little or no innervation of other amygdaloid nuclei. In contrast, orbitofrontal, medial prefrontal, and anterior cingulate regions project primarily to the basal and accessory basal nuclei and provide little innervation to the lateral nucleus. The orbitofrontal and medial prefrontal cortices, but not the anterior cingulate cortex, project to medially situated amygdaloid areas such as the cortical and medial nuclei and to the periamygdaloid cortex. The agranular and dysgranular insula, the parainsula, and rostral portions of the superior temporal gyrus project both to the lateral, basal, and accessory basal nuclei and to the medially situated nuclei. Projections to the central nucleus are particularly prominent from these regions. These data are discussed in relation to the hierarchical processing of sensory information that occurs within the amygdaloid complex.  相似文献   

3.
The afferent projections to the primate amygdala were studied using horseradish peroxidase. The potential advantages of this technique are discussed compared with those previously used to determine amygdaloid afferents. The findings indicate that certain agranular or dysgranular cortical regions may project directly to the amygdala: in particular, the orbital frontal cortex, anterior cingulate gyrus, subcallosal gyrus, temporal pole and anterior insula. These projections probably terminate predominantly in either the lateral or accessory basal nuclei. Other cortical projections from the inferotemporal and superior temporal gyri are described. Evidence was found for a heavy projection from the superior temporal sulcus to the lateral nucleus. Subcortical afferents were found from the hypothalamus, substantia innominata, diagonal band, thalamus, periaqueductal central gray, peripeduncular nucleus and from a band of cells extending medially from the peripeduncular nucleus to the midline, just ventral to the thalamus. In the thalamus, labelled cells were restricted to the non-specific nuclei, and were common in the rostral midline nuclei. No projection was observed from the dorsomedial nucleus of the thalamus. We discuss the implications of these results for interpreting the functions of the amygdala.  相似文献   

4.
The insula sends neural efferents to cortical areas from which it receives reciprocal afferent projections. A collective consideration of afferents and efferents indicates that the insula has connections with principal sensory areas in the olfactory, gustatory, somesthetic (SI and SII), and auditory AI and AII) modalities. There are additional connections with association areas for the visual (TEm), auditory (supratemporal plane), and somesthetic (posterior parietal cortex) modalities; with parameter cortex (area 6 and perhaps MII); with polymodal association cortex; and with a wide range of paralimbic areas in the orbital, temporopolar, and cingulate areas. The topographic distribution of these connections suggests that the posterodorsal insula is specialized for auditory-somesthetic-skeletomotor function whereas the anteroventral insula is related to olfactory-gustatory-autonomic function. Most of the insula, especially its anteroventral portions, have extensive interconnections with limbic structures. Through its connections with the amygdala, the insula provides a pathway for somatosen-sory, auditory, gustatory, olfactory, and visceral sensations to reach the limbic system. The cortical areas connected with the granular sector of the insula are also granular in architecture whereas virtually all the connections of the agranular insula arise from allocortical, agranular, or dysgranular areas. Thus, there is a correspondence between the architecture of insular sectors and the areas with which they have connections. The insula is heavily interconnected with temporopolar and lateral orbital areas. Furthermore, many cortical connections of the lateral orbital cortex are quite similar to those of the insula. These common connectivity patterns support the conclusion, based on architectonic observations, that the insulo-orbito-tempo-ropolar component of the paralimbic brain should be considered as an integrated unit of cerebral organization.  相似文献   

5.
Neural inputs into the temporopolar cortex of the rhesus monkey   总被引:4,自引:0,他引:4  
Temporopolar cortex (TP) can be subdivided into agranular, dysgranular, and granular components. The telencephalic input into the temporopolar cortex arises from the orbitofrontal and medial frontal regions, modality-specific visual and auditory association areas, paralimbic regions, the piriform olfactory cortex, the hippocampus, the amygdala, the claustrum, and the basal forebrain. Afferents from limbic and paralimbic regions are directed mostly to the agranular and dysgranular sectors of the temporal pole, whereas afferents from isocortical association areas are distributed predominantly within the granular sector. The temporopolar cortex provides a site for the potential convergence of sensory and limbic inputs. Auditory inputs predominate in the dorsolateral part of the temporopolar cortex whereas visual inputs become prominent only in the ventral portions of this region. Olfactory inputs are directed mostly to the medial parts of the temporal pole. These medial parts also receive more extensive projections from the amygdaloid nuclei.  相似文献   

