首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Rats fed a high-fat and high-sucrose (HF) diet develop hepatic steatosis and hyperlipidemia. There are several reports that a change in nutritional status affects hepatic levels of drug-metabolizing enzymes. Synthetic inulin is a dietary component that completely evades glucide digestion. Supplementing a HF diet with inulin ameliorates hypertriglycemia and hepatic steatosis, but not hypercholesterolemia. This study aimed at distinguishing the effects of synthetic inulin and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor (statin), which inhibit cholesterol biosynthesis.

Methods

We examined effects of co-treatment with synthetic inulin (5%) and fluvastatin (0, 4, and 8 mg/kg, per os) on body weight, epidydimal white adipose tissue weight, serum and hepatic lipid profiles, and hepatic cytochrome P450 (CYP) mRNA and protein profiles in rats fed a standard diet or a HF diet for 3 weeks.

Results

Treatment with the synthetic inulin (5%) or fluvastatin at 4 mg/kg (lethal dose in rats fed the HF diet, 8 mg/kg) ameliorated the elevation in hepatic triacylglycerol and total cholesterol levels in rats fed the HF diet. Whereas co-treatment with the inulin (5%) and fluvastatin (4 mg/kg) had a tendency to more strongly suppress the elevation in serum levels of very low density lipoprotein triacylglycerol than either treatment alone, no additive or synergistic effect was found in decrease in hepatic lipid levels. Hepatic levels of CYP1A1/2 and CYP2E1 mRNA and protein and methoxyresorufin O-demethylase and ethoxyresorufin O-deethylase activities were reduced in rats fed the HF diet. The synthetic inulin alleviated the reduction in hepatic levels of CYP1A1/2 and CYP2E1 mRNA and protein more strongly than fluvastatin, and no synergistic effects were observed on co-treatment. Furthermore, hepatic levels of aryl hydrocarbon receptor mRNA were decreased in rats fed the HF diet and recovered to near normal values with the intake of dietary inulin, which correlated with change in CYP1A1/2.

Conclusions

Dietary inulin alone was effective to prevent the development of hepatic steatosis, ameliorate nutritional effects, and alleviate the hepatic change in the expression of CYP1A1/2 and CYP2E1, while co-treatment with statin did not have additive or synergistic effects and statin may cause adverse effects in rats fed the HF diet.  相似文献   

2.

Purpose

Hepatic fatty acid synthesis is influenced by several nutritional and hormonal factors. In this study, we have investigated the effects of distinct experimental diets enriched in carbohydrate or in fat on hepatic lipogenesis.

Methods

Male Wistar rats were divided into four groups and fed distinct experimental diets enriched in carbohydrates (70 % w/w) or in fat (20 and 35 % w/w). Activity and expression of the mitochondrial citrate carrier and of the cytosolic enzymes acetyl-CoA carboxylase and fatty acid synthetase were analyzed through the study with assessments at 0, 1, 2, 4, and 6 weeks. Liver lipids and plasma levels of lipids, glucose, and insulin were assayed in parallel.

Results

Whereas the high-carbohydrate diet moderately stimulated hepatic lipogenesis, a strong inhibition of this anabolic pathway was found in animals fed high-fat diets. This inhibition was time-dependent and concentration-dependent. Moreover, whereas the high-carbohydrate diet induced an increase in plasma triglycerides, the high-fat diets determined an accumulation of triglycerides in liver. An increase in the plasmatic levels of glucose and insulin was observed in all cases.

Conclusions

The excess of sucrose in the diet is converted into fat that is distributed by bloodstream in the organism in the form of circulating triglycerides. On the other hand, a high amount of dietary fat caused a strong inhibition of lipogenesis and a concomitant increase in the level of hepatic lipids, thereby highlighting, in these conditions, the role of liver as a reservoir of exogenous fat.  相似文献   

3.

Purpose

Plant sterols (PS) are well known for their low-density lipoprotein cholesterol-lowering effect. Until recently, they were believed to have little or no impact on blood triglycerides (TG). However, studies taken individually were possibly lacking statistical power to detect modest TG decreases. This study was performed to quantify the TG-lowering effect of PS by pooling individual subject data from 12 randomised controlled trials that investigated the effects of PS on blood lipids.

