首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.

Purpose

An efficient and fully automated radiosynthesis of 2-[18F]fluoro-9-β-d-arabinofuranosyl-adenine (2-[18F]fludarabine, [18F]-5) based on a GE TRACERlab? FX-FN module has been developed.

Procedures

A 2-nitro purine derivative 3 was developed as precursor for labeling with fluorine-18. The radiosynthesis of [18F]-5 was performed in two steps in a single reactor with an intermediary purification on Sep-Pak® silica which involved the addition of a three-way valve on the original module. After hydrolysis, [18F]-5 was purified by semi-preparative high-pressure liquid chromatography (HPLC) and a quality control was established.

Results

The labeling precursor 3 was obtained in 45 % overall yield. Nucleophilic substitution with K18F/K2.2.2 afforded protected 2-[18F]fludarabine ([18F]-4) in 73?±?4 % , radiochemical yield (decay corrected to the end of bombardment (EOB)) and based on the initial [18F]F? activity. An aqueous ammonia/methanol solution was used for the deprotection reaction and gave the desired [18F]-5 in 67?±?3 % yield after 20 min at 70 °C based on HPLC profile.

Conclusions

The process afforded pure 2-[18F]fludarabine in 48?±?3 % yield (decay corrected to the EOB) in 85 min, with a specific activity of 310?±?72 GBq/μmol at the end of synthesis (EOS) and a radiochemical purity up to 99 %.  相似文献   

2.

Purpose

Longitudinal changes of 3??-[18?F]fluoro-3??-deoxythymidine (FLT) and 2-deoxy-2-[18?F]fluoro-d-glucose (FDG) in response to irinotecan therapy in an animal model of colorectal cancer were compared.

Procedures

SCID/CB-17 mice with HCT116 tumors were treated with 50?mg/kg irinotecan by intraperitoneal injection weekly for 3?weeks. FLT and FDG-positron emission tomography (PET) were performed at baseline, the day after each treatment, and 5?days after the first treatment. Proliferation and apoptosis were evaluated by immunohistochemistry (IHC) after day 15 of imaging.

Results

Irinotecan treatment resulted in a suppression of tumor growth. Tumor FLT uptake was decreased the day after each treatment but to a lesser extent 5?days after the first treatment. FDG uptake increased the day after each treatment with a continuous increase throughout the experiment. IHC analysis of phospho-H3 and Ki67 confirmed FLT-PET results, indicating a decrease in proliferation the day after the final irinotecan treatment. Increased apoptosis monitored by caspase-3 was observed after day 15 with irinotecan treatment.

Conclusions

FLT-PET may be a better method than FDG-PET for assessing treatment response to irinotecan. Changes in imaging occur before changes in tumor volume.  相似文献   

3.

Purpose

Here, we describe the efficacy of the novel small molecule c-Met inhibitor BAY 853474 in reducing tumor growth in the Hs746T gastric cancer xenograft model and tested the suitability of 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) versus 3′-deoxy-3′-18F-fluorothymidine ([18F]FLT) for response monitoring in a gastric cancer xenograft mouse model using small animal PET.

Procedures

The c-Met inhibitor or vehicle control was administered orally at various doses in tumor-bearing mice. Glucose uptake and proliferation was measured using PET before, 48 and 96 h after the first treatment. The PET data were compared to data from tumor growth curves, autoradiography, Glut-1 and Ki-67 staining of tumor sections, and biochemical analysis of tissue probes, i.e., c-Met and ERK phosphorylation and cyclin D1 levels.

Results

BAY 853474 significantly reduces tumor growth. [18F]FDG uptake in Hs746T tumors was significantly reduced in the groups receiving the drug, compared with the control group. The [18F]FLT uptake in the tumor tissue was completely absent 96 h after treatment. Autoradiographic, immunohistochemical, and biochemical analyses confirmed the PET findings. Treatment with the c-Met inhibitor did not affect body weight or glucose levels, and no adverse effects were observed in the animals.

Conclusion

These preclinical findings suggest that clinical PET imaging is a useful tool for early response monitoring in clinical studies.  相似文献   

4.

Purpose

The mTOR kinase inhibitor AZD8055 inhibits both mTORC1 and mTORC2 leading to disruption of glucose metabolism and proliferation pathways. This study assessed the impact of single and multiple doses of AZD8055 on the uptake of the glucose metabolism marker 2-deoxy-2-[18?F]fluoro-d-glucose ([18?F]FDG) and the proliferation marker 3′-deoxy-3′-[18?F]fluorothymidine ([18?F]FLT) in U87-MG glioma xenografts.