6.
The corticothalamic projections from the cat limbic cortex have been investigated with anterograde and retrograde axonal transport techniques. Five limbic cortical areas—the anterior limbic area, the cingular area, the granular and dysgranular retrosplenial areas, and the presubiculum—were identified on the basis of their cytoarchitecture. Emphasis was placed on determining the laminar distribution of the cells of origin of the efferent projections, the projection pathways, and the sites of termination within the thalamus. Projections to the thalamus originate in layers V and VI of limbic cortex. In the cingular region the cells of origin are predominantly in layer V and to a lesser extent in layer VI, while the majority of cells projecting from the more caudal retrosplenial areas and presubiculum are in layer VI. There are two fiber pathways from each cortical area to the thalamus. One system of fibers passes through the internal capsule and lateral thalamic peduncle, and a second system travels in the cingulate fasciculus before piercing the corpus callosum to join the postcommissural fornix. The lateral dorsal nucleus and the anterior nuclear group, including the anterior dorsal, anterior ventral, and anterior medial nuclei, are the major thalamic recipients of projections from limbic cortex. Corticothalamic projections also terminate sparsely in the midline and intralaminar nuclear complex, including the central lateral, central dorsal, paracentral, central medial, rhomboid, and reuniens nuclei. Projections from the anterior limbic area project predominantly to the anterior medial, centrall lateral, and paracentral nuclei. The anterior ventral nucleus, anterior medial nucleus, and lateral dorsal nucleus are the major thalamic recipients of projections from the cingular area, the granular and dysgranular retro-splenial areas, and the presubiculum. It appears that the anterior dorsal nucleus receives afferents only from the dysgranular retrosplenial area. Bilateral corticothalamic projections were found in the anterior medial, dorsal medial, central lateral, central medial, paracentral, and reuniens nuclei.  相似文献   

7.
The cortical and subcortical forebrain connections of the marmoset prefrontal cortex (PFC) were examined by injecting the retrograde tracer, choleratoxin, and the anterograde tracer, biotin dextran amine, into four sites within the PFC. Two of the sites, the lateral and orbital regions, had previously been shown to provide functionally dissociable contributions to distinct forms of behavioral flexibility, attentional set-shifting and discrimination reversal learning, respectively. The dysgranular and agranular regions lying on the orbital and medial surfaces of the frontal lobes were most closely connected with limbic structures including cingulate cortex, amygdala, parahippocampal cortex, subiculum, hippocampus, hypothalamus, medial caudate nucleus, and nucleus accumbens as well as the magnocellular division of the mediodorsal nucleus of the thalamus and midline thalamic nuclei, consistent with findings in the rhesus monkey. In contrast, the granular region on the dorsal surface closely resembled area 8Ad in macaques and had connections restricted to posterior parietal cortex primarily associated with visuospatial functions. However, it also had connections with limbic cortex, including retrosplenial and caudal cingulate cortex as well as auditory processing regions in the superior temporal cortex. The granular region on the lateral convexity had the most extensive connections. Based on its architectonics and functionality, it resembled areas 12/45 in macaques. It had connections with high-order visual processing regions in the inferotemporal cortex and posterior parietal cortex, higher-order auditory and polymodal processing regions in the superior temporal cortex. In addition it had extensive connections with limbic regions including the amygdala, parahippocampal cortex, cingulate, and retrosplenial cortex.  相似文献   