Methods

The main outcome variable was the control-adjusted PS effect on relative (%) and absolute (mmol/L) changes in TG. The relative and absolute changes in high-density lipoprotein cholesterol (HDL-C) were also assessed. Differences in changes of serum lipid concentrations between PS and control treatments were estimated by an ANCOVA using a random effect model which included PS intake (active or control), study and predefined subject characteristics.

Results

The twelve randomised controlled trials included in total 935 hypercholesterolaemic subjects not preselected based on their baseline TG concentrations. In most studies, the PS dose ranged between 1.6 and 2.5 g/day. PS intake significantly lowered serum TG by 6.0% (95% CI: ?10.7, ?1.2) or 0.12 mmol/L (95% CI: ?0.20, ?0.04). No significant interaction was observed between PS intake and baseline TG concentrations on relative changes, but, on absolute changes, interaction was significant with larger TG decreases observed with higher TG concentrations at baseline. No effects were observed on HDL-C concentrations.

Conclusions

These results show that PS exert a modest TG-lowering effect which is dependent on baseline concentrations.  相似文献   

4.

Purpose

The present study investigated the underlying mechanism associated with the hypocholesterolemic activity of blueberry anthocyanins by examining its effect on fecal sterol excretion and gene expression of major receptors, enzymes, and transporters involved in cholesterol metabolism.

Methods

Hamsters were divided into three groups and fed a 0.1 % cholesterol diet containing 0 % (CTL), 0.5 % (BL), and 1.0 % (BH) blueberry anthocyanins, respectively, for six weeks. Plasma total cholesterol (TC), triacylglycerols (TAG), and non-high-density lipoproteins cholesterol (non-HDL-C) were measured using the enzymatic kits, and the gene expression of transporters, enzymes, and receptors involved in cholesterol absorption and metabolism was quantified using the quantitative PCR. GC analysis was used to quantify hepatic cholesterol and fecal acidic and neutral sterols.

Results

Dietary supplementation of 0.5 and 1.0 % blueberry anthocyanins for 6 weeks decreased plasma TC concentration by 6–12 % in a dose-dependent manner. This was accompanied by increasing the excretion of fecal neutral and acidic sterols by 22–29 % and 41–74 %, respectively. Real-time PCR analyses demonstrated that incorporation of blueberry anthocyanins into diet down-regulated the genes of NPC1L1, ACAT-2, MTP, and ABCG 8. In addition, blueberry anthocyanins were also able to down-regulate the gene expression of hepatic HMG-CoA reductase.

Conclusion

The cholesterol-lowering activity of blueberry anthocyanins was most likely mediated by enhancing the excretion of sterols accompanied with down-regulation on gene expression of intestinal NPC1L1, ACAT-2, MTP, and ABCG 8.  相似文献   

5.

Objectives

The studies were carried out on 36 growing albino Wistar rats.

Participants/Measurements

The animals were randomly divided into six equinumerous groups (six rats per group), and were fed six different diets for 42 days. The control group (I) was fed with AIN-93G semi-synthetic diet, whereas groups II–VI were fed with AIN-93G semi-synthetic diet supplemented with: 2, 4, 8, 16 and 32 g of methionine/kg diet, respectively. There were assessed enzymatically, in rats’ blood serum, the contents of homocysteine, total cholesterol, HDL fraction and triacyloglicerols. In addition, the LDL+VLDL cholesterol content was calculated.

Results

The methionine content of the diet was found to be highly positively correlated with the homocysteine content (r = 0.981) and negatively correlated with the triacylglycerols content (r = ?0.916) of the experimental animals’ blood serum.

Conclusion

In the blood serum of rats fed the highest-methionine diet (32 g methionine/kg diet), the homocysteine content was significantly higher, as were the levels of total cholesterol and its HDL fraction, while the triacylglycerols content was lower as compared to the values obtained for rats fed other diet types.  相似文献   

6.