Procedures

Mice bearing U87-MG tumours received either vehicle or AZD8055 (20 mg/kg) once daily p.o. Mice were imaged with either [18?F]FDG or [18?F]FLT PET to assess treatment response. Comparisons were made between in vivo imaging and ex vivo histopathology data.

Results

Tumour uptake of [18?F]FDG was reduced by 33 % 1 h after a single dose of AZD8055 and by 49 % following 4 days of dosing. These changes coincided with suppression of the mTOR pathway biomarkers pS6 and pAKT. In contrast, the effect of AZD8055 on [18?F]FLT uptake was inconsistent.

Conclusions

The very rapid change in [18?F]FDG uptake following acute AZD8055 treatment suggests that this could be used as an early mechanistic biomarker of metabolic changes resulting from mTOR inhibition. The utility of [18?F]FLT for measuring the anti-proliferative effect of AZD8055 remains unclear.  相似文献   

5.

Purpose

3??-deoxy-3??-[18F]fluorothymidine ([18F]FLT), a cell proliferation positron emission tomography (PET) tracer, has been shown in numerous tumors to be more specific than 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) but less sensitive. We studied the capacity of a nontoxic concentration of 5-fluoro-2??-deoxyuridine (FdUrd), a thymidine synthesis inhibitor, to increase uptake of [18F]FLT in tumor xenografts.

Methods

The duration of the FdUrd effect in vivo on tumor cell cycling and thymidine analogue uptake was studied by varying FdUrd pretreatment timing and holding constant the timing of subsequent flow cytometry and 5-[125I]iodo-2??-deoxyuridine biodistribution measurements. In [18F]FLT studies, FdUrd pretreatment was generally performed 1 h before radiotracer injection. [18F]FLT biodistributions were measured 1 to 3 h after radiotracer injection of mice grafted with five different human tumors and pretreated or not with FdUrd and compared with [18F]FDG tumor uptake. Using microPET, the dynamic distribution of [18F]FLT was followed for 1.5 h in FdUrd pretreated mice. High-field T2-weighted magnetic resonance imaging (MRI) and histology were used comparatively in assessing tumor viability and proliferation.

Results

FdUrd induced an immediate increase in tumor uptake of 5-[125I]iodo-2??-deoxyuridine, that vanished after 6 h, as also confirmed by flow cytometry. Biodistribution measurements showed that FdUrd pretreatment increased [18F]FLT uptake in all tumors by factors of 3.2 to 7.8 compared with controls, while [18F]FDG tumor uptake was about fourfold and sixfold lower in breast cancers and lymphoma. Dynamic PET in FdUrd pretreated mice showed that [18F]FLT uptake in all tumors increased steadily up to 1.5 h. MRI showed a well-vascularized homogenous lymphoma with high [18F]FLT uptake, while in breast cancer, a central necrosis shown by MRI was inactive in PET, consistent with the histomorphological analysis.

Conclusion

We showed a reliable and significant uptake increase of [18F]FLT in different tumor xenografts after low-dose FdUrd pretreatment. These results show promise for a clinical application of FdUrd aimed at increasing the sensitivity of [18F]FLT PET.  相似文献   

6.

Purpose

Given the progress of fluorescence diffuse optical tomography (fDOT) technology, here, we study the additional benefits provided by multimodal PET/fDOT imaging by comparing the biodistribution of 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) in tumors with three fluorescent probes: a glucose analog, a protease activatable optical probe, and a ligand of αvβ3 integrin.

Procedures

Sequential fDOT/PET/computed tomography (CT) imaging of mice was performed with a custom multimodal mouse support that allows the subject to be transferred between the fDOT and the PET/CT scanners. Experiments were performed in xenografted tumor models derived from the human breast cancer line MDA-MB 231 and compared to ex vivo analysis.

Results

The three-dimensional signals showed that the fluorescent glucose analog is not colocalized with [18F]FDG, raising questions about its use as a surrogate probe of the PET tracer. Fusion of [18F]FDG with the other fluorescent probes showed evidence of high variability both for the protease activity and the αvβ3 integrin expression during tumor growth.

Conclusion

The added value of hybrid PET/fDOT over the two modalities was demonstrated for cross-validation of probes and for better characterization of tumor models.  相似文献   

7.