8.
Limbic system influences on motor behavior seem widespread, and could range from the initiation of action to the motivational pace of motor output. Motor abnormalities are also a common feature of psychiatric illness. Several subcortical limbic-motor entry points have been defined in recent years, but cortical entry points are understood poorly, despite the fact that a part of the limbic lobe, the cingulate motor cortex (area 24c or M3, and area 23c or M4), contributes axons to the corticospinal pathway. Using retrograde and anterograde tracers in rhesus monkeys, we investigated the ipsilateral limbic input to area 24c and adjacent area 23c. Limbic cortical input to areas 24c and 23c arise from cingulate areas 24a, 24b, 23a, 23b, and 32, retrosplenial areas 30 and 29, and temporal areas 35, TF and TH. Areas 24c and 23c were also interconnected strongly. The dysgranular part of the orbitofrontal cortex and insula projects primarily to area 24c while the granular part of the orbitofrontal cortex and insula projects primarily to area 23c. Afferents from cingulate area 25, the retrocalcarine cortex, temporal pole, entorhinal cortex, parasubiculum, and the medial part of area TH target primarily or only area 24c. Our findings indicate that a variety of telencephalic limbic afferents converge on cortex lining the lower bank and fundus of the anterior part of the cingulate sulcus. Because it is known that this cortex gives rise to axons ending in the spinal cord, facial nucleus, pontine gray, red nucleus, putamen, and primary and supplementary motor cortices, we suggest that the cingulate motor cortex forms a strategic cortical entry point for limbic influence on the voluntary motor system.  相似文献   

9.
Shibata H  Naito J 《Brain research》2005,1059(1):93-103
The anterior and laterodorsal thalamic nuclei provide massive projections to the anterior cingulate and frontal cortices in the rat. However, the organization of reciprocal corticothalamic projections has not yet been studied comprehensively. In the present study, we clarified the organization of anterior cingulate and frontal cortical projections to the anterior and laterodorsal thalamic nuclei, using retrograde and anterograde axonal transport methods. The anteromedial nucleus (AM) receives mainly ipsilateral projections from the prelimbic and medial orbital cortices and bilateral projections from the anterior cingulate and secondary motor cortices. The projections from the anterior cingulate cortex are organized such that the rostrocaudal axis of the AM corresponds to the rostrocaudal axis of the cortex, whereas those from the secondary motor cortex are organized such that the rostrocaudal axis of the AM corresponds to the caudorostral axis of the cortex. The ventromedial part of the anteroventral nucleus receives ipsilateral projections from the anterior cingulate cortex and bilateral projections from the secondary motor cortex, in a topographic manner similar to the projections to the AM. The ventromedial part of the laterodorsal nucleus (LD) receives ipsilateral projections from the anterior cingulate and secondary motor cortices. The projections are roughly organized such that more dorsal and ventral regions within the ventromedial LD receive projections preferentially from the anterior cingulate cortex. The difference in anterior cingulate and frontal cortical projections to the anterior and laterodorsal nuclei may suggest that each thalamic nucleus plays a different functional role in spatial memory processing.  相似文献   

10.
The corticoamygdaloid and intraamygdaloid projections of the rat were studied by the use of retrograde transport of horseradish peroxidase (HRP). Observations based on anterograde transport of the enzyme were exploited to determine the course of the intrinsic connections. The HRP was injected stereotactically by means of iontophoresis. Most of the amygdaloid nuclei were selectively injected, and all but a few were reached by more than one approach. The vast majority of corticoamygdaloid fibers was found to originate in cortical areas defined as allocortical (Stephan, 1975). From the medial frontal cortex the central amygdaloid nucleus (AC) receives a hitherto undescribed projection originating in the tenia tecta; and both the AC and the lateral amygdaloid nucleus (AL) receive fibers from the prelimbic and infralimbic areas. The anterior cingulate area entertains a weak connection with the basolateral amygdaloid nucleus (BL). As to the insular cortex, the posterior agranular insular area projects to all amygdaloid subdivisions; the BL, AC, and the anterior cortical nucleus (COa) receive, in addition, fibers from the ventral agranular area. The prepyriform cortex connects with the entire amygdala except the medial nucleus (Am) The amygdala receives afferents from a transitional area between the amygdala and the entorhinal area. The entorhinal area proper is related to the amygdala via projections from the ventral part of the lateral entorhinal area to the AL and from the dorsal part of the lateral entorhinal area to the BL. The former nucleus also receives fibers from the perirhinal region. Additional amygdalopetal connections from the hippocampal region include a previously undescribed projection from the temporal two-thirds of CA1 to the AL and BL and to the posterior cortical nucleus (COp) with the adjacent periamygdaloid cortex (PAC). The subiculum projects to the AL, and more modestly to other amygdaloid nuclei There is an extensive network of intraamygdaloid connections, the Am and AC being the only nuclei not giving rise to intrinsic fibers.  相似文献   