Background & aims

Phytosterols (PS) lower LDLc, but their effect on metabolic syndrome (MetS) remains unknown. We evaluated whether low-fat milk enriched with PS improves cardiovascular risk factors in these patients.

Methods

A randomised parallel trial employing 24 moderate-hypercholesterolaemic MetS patients and consisting of two 3-month intervention phases. After a 3-month healthy diet, patients were divided into two intervention groups: diet (n = 10) and diet + PS (n = 14) (2 g/day). A control group of 24 moderate-hypercholesterolaemic patients without MetS (matched in age and BMI) underwent the same procedure.

Results

Neither dietary intervention nor enrichment of PS induced any improvement in the serum lipoprotein profile of MetS patients. By contrast, in the non-MetS population, a healthy diet effectively reduced TC, LDLc, non-HDLc and Apo B-100, with further decreases in TC (6.9%), LDLc (10.5%), non-HDLc (10.3%), Apo B-100 (6.2%) and Apo B-100/ApoA-I ratio (11.6%) being observed when PS were administered. No differences in LDL diameter, hsCRP or homocysteine were detected in any of the groups after consuming PS. This supplementation produced a significant increase in PS levels only in the non-MetS population.

Conclusions

PS therapy appears to be of little value to MetS patients, likely due to its reduced intestinal cholesterol absorption. The efficacy of PS as hypocholesterolaemic agents is thus limited.  相似文献   

7.

Purpose

We previously reported that two substrains of C57BL/6 mice respond differently to oats with respect to reduction in plasma cholesterol. Analysis of this difference might offer clues to mechanisms behind the cholesterol-lowering effect of oats. Here, we address the possible roles of hepatic steroid metabolism and the intestinal microbiota in this respect.

Methods

Female C57BL/6 mice were fed an atherogenic diet with oat bran (27 %) or control fibres for 4 weeks.

Results

C57BL/6 NCrl mice responded to oat bran with 19 ± 1 % (P < 0.001) lower plasma cholesterol, 40 ± 5 % (P < 0.01) higher excretion of bile acids and increased expression of the bile acid-producing hepatic enzymes CYP7A1 and CYP8B1, but none of these effects were found in C57BL/6JBomTac mice. However, on control diet, C57BL/6JBomTac had tenfold higher expression of CYP7A1 and levels of hepatic cholesterol esters than C57BL/6NCrl mice. Plasma levels of fructosamine indicated improved glycemic control by oat bran in C57BL/6NCrl but not in C57BL/6JBomTac. C57BL/6JBomTac had higher intestinal microbiota diversity, but lower numbers of Enterobacteriaceae, Akkermansia and Bacteroides Fragilis than C57BL/6NCrl mice. Oat bran increased bacterial numbers in both substrains. Microbiota diversity was reduced by oats in C57BL/6JBomTac, but unaffected in C57BL/6NCrl.

Conclusions

Our data do not support a connection between altered microbiota diversity and reduced plasma cholesterol, but the bacterial composition in the intestine may influence the effects of added fibres. The cholesterol-lowering properties of oats involve increased production of bile acids via the classical pathway with up-regulation of CYP7A1 and CYP8B1. Altered cholesterol or bile acid metabolism may interfere with the potential of oats to reduce plasma cholesterol.  相似文献   

8.

Purpose

Decaffeinated green tea (GT) and black tea (BT) polyphenols inhibit weight gain in mice fed an obesogenic diet. Since the intestinal microflora is an important contributor to obesity, it was the objective of this study to determine whether the intestinal microflora plays a role in the anti-obesogenic effect of GT and BT.

Methods

C57BL/6J mice were fed a high-fat/high-sucrose diet (HF/HS, 32% energy from fat; 25% energy from sucrose) or the same diet supplemented with 0.25% GTP or BTP or a low-fat/high-sucrose (LF/HS, 10.6% energy from fat, 25% energy from sucrose) diet for 4 weeks. Bacterial composition was assessed by MiSeq sequencing of the 16S rRNA gene.