Purpose

Transgenic mice expressing the polyoma middle T oncoprotein (PyMT) in the mammary epithelium were explored by multimodal imaging to monitor longitudinally spontaneous tumor growth and response to chemotherapy.

Procedures

Positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) and 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT), single photon emission tomography (SPECT) with [99mTc]TcO4 ([99mTc]TEC), X-ray computed tomography, and fluorescent confocal endomicroscopy (FCE) images were acquired during tumor progression in female PyMT mice. Imaging with [18F]FDG and [99mTc]TEC was also performed in untreated, doxorubicin-treated, and docetaxel-treated PyMT mice. Total tumor volumes were quantified. Tumors were collected and macroscopic and histological examinations were performed.

Results

All PyMT mice developed multifocal tumors of the mammary epithelium that became palpable at 8 weeks of age (W8). Computed tomography (CT) detected tumors at W14, while a clear tumoral uptake of [99mTc]TEC and [18F]FDG was present as early as W6 and W8, respectively. No contrast between mammary tumors and surrounding tissue was observed at any stage with [18F]FLT. FCE detected an angiogenic switch at W10. Lung metastases were not clearly evidenced by imaging. Doxorubicin and docetaxel treatments delayed tumor growth, as shown by [18F]FDG and [99mTc]TEC, but tumor growth resumed upon treatment discontinuation. Tumor growth fitted an exponential model with time constant rates of 0.315, 0.145, and 0.212 week?1 in untreated, doxorubicin, and docetaxel groups, respectively.

Conclusions

Molecular imaging of mammary tumors in PyMT is precocious, precise, and predictive. [18F]FDG-PET and [99mTc]TEC SPECT monitor tumor response to chemotherapy.
  相似文献   

8.

Purpose

Accurate determination of the plasma input function (IF) is essential for absolute quantification of physiological parameters in positron emission tomography (PET). However, it requires an invasive and tedious procedure of arterial blood sampling that is challenging in mice because of the limited blood volume. In this study, a hybrid modeling approach is proposed to estimate the plasma IF of 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) in mice using accumulated radioactivity in urinary bladder together with a single late-time blood sample measurement.

Methods

Dynamic PET scans were performed on nine isoflurane-anesthetized male C57BL/6 mice after a bolus injection of [18F]FDG at the lateral caudal vein. During a 60- or 90-min scan, serial blood samples were taken from the femoral artery. Image data were reconstructed using filtered backprojection with computed tomography-based attenuation correction. Total accumulated radioactivity in the urinary bladder at late times was fitted to a renal compartmental model with the last blood sample and a one-exponential function that described the [18F]FDG clearance in blood. Multiple late-time blood sample estimates were calculated by the blood [18F]FDG clearance equation. A sum of four-exponentials was assumed for the plasma IF that served as a forcing function to all tissues. The estimated plasma IF was obtained by simultaneously fitting the [18F]FDG model to the time–activity curves (TACs) of liver and muscle and the forcing function to early (0–1 min) left-ventricle data (corrected for delay, dispersion, partial-volume effects, and erythrocyte uptake) and the late-time blood estimates. Using only the blood sample collected at the end of the study to estimate the IF and the use of liver TAC as an alternative IF were also investigated.

Results

The area under the plasma IFs calculated for all studies using the hybrid approach was not significantly different from that using all blood samples. [18F]FDG uptake constants in brain, myocardium, skeletal muscle, and liver computed by the Patlak analysis using estimated and measured plasma IFs were in excellent agreement (slope?~?1; R 2?>?0.983). The IF estimated using only the last blood sample drawn at the end of the study and the use of liver TAC as the plasma IF provided less reliable results.

Conclusions

The estimated plasma IFs obtained with the hybrid method agreed well with those derived from arterial blood sampling. Importantly, the proposed method obviates the need of arterial catheterization, making it possible to perform repeated dynamic [18F]FDG PET studies on the same animal. Liver TAC is unsuitable as an input function for absolute quantification of [18F]FDG PET data.  相似文献   

9.

Purpose

We evaluated whether 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and 3??-deoxy-3??-[18F]fluorothymidine ([18F]FLT) positron emission tomography (PET) could be used as imaging biomarkers of platinum resensitization in ovarian cancer.

Procedures

Paired platinum-sensitive and platinum-resistant ovarian cancer cells from the same patient, PEO1 and PEO4, grown as tumor xenografts in nude mice, were assessed by PET.