11.
Unilateral partial ablations were made in the orbitofrontal cortex of 4 adult marmosets(Saguinus oedipus) and fiber degeneration was traced using the Nauta-Gygax and Fink-Heimer selective silver impregnation techniques. Corticocortical projections were found to the ipsilateral convexity and medial aspect of the frontal lobe and to the homologous orbitofrontal areas of the contralateral hemisphere. Fiber degeneration was followed through the uncinate fascicle to the temporal and insular cortices, and caudally into the rostrolateral entorhinal cortex. Other fibers joined the cingulum bundle and terminated throughout the cingulate cortex.Subcortical projections were observed to the lateral and basal amygdaloid nuclei, caudate head, ventrolateral putamen and ventral claustrum. The lateral preoptic and hypothalamic areas received a small number of fibers, as did the intralaminar and reticular thalamic nuclei. The dorsomedial nucleus of the thalamus was recipient of a large group of fibers which followed the ventral internal capsule and joined the inferior thalamic peduncle to terminate there. Preterminal debris appeared heaviest in the dorsomedial thalamic nucleus, pars magnocellularis (MDmc) in more caudal orbital lesions. A subthalamic projection to field H of Forel was observed. A small number of fibers terminated in the lateral midbrain tegmentum, but no appreciable fiber degeneration was observed more caudally than the midbrain. These results are compared in some areas to findings in the rhesus monkey. The possibility of a topical organization in the orbital cortical and thalamic projections is discussed.  相似文献   

12.
The aim of the experiments reported here was to identify cortical and subcortical forebrain structures from which anterior cingulate cortex (CGa) receives input in the cat. Deposits of retrograde tracers were placed at nine sites spanning the anterior cingulate area and patterns of retrograde transport were analyzed. Thalamic projections to CGa, in descending order of strength, originate in the anteromedial nucleus, lateroposterior nucleus, ventroanterior nucleus, rostral intralaminar complex, reuniens nucleus, mediodorsal nucleus, and laterodorsal nucleus. Minor and inconsistent ascending pathways arise in the paraventricular, parataenial, parafascicular, and subparafascicular thalamic nuclei. The basolateral nucleus of the amygdala, the hypothalamus, the nucleus of the diagonal band, and the claustrum are additional sources of ascending input. Cortical projections to CGa, in descending order of strength, derive from posterior cingulate cortex, prefrontal cortex, motor cortex (areas 4 and 6), parahippocampal cortex (entorhinal, perirhinal, postsubicular, parasubicular, and subicular areas), insular cortex, somesthetic cortex (areas 5 and SIV), and visual cortex (areas 7p, 20b, AMLS, PS and EPp). In general, the limbic, sensory, and motor afferents of CGa are weak. The dominant sources of input to CGa are other cortical areas with high-order functions. This finding calls into question the traditional characterization of cingulate cortex as a bridge between neocortical association areas and the limbic system.  相似文献   