Results

GTP and BTP diets resulted in a decrease of cecum Firmicutes and increase in Bacteroidetes. The relative proportions of Blautia, Bryantella, Collinsella, Lactobacillus, Marvinbryantia, Turicibacter, Barnesiella, and Parabacteroides were significantly correlated with weight loss induced by tea extracts. BTP increased the relative proportion of Pseudobutyrivibrio and intestinal formation of short-chain fatty acids (SCFA) analyzed by gas chromatography. Cecum propionic acid content was significantly correlated with the relative proportion of Pseudobutyrivibrio. GTP and BTP induced a significant increase in hepatic 5′adenosylmonophosphate-activated protein kinase (AMPK) phosphorylation by 70 and 289%, respectively (P < 0.05) determined by Western blot.

Conclusion

In summary, both BTP and GTP induced weight loss in association with alteration of the microbiota and increased hepatic AMPK phosphorylation. We hypothesize that BTP increased pAMPK through increased intestinal SCFA production, while GTPs increased hepatic AMPK through GTP present in the liver.
  相似文献   

9.

Purpose

To investigate the effect of cocoa powder supplementation on obesity-related inflammation in high fat (HF)-fed obese mice.

Methods

Male C57BL/6J (n = 126) were fed with either low-fat (LF, 10 % kcal from fat) or HF (60 % kcal from fat) diet for 18 weeks. After 8 weeks, mice from HF group were randomized to HF diet or HF diet supplemented with 8 % cocoa powder (HF–HFC group) for 10 weeks. Blood and tissue samples were collected for biochemical analyses.

Results

Cocoa powder supplementation significantly reduced the rate of body weight gain (15.8 %) and increased fecal lipid content (55.2 %) compared to HF-fed control mice. Further, cocoa supplementation attenuated insulin resistance, as indicated by improved HOMA-IR, and reduced the severity of obesity-related fatty liver disease (decreased plasma alanine aminotransferase and liver triglyceride) compared to HF group. Cocoa supplementation also significantly decreased plasma levels of the pro-inflammatory mediators interleukin-6 (IL-6, 30.4 %), monocyte chemoattractant protein-1 (MCP-1, 25.2 %), and increased adiponectin (33.7 %) compared to HF-fed mice. Expression of pro-inflammatory genes (Il6, Il12b, Nos2, and Emr1) in the stromal vascular fraction (SVF) of the epididymal white adipose tissue (WAT) was significantly reduced (37–56 %) in the cocoa-supplemented mice.

Conclusions

Dietary supplementation with cocoa ameliorates obesity-related inflammation, insulin resistance, and fatty liver disease in HF-fed obese mice, principally through the down-regulation of pro-inflammatory gene expression in WAT. These effects appear to be mediated in part by a modulation of dietary fat absorption and inhibition of macrophage infiltration in WAT.  相似文献   

10.

Purpose

To assess hepatic de novo lipogenesis and mitochondrial energetics as well as whole-body energy homeostasis in sedentary rats fed a fructose-rich diet.

Methods

Male rats of 90 days of age were fed a high-fructose or control diet for 8 weeks. Body composition, energy balance, oxygen consumption, carbon dioxide production, non-protein respiratory quotient, de novo lipogenesis and insulin resistance were measured. Determination of specific activity of hepatic enzymes of de novo lipogenesis, mitochondrial mass, oxidative capacity and degree of coupling, together with parameters of oxidative stress and antioxidant defence, was also carried out.

Results

Body energy and lipid content as well as plasma insulin and non-esterified fatty acids were significantly higher in fructose-fed than in control rats. Significantly higher rates of net de novo lipogenesis and activities of hepatic lipogenic enzymes fatty acid synthase and stearoyl CoA desaturase-1 were found in fructose-fed rats compared to controls. Mitochondrial protein mass and degree of coupling were significantly higher in fructose-fed rats compared to controls. Hepatic mitochondria showed oxidative damage, both in the lipid and in the protein component, together with decreased activity of antioxidant defence.