Results

The AKT inhibitor, API-2, resensitized platinum-resistant PEO4 tumors to cisplatin, leading to a markedly lower Ki67 labeling index (p????0.006, n?=?6 per group). [18F]FDG-PET and [18F]FLT-PET imaging variables were lower after combination treatment compared with vehicle treatment (p????0.006, n?=?6 per group). No changes were seen with either drug alone. PRAS40 phosphorylation status was a sensitive biochemical marker of pathway inhibition, whereas reductions thymidine kinase 1 expression defined the [18F]FLT response.

Conclusions

Therapeutic inhibition of AKT activation in acquired platinum-resistant disease can be imaged noninvasively by [18F]FDG-PET and [18F]FLT-PET warranting further assessment.  相似文献   

10.

Purpose

The present study was aimed to investigate the relationships between dysfunction of cortical glucose metabolism as detectable by means of 2-deoxy-2-[18F]fluoro -D-glucose ([18F]FDG) positron emission tomography/x-ray computed tomography (PET/CT) and amyloid burden as detectable by means of 4-{(E)-2-[4-(2-{2-[2-[18F]fluoroethoxy]ethoxy}ethoxy)phenyl]vinyl}-N-methylaniline (florbetaben; [18F]FBB) in a group of patients affected by Alzheimer’s disease (AD).

Procedures

We examined 38 patients newly diagnosed with AD according to the NINCDS-ADRDA criteria. All the subjects underwent a PET/CT scan using both [18F]FDG and [18F]FBB with an average interval of 1 month. We used statistical parametric mapping (SPM8) implemented in Matlab R2012b and WFU pickatlas for the definition of a region of interest (ROI) mask including the whole cortex. These data were then normalized on the counts of the cerebellum and then used for a regression analysis on [18F]FDG scans in SPM. Furthermore, 58 control subjects were used as control group for [18F]FDG PET/CT scans.

Results

SPM analysis in AD patients showed a significant negative correlation between [18F] FBB and [18F] FDG uptake in temporal and parietal lobes bilaterally. Of note, these areas in AD patients displayed a marked glucose hypometabolism compared to control group.

Conclusions

Combined imaging with [18F]FBB and [18FFDG shows that amyloid burden in the brain is related to cortical dysfunction of temporal and parietal lobes in AD.
  相似文献   

11.

Purpose

We aimed to elucidate trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid (anti-[18F]FACBC) uptake mechanisms in inflammatory and tumor cells, in comparison with those of l-[methyl-11C]methionine ([11C]Met) and 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG).

Procedures

Using carbon-14-labeled tracers, in vitro time-course, pH dependence, and competitive inhibition uptake experiments were performed in rat inflammatory (T cells, B cells, granulocytes, macrophages), prostate cancer (MLLB2), and glioma (C6) cells.

Results

Anti-[14C]FACBC uptake ratios of T/B cells to tumor cells were comparable, while those of granulocytes/macrophages to tumor cells were lower than those for [14C]FDG. Over half of anti-[14C]FACBC uptake by T/B and tumor cells was mediated by Na+-dependent amino acid transporters (system ASC), whereas most [14C]Met transport in all cells was mediated by Na+-independent carriers (system L).

Conclusions

The low anti-[18F]FACBC accumulation in granulocytes/macrophages may be advantageous in discriminating inflamed regions from tumors. The significant anti-[18F]FACBC uptake in T/B cells may cause false-positives in some cancer patients who undergo FACBC-positron emission tomography (PET).  相似文献   

12.

Purpose

A shear stress-induced atherosclerosis mouse model was characterized for its expression of inflammation markers with focus on CD80. With this model, we evaluated two positron emission tomography (PET) radiotracers targeting CD80 as well as 2-deoxy-2-[18F]fluoro-d-mannose ([18F]FDM) in comparison with 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG).

Procedure

A flow constrictive cuff implanted around the common carotid artery in apolipoprotein E knockout mice resulted in plaque formation. CD80 expression levels and plaque histopathology were evaluated. Serial PET/X-ray computed tomography scans were performed to follow inflammation.

Results

Plaque formation with increased levels of CD80 was observed. Histologically, plaques presented macrophage-rich and large necrotic areas covered by a thin fibrous cap. Of the CD80-specific tracers, one displayed an increased uptake in plaques by PET. Both [18F]FDG and [18F]FDM accumulated in atherosclerotic plaques.

Conclusion

This mouse model presented, similar to humans, an increased expression of CD80 which renders it suitable for non-invasively targeting CD80-positive immune cells and evaluating CD80-specific radiotracers.
  相似文献   

13.