13.
Although the retrosplenial granular b cortex (Rgb) is situated in a critical position between the hippocampal formation and the neocortex, surprisingly few studies have examined its connections carefully. The present experiments use both anterograde and retrograde tracing techniques to characterize the connections of Rgb. The main cortical projections from Rgb are to the caudal part of the anterior cingulate cortex, area 18b, retrosplenial granular a cortex (Rga), and postsubiculum, and less dense terminal fields are present in the prelimbic and caudal occipital cortices. The major subcortical projections are to the anterior thalamic nuclei and the rostral pontine nuclei, and very small terminal fields are present in the caudal dorsomedial part of the striatum, the reuniens and reticular nuclei of the thalamus, and the mammillary bodies. Contralaterally, Rgb primarily projects to itself, i.e., homotypically, and more sparsely projects to Rga and postsubiculum. In general, the axons from Rgb terminate ipsilaterally in cortical layers I and III-V and contralaterally in layer V, with a smaller number of terminals in layers I and VI. Thalamic projections from Rgb target the anteroventral and laterodorsal nuclei of the thalamus, with only a few axons terminating in the anterodorsal nucleus, the reticular nucleus, and the nucleus reuniens of the thalamus. Rgb is innervated by the anterior cingulate cortex, precentral agranular cortex, cortical area 18b, dorsal subiculum, and postsubiculum. Subcortical projections to Rgb originate mainly in the claustrum, the horizontal limb of the diagonal band of Broca, and the anterior thalamic nuclei. These data demonstrate that, in the rat, Rgb is a major nodal point for the integration and subsequent distribution of information to and from the hippocampal formation, the midline limbic and visual cortices, and the thalamus. Thus, similarly to the entorhinal cortex, Rgb in the rat is a prominent gateway for information exchange between the hippocampal formation and other limbic areas of the brain.  相似文献   

14.
The organization of subcortical inputs to the parahippocampal cortex, which in the present study in the cat is considered to comprise the entorhinal and perirhinal cortices, was studied by using retrograde and anterograde tracing techniques. The results of the retrograde tracer horseradish peroxidase (HRP), HRP conjugated with wheat germ agglutinine (WGA-HRP), Fast Blue (FB) or Nuclear Yellow (NY] injections indicate that the entorhinal and perirhinal cortices receive inputs from the magnocellular basal forebrain and from distinct portions of the amygdaloid complex, the claustrum, and the thalamus. The two cortices are further projected upon by fibers from the supramamillary region of the hypothalamus, the ventral tegmental area of the mesencephalon, the dorsal raphe nucleus, the nucleus centralis superior, and the locus coeruleus. The entorhinal cortex, in addition, receives projections from the medial septum. As regards the projections from the amygdaloid complex, it was observed that the entorhinal cortex receives its heaviest input from the basolateral amygdaloid nucleus, whereas the perirhinal cortex receives a strong projection from the lateral nucleus and a weaker projection from the basomedial nucleus of the amygdala. Of the thalamic nuclei that project to the parahippocampal cortex, the nucleus reuniens is only connected with the entorhinal cortex, while fibers from the medial geniculate nucleus and the lateral posterior nucleus terminate in the perirhinal cortex. Injections of tritiated amino acid (3H-leucine) were placed in the medial septum, the dorsal and ventral claustrum, the basolateral and basomedial amygdaloid nuclei, and the nucleus reuniens of the thalamus. The results of these experiments demonstrate that, with the exception of the claustrum, these subcortical areas project mainly to the superficial layers I-III and the lamina dissecans of the parahippocampal cortex, and to a lesser degree to the deep layers V and VI.  相似文献   

15.
The thalamocortical connections of the superior temporal sulcus (STS) were studied by means of the WGA-HRP retrograde tracing technique. The results indicate that the distribution of thalamic projections varies along the rostral-caudal dimension of the STS. Thus the rostral portion of the upper bank receives input primarily from the medialmost portion of the medial pulvinar (PM) nucleus. The middle region of the upper bank receives projections from medial and central portions of the PM nucleus, and also from the oral pulvinar, limitans, suprageniculate, medial geniculate, and dorsomedial nuclei. The cortex of the caudal portion of the upper bank has basically similar thalamic input; however, the projections from the PM nucleus originate in central and lateral portions. Additionally, there are projections from the lateral pulvinar (PL), ventroposterolateral, central lateral, parafascicular, and paracentral nuclei. In contrast to the dorsal bank, the cortex of the ventral bank of the STS receives somewhat different and less extensive thalamic input. The rostral portion of the lower bank receives projections only from the ventromedial sector of the PM nucleus, whereas the middle portion of the lower bank receives projections from the PL and the inferior pulvinar nuclei as well as from the PM nucleus. The upper bank of the STS, on the basis of physiological and anatomical studies (Jones and Powell, '70; Seltzer and Pandya, '78; Gross et al., '81; Baylis et al., '87), has been shown to contain multimodal areas. The present data indicate that the multimodal region of the STS has a preferential relationship with the central sector of the PM nucleus.  相似文献   