Conclusion

Liver mitochondrial compartment is highly affected by fructose feeding. The increased mitochondrial efficiency allows liver cells to burn less substrates to produce ATP for de novo lipogenesis and gluconeogenesis. In addition, increased lipogenesis gives rise to whole body and ectopic lipid deposition, and higher mitochondrial coupling causes mitochondrial oxidative stress.  相似文献   

11.

Purpose

In vitro studies discovered intestinal proton-coupled folate transporter (PCFT) as a vitamin D hormone-responsive gene. In vivo effects of vitamin D on PCFT and folate status are currently not available.

Methods

Three experiments were conducted. At first, vitamin D receptor knockout (VDR?/?) mice and corresponding wild-type (WT) mice were compared for their plasma and hepatic folate concentration and PCFT mRNA expression in intestinal mucosa. In a second experiment with rats, we analyzed the folate status of offspring in response to a maternal vitamin D-adequate (1,000 IU/kg) or vitamin D-deficient (0 IU/kg) diet that was fed for 11 weeks. Finally, the plasma folate concentration of healthy individuals was studied at baseline (in winter) and in response to an oral treatment for 8 weeks with 2,000 IU vitamin D3 per day or a placebo, respectively.

Results

Here, we show that folate status and intestinal PCFT mRNA abundance did not differ between the VDR?/? and the WT mice. No effect of vitamin D on folate status was also found in rat dams and their offspring, and plasma folate levels of individuals did not change in response to vitamin D.

Conclusions

Current data from studies with model animals and humans provide no indication for a vitamin D effect on intestinal uptake and status of folate.  相似文献   

12.

Background

The central feature of NAFLD is a disturbed fatty-acid metabolism with hepatic lipid accumulation. However, the factors that determine the severity of NAFLD, including the role of nutrition, gender, and plasma lipid levels, remain to be determined.

Methods

High-fat diets (42 en% fat), containing 0.2% cholesterol, were fed to male and female wild-type and hyperlipidemic APOE2ki C57BL/6J mice for three weeks. The fats were, in order of decreasing saturation, fractionated palm fat (fPF; ~95%), cocoa butter (CB; ~60%), olive oil (OO; ~15%), sunflower oil (SO; ~12%), and high-oleic-acid sunflower oil (hoSO; ~7%). Plasma and liver triglycerides (concentration and composition), liver inflammation (Ccl2, Cd68, Tnf-α mRNA), and infiltration of macrophages (Cd68, Cd11b immunohistochemistry) and neutrophils (Mpo) were quantified.

Results

Addition of cholesterol to a low-fat diet decreased plasma HDL and increased (V)LDL levels in APOE2ki mice. Plasma cholesterol levels in female, but not male APOE2ki mice correlated significantly with inflammation. Kupffer cells of inflamed livers were swollen. Wild-type mice refused the highly saturated fPF diet. The high-fat CB, OO, and SO diets induced hyperglycemia and a 2-fold increase in hepatic fat content in male, but not female wild-type mice (in females, hepatic fat content was similar to that in males fed a high-fat diet). All high-fat diets induced macrovesicular setatosis. APOE2ki mice were protected against high-fat diet-induced steatosis and hyperglycemia, except when fed a hoSO diet. This diet caused a 5-fold increase in liver triglyceride and mead-acid content, and an increased expression of lipogenic genes, suggesting a deficiency in poly-unsaturated fatty acids. Irrespective of the composition of the high-fat diet, oleic acid was the main triglyceride component of liver fat in wild-type and APOE2ki mouse livers. Liver inflammation was dependent on genotype (APOE2ki > wild type), gender (female > male), and cholesterol content (high > low) of the diet, but not on dietary fat composition.

Conclusions

Dietary cholesterol plays a determining, independent role in inflammation, especially in female mice. The fatty-acid saturation of the diet hardly affected hepatic steatosis or inflammation.
  相似文献   

13.