Purpose

The purpose of this study was to evaluate a set of widely used nuclear medicine imaging agents as possible methods to study the early effects of systemic inflammation on the living brain in a mouse model of sepsis-associated encephalopathy (SAE). The lipopolysaccharide (LPS)-induced murine systemic inflammation model was selected as a model of SAE.

Procedures

C57BL/6 mice were used. A multimodal imaging protocol was carried out on each animal 4 h following the intravenous administration of LPS using the following tracers: [99mTc][2,2-dimethyl-3-[(3E)-3-oxidoiminobutan-2-yl]azanidylpropyl]-[(3E)-3-hydroxyiminobutan-2-yl]azanide ([99mTc]HMPAO) and ethyl-7-[125I]iodo-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate ([125I]iomazenil) to measure brain perfusion and neuronal damage, respectively; 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) to measure cerebral glucose uptake. We assessed microglia activity on another group of mice using 2-[6-chloro-2-(4-[125I]iodophenyl)-imidazo[1,2-a]pyridin-3-yl]-N-ethyl-N-methyl-acetamide ([125I]CLINME). Radiotracer uptakes were measured in different brain regions and correlated. Microglia activity was also assessed using immunohistochemistry. Brain glutathione levels were measured to investigate oxidative stress.

Results

Significantly reduced perfusion values and significantly enhanced [18F]FDG and [125I]CLINME uptake was measured in the LPS-treated group. Following perfusion compensation, enhanced [125I]iomazenil uptake was measured in the LPS-treated group’s hippocampus and cerebellum. In this group, both [18F]FDG and [125I]iomazenil uptake showed highly negative correlation to perfusion measured with ([99mTc]HMPAO uptake in all brain regions. No significant differences were detected in brain glutathione levels between the groups. The CD45 and P2Y12 double-labeling immunohistochemistry showed widespread microglia activation in the LPS-treated group.

Conclusions

Our results suggest that [125I]CLINME and [99mTc]HMPAO SPECT can be used to detect microglia activation and brain hypoperfusion, respectively, in the early phase (4 h post injection) of systemic inflammation. We suspect that the enhancement of [18F]FDG and [125I]iomazenil uptake in the LPS-treated group does not necessarily reflect neural hypermetabolism and the lack of neuronal damage. They are most likely caused by processes emerging during neuroinflammation, e.g., microglia activation and/or immune cell infiltration.
  相似文献   

14.
15.

Purpose

The aim of the study was to use micro-autoradiography to investigate the lung cell types responsible for 2-deoxy-2-[18F]fluoro-d-glucose (FDG) uptake in murine models of acute lung injury (ALI).

Procedures

C57/BL6 mice were studied in three groups: controls, ventilator-induced lung injury (VILI), and endotoxin. VILI was produced by high tidal volumes and zero end-expiratory pressure and endotoxin ALI, by intranasal administration. Following FDG injection, the lungs were processed and exposed to autoradiographic emulsion. Grain density over cells was used to quantify FDG uptake.

Results

Neutrophils, macrophages, and type 2 epithelial cells presented higher grain densities during VILI and endotoxin ALI than controls. Remarkably, cell grain density in specific cell types was dependent on the injury mechanism. Whereas macrophages showed high grain densities during endotoxin ALI, similar to those exhibited by neutrophils, type 2 epithelial cells demonstrated the second highest grain density (with neutrophils as the highest) during VILI.

Conclusions

In murine models of VILI and endotoxin ALI, FDG uptake occurs not only in neutrophils but also in macrophages and type 2 epithelial cells. FDG uptake by individual cell types depends on the mechanism underlying ALI.  相似文献   

16.

Purpose

The aim of this study is to assess the variability of 2-deoxy-2-[18F]fluoro-d-glucose ([18F]-FDG) and 3??-deoxy-3??-[18F]-fluorothymidine ([18F]-FLT) uptake in pre-clinical tumor models and examine the relationship between imaging data and related histological biomarkers.

Procedures

[18F]-FDG and [18F]-FLT studies were carried out in nine human tumor xenograft models in mice. A selection of the models underwent histological analysis for endpoints relevant to radiotracer uptake. Comparisons were made between in vitro uptake, in vivo imaging, and ex vivo histopathology data using quantitative and semi-quantitative analysis.

Results

In vitro data revealed that [1-14C]-2-deoxy-d-glucose ([14