16.
Afferent fibers to the cingular vocalization region in the squirrel monkey   总被引:3,自引:0,他引:3  
Three squirrel monkeys (Saimiri sciureus) received horseradish peroxidase injections in the anterior cingulate cortex at the level of the genu of the corpus callosum, a region yielding vocalization when electrically stimulated. Retrogradely labeled neurons were found at the cortical level within the dorsomedial and lateral prefrontal cortex (areas 9 and 10), orbital cortex (area 11), premotor cortex (areas 44, 6b, and 8), frontoparietal operculum, insula, cortex of the superior temporal sulcus, piriform cortex, subiculum, posterior cingulate, and retrosplenial cortex. Subcortical telencephalic projections came from the the claustrum, diagonal band of Broca, nucleus basalis Meynert, nuclei basalis lateralis and accessorius amygdalae, and cells at the periphery of globus pallidus. Diencephalic structures projecting to the anterior cingulate cortex were the thalamic nuclei anterior medialis, anterior ventralis, ventralis anterior, ventralis lateralis pars medialis, medialis dorsalis, pulvinaris medialis, centralis superior lateralis and limitans; the intralaminar nuclei paracentralis, centralis lateralis and parafascicularis; and the midline nuclei periventricularis, parataenialis, centralis superior, centralis inferior, centralis medialis, and reuniens. In the hypothalamus, projections came from the periventricular, lateral and posterior part, as well as the supramamillary nucleus. Midbrain afferent fibers came from the ventral tegmental area of Tsai, medial substantia nigra, reticular formation, area praerubralis, nucleus peripeduncularis, and periaqueductal gray. The most posterior labeled neurons were found in the locus ceruleus, dorsal tegmental nucleus of Gudden, nucleus annularis, nucleus centralis superior Bechterew, nucleus dorsalis raphae and the most dorsomedial part of the nucleus reticularis tegmenti pontis. Some of those projections have functional significance in the light of the hypothesis that the cingular cortex is involved in the volitional control of emotional reactions on the one hand and the influence of primary emotional reactions on intentional behavior on the other.  相似文献   

17.
Olfactory auras (phantosmia) are an infrequent phenomenon in complex focal seizures generated in the mesial temporal lobe. It is generally assumed that all such auras arise from epileptic foci in the entorhinal cortex, amygdala or rostral insula, all of which have major afferent projections from the olfactory bulb or mainly from its relay, the anterior olfactory nucleus. The histological morphology, synaptic circuitry, and foetal development of the olfactory bulb are unique. The olfactory system is the only special sensory system that does not project to the thalamus because its bulb and tract incorporate an intrinsic thalamic equivalent: axonless granular and periglomerular neurons and the anterior olfactory nucleus. The olfactory bulb exhibits continuous synaptic turnover throughout life. Other brain structures with synaptic plasticity (neocortex, hippocampus, and amygdala) are epileptogenic; synaptically stable structures (brainstem, cerebellum, and basal ganglia) are not epileptogenic. Electrophysiological and neuropathological data of the olfactory bulb in epilepsy are sparse. We propose an alternative hypothesis, first hinted in 1954 by Penfield and Jasper, that some epileptic olfactory auras are primarily generated by the olfactory bulb and secondarily mediated by the amygdala and entorhinal cortex.  相似文献   

18.

Objective

To explore in human potential hippocampal projections within and outside the temporal lobe.