Purpose

The beneficial effects of a seafood-rich diet are highly documented and can be attributed to both n-3 polyunsaturated fatty acids and other less studied nutritional components including protein and antioxidants. The aim of the work was to investigate whether an under-utilized seafood source, eggs (roe) and sperm (milt) from herring (Clupea harengus), can affect lipid metabolism and inflammation in a mouse model transgenic for human tumor necrosis factor alpha (hTNFα).

Methods

A high-fat control diet (25% total fats, 20% protein, w/w) or high-fat diets supplemented with herring roe (3.7% fat, 15% protein, w/w), or milt (1.3% fat, 15% protein) were administered to female C57BL/6 hTNFα mice. After 2?weeks, hepatic enzyme activity, gene expression, lipid and fatty acid composition, fatty acid composition of epididymal adipose tissue, and plasma lipid and cytokine levels were determined.

Results

Animals fed herring roe and milt displayed an increased hepatic fatty acid β-oxidation and reduced fatty acid synthase activity. However, while plasma TAG was reduced, hepatic TAG and plasma and hepatic cholesterol levels were increased by the herring diets. Both herring diets led to a substantial shift in the n-6:n-3 ratio in both liver and ovarian white adipose tissue. The herring diets also increased plasma carnitine and reduced the carnitine precursor trimethyllysine. Plasma short-chained acylcarnitine esters were significantly increased, which may reflect an increased β-oxidation of long-chained fatty acids. In addition, the diets tended to reduce the plasma levels of pro-inflammatory cytokines.

Conclusion

Herring roe or milt diets enhanced lipid catabolism and influenced the chronic inflammatory state in hTNFα-transgenic mice.  相似文献   

14.

Purpose

Capsaicinoids are the active compounds in chili pepper. The present study investigated the effect of capsaicinoids on plasma lipids, functionality of aorta including atherosclerotic plaque development, cholesterol absorption biomarker, fecal sterol excretion, and gene expression of major receptors, enzymes, and transporters involved in cholesterol metabolism.

Methods

Hamsters were divided into five groups and fed a high-cholesterol diet containing 0 % (CON), 0.010 % (LD), 0.015 % (MD), 0.020 % (HD), and 0.030 % (VD) capsaicinoids, respectively, for 6 weeks. Plasma lipids were measured using the enzymatic kits, and the gene expression of transporters, enzymes, and receptors involved in cholesterol absorption and metabolism was quantified using the quantitative PCR. Endothelial function was assessed by measuring the acetylcholine-induced endothelium-dependent relaxations in aorta.

Results

Capsaicinoids reduced plasma total cholesterol, non-high-density lipoprotein cholesterol, and triacylglycerols with high-density lipoprotein cholesterol being unaffected. All four experimental groups had a decrease in the atherosclerotic plaque compared with CON. Dietary capsaicinoids increased the fecal excretion of total acidic sterols possibly mediated by up-regulation of cholesterol 7α-hydroxylase and down-regulation of liver X receptor alpha. Plasma sterol analysis demonstrated that capsaicinoids decreased the ratio of plasma campesterol/cholesterol, suggesting they decreased cholesterol absorption. Capsaicinoids could improve the endothelium-dependent relaxations and reduce the endothelium-dependent contractions by inhibiting the gene expression of COX-2. However, no dose-dependent effect of capsaicinoids on these parameters was seen.

Conclusion

Capsaicinoids were beneficial in improving lipoprotein profile and aortic function in hamsters fed a high-cholesterol diet.  相似文献   

15.

Purpose

To investigate whether a maternal high-fat diet (HF) during pregnancy and/or suckling periods predisposes adult C57BL/6 mice offspring to morphological pancreatic modifications.

Methods

Male pups were divided into 5 groups: SC (standard chow)—from dams fed SC during gestation and lactation, maintaining an SC diet from postweaning to adulthood; G—from dams fed HF diets during gestation; L—from dams fed HF diets during lactation; GL—from dams fed HF diets during gestation and lactation; and GL/HF—from dams fed HF diets during gestation and lactation, maintaining an HF diet from postweaning to adulthood. We analysed body mass (BM), plasma insulin, pancreas and adipose tissue structures.

Results

During the entire experiment, the SC group had the lowest BM. However, GL/HF offspring were heavier than the other groups. This weight gain was also accompanied by adipocyte hypertrophy. At 3 months, G offspring showed an increased insulin levels and impairment in carbohydrates metabolism. Furthermore, pancreatic islets were hypertrophied in G, GL and GL/HF offspring in comparison with SC offspring.

Conclusion

HF diet administration during the gestation period is more harmful than during the lactation period, exerting deleterious effects on pancreatic morphology in addition to larger fat deposits in adult mice offspring.  相似文献   

16.

Purpose

Plant sterol (PS)-enriched food products are known to reduce plasma cholesterol concentrations by inhibiting the absorption of dietary and biliary cholesterol. The physiological responses induced by food intake in the gastrointestinal tract are all important factors in determining the overall effect of PS. The aim of this study was therefore to assess the effect of timing of consumption of a plant sterol (PS)–containing yoghurt drink relative to meal ingestion on gastric emptying (GE) of the drink and gallbladder (GB) volume.

Methods

This is a randomized, single-centre, controlled study with crossover design in 12 healthy male volunteers. Three treatments were tested; a 100 mL PS yoghurt drink (labeled with 1,000 mg acetaminophen) was consumed 45 min prior to, during and 45 min after a solid meal. Plasma samples were taken, and gallbladder volumes were measured at baseline and at regular intervals during a 6-h study period.

Results

When consumed before the consumption of a meal, the yoghurt drink exhibited fast GE. The solid meal intake caused a significant contraction of the gallbladder. Consumption of the PS drink before the meal had no significant effect on GB volume as compared to baseline and compared to during and after meal consumption.

Conclusions

The PS-containing drink, which empties fast from the stomach, does not sufficiently trigger gallbladder contraction without co-ingestion of a solid meal and in consequence does not induce the necessary physiological changes needed to allow PS to exhibit their effect on inhibiting cholesterol absorption.  相似文献   

17.

Purpose

The aim of the study was to investigate how a diet high in dietary fiber, with several fiber sources included, modulates glucose and lipid metabolism and the inflammatory response in humans.

Methods

Subjects (n = 25) aged 58.6 (1.1) years (mean and SD) with a BMI of 26.6 (0.5) kg/m2 and a total cholesterol (TC) of 5.8 (0.1) mmol/L (mean and SEM) were given a high fiber (HF) and low fiber (LF) diet, in a randomized controlled 5-week crossover intervention, separated by a 3-week washout. The HF diet consisted of oat bran, rye bran, and sugar beet fiber incorporated into test food products; one bread roll, one ready meal, and two beverages consumed daily. Equivalent food products, without added fibers, were provided in the LF diet.

Results

Total dietary fiber intake was 48.0 g and 30.2 g per day for the HF and LF diet, respectively. Significant reduction in C-reactive protein (CRP) was observed between the diets (P = 0.017) and a significant reduction in fibrinogen within the HF diet (P = 0.044). There were no significant effects in other measured circulating cytokines or in glucose, insulin, and lipid levels.

Conclusions

Our study suggests that a 5-week high dietary fiber intake of oat bran, rye bran, and sugar beet fiber might reduce the low-grade inflammatory response measured as CRP which could, together with reduced fibrinogen, help to prevent the risk of cardiovascular disease.  相似文献   

18.

Purpose

To study, in high-fructose-fed rats, the effect of a dietary enrichment in omega-3 polyunsaturated fatty acids (n-3 PUFA) on the expression of genes involved in lipid metabolism and cardiovascular function.

Methods

Twenty-eight male “Wistar Han” rats received for 8 weeks, either a standard chow food or an isocaloric 67 % fructose diet enriched or not in alpha-linolenic acid (ALA) or in docosahexaenoic (DHA) and eicosapentaenoic acids (EPA) mix (DHA/EPA). After sacrifice, blood was withdrawn for biochemical analyses; heart, periepididymal adipose tissue and liver were collected and analyzed for the expression of 22 genes by real-time PCR.