Methods

We performed intra-cerebral electrical stimulations in seven patients investigated by depth electrodes for refractory epilepsy and analyzed the presence of evoked potentials (EPs) in all brain regions explored. Bipolar electrical stimulations, consisting of two series of 25 pulses of 1 ms duration, 0.2 Hz frequency, and 3 mA intensity, were delivered in a total of 36 hippocampal stimulations sites.

Results

Reproducible EPs were recorded in several brain regions with variable latencies, amplitudes and morphologies. Within the temporal lobe, EPs were present in the amygdala, entorhinal cortex, temporal pole and temporal neocortex. EPs were also observed in the frontal lobe, anterior cingulate gyrus and orbito-frontal cortex, midcingulate and posterior cingulate gyrus, insula and thalamic pulvinar nucleus.

Conclusion

Our results demonstrate a large distribution of direct or indirect hippocampal projections.

Significance

This widespread connectivity supports the previous definition of different networks involved mainly in memory and behavioral processes, implicating the temporal lobe, the cingulate gyrus or the prefrontal region. Our data provide some clues to further evaluate potential pathways of propagation of mesial temporal lobe seizure, via the insula or the pulvinar nucleus.  相似文献   

19.
T van Groen  J M Wyss 《Brain research》1990,529(1-2):165-177
The hippocampal formation contributes importantly to many cognitive functions, and therefore has been a focus of intense anatomical and physiological research. Most of this research has focused on the hippocampus proper and the fascia dentata, and much less attention has been given to the subicular cortex, the origin of most extrinsic projections from the hippocampal formation. The present experiments demonstrate that the postsubiculum is a distinct area of the subicular cortex. The major projections to the postsubiculum originate in the hippocampal formation, the cingulate cortex, and the thalamus (primarily from the anterodorsal (AD) nucleus and to a lesser extent from the anteroventral (AV) and lateral dorsal (LD) nuclei). These projections differ from the thalamic projections to presubiculum and parasubiculum. Efferent projections from the postsubiculum terminate in both cortical and subcortical areas. The cortical projections terminate in the subicular and retrosplenial cortices and in the caudal lateral entorhinal and perirhinal cortices. Subcortical projections primarily end in the AD and the LD nuclei of the thalamus. These thalamic projections end in areas that are distinct from those to which the presubiculum and parasubiculum project. For instance, the postsubiculum has a dense terminal field in the AD nucleus, but presubicular axons terminate predominantly in the AV nucleus. The cortical projections also distinguish postsubiculum. All subicular areas project to the entorhinal cortex, but the postsubicular projection ends in the deep layers (i.e. IV-VI), whereas presubiculum projects to layers I and III, and parasubiculum projects to layer II. Postsubiculum projects to retrosplenial granular b cortex and only incidentally to retrosplenial granular a cortex. In contrast presubiculum projects to the retrosplenial granular a cortex but not to the retrosplenial granular b cortex. These differences clearly mark the postsubiculum, the presubiculum, and the parasubiculum as distinct regions within the subicular cortex and suggest that they subserve different roles in the processing and integration of limbic system information.  相似文献   

20.
Neuronal cell populations giving origin to bifurcating projections to the septum and the entorhinal cortex were studied in the rat by means of double retrograde labeling using the fluorescent tracers Fast Blue and Diamidino Yellow. Double labeled pyramidal neurons were consistently detected in the temporal level of the CA1 area and subiculum of the hippocampal formation, where they represented at least 50% of the cells retrogradely labeled from the entorhinal injections. Double labeled neurons were also detected in the amygdala, where they prevailed in the basal complex. Scattered double labeled neurons were observed in a number of hypothalamic nuclei, with a slight predominance in the preoptic region. Finally, a few double labeled cells were detected in the midline thalamus, and especially in the thalamic paraventricular nucleus. In all these structures, double labeled neurons were located ispilaterally to the injection sites. The present data indicate that the septum and entorhinal cortex are tightly interconnected by axonal bifurcations deriving from a variety of telencephalic and diencephalic sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号