Results

Fructose intake resulted in an increase in liver weight and triglyceride content, plasma triglyceride and cholesterol concentrations, although no difference in glucose and insulin. In the liver, lipogenesis was promoted as illustrated by an increase in stearoyl-CoA desaturase and fatty acid synthase (Fasn) together with a decrease in PPAR gamma, delta and PPAR gamma coactivator 1 alpha (PGC1 alpha) expression. In the heart, Fasn and PPAR delta expression were increased. The addition of ALA or DHA/EPA into the diet resulted in a protection against fructose effects except for the decreased expression of PPARs in the liver that was not counterbalanced by n-3 PUFA suggesting that n-3 PUFA and fructose act independently on the expression of PPARs and PGC1 alpha.

Conclusions

In liver, but not in heart, the fructose-enriched diet induces an early tissue-specific reduction in PPAR gamma and delta expression, which is insensitive to n-3 PUFA intake and dissociated from lipogenesis.  相似文献   

19.

Background

Amyloid-β (Aβ), a key protein found in amyloid plaques of subjects with Alzheimer's disease is expressed in the absorptive epithelial cells of the small intestine. Ingestion of saturated fat significantly enhances enterocytic Aβ abundance whereas fasting abolishes expression. Apolipoprotein (apo) E has been shown to directly modulate Aβ biogenesis in liver and neuronal cells but it's effect in enterocytes is not known. In addition, apo E modulates villi length, which may indirectly modulate Aβ as a consequence of differences in lipid absorption. This study compared Aβ abundance and villi length in wild-type (WT) and apo E knockout (KO) mice maintained on either a low-fat or high-fat diet. Wild-type C57BL/6J and apo E KO mice were randomised for six-months to a diet containing either 4% (w/w) unsaturated fats, or chow comprising 16% saturated fats and 1% cholesterol. Quantitative immunohistochemistry was used to assess Aβ abundance in small intestinal enterocytes. Apo E KO mice given the low-fat diet had similar enterocytic Aβ abundance compared to WT controls.

Results

The saturated fat diet substantially increased enterocytic Aβ in WT and in apo E KO mice, however the effect was greater in the latter. Villi height was significantly greater in apo E KO mice than for WT controls when given the low-fat diet. However, WT mice had comparable villi length to apo E KO when fed the saturated fat and cholesterol enriched diet. There was no effect of the high-fat diet on villi length in apo E KO mice.

Conclusion

The findings of this study are consistent with the notion that lipid substrate availability modulates enterocytic Aβ. Apo E may influence enterocytic lipid availability by modulating absorptive capacity.  相似文献   

20.

Purpose

Prenatal undernutrition followed by postweaning feeding of a high-fat diet results in obesity in the adult offspring. In this study, we investigated whether diet-induced thermogenesis is altered as a result of such nutritional mismatch.

Methods

Female MF-1 mice were fed a normal protein (NP, 18 % casein) or a protein-restricted (PR, 9 % casein) diet throughout pregnancy and lactation. After weaning, male offspring of both groups were fed either a high-fat diet (HF; 45 % kcal fat) or standard chow (C, 7 % kcal fat) to generate the NP/C, NP/HF, PR/C and PR/HF adult offspring groups (n = 7–11 per group).

Results

PR/C and NP/C offspring have similar body weights at 30 weeks of age. Postweaning HF feeding resulted in significantly heavier NP/HF offspring (P < 0.01), but not in PR/HF offspring, compared with their chow-fed counterparts. However, the PR/HF offspring exhibited greater adiposity (P < 0.01) v the NP/HF group. The NP/HF offspring had increased energy expenditure and increased mRNA expression of uncoupling protein-1 and β-3 adrenergic receptor in the interscapular brown adipose tissue (iBAT) compared with the NP/C mice (both at P < 0.01). No such differences in energy expenditure and iBAT gene expression were observed between the PR/HF and PR/C offspring.

Conclusions

These data suggest that a mismatch between maternal diet during pregnancy and lactation, and the postweaning diet of the offspring, can attenuate diet-induced thermogenesis in the iBAT, resulting in the development of obesity in adulthood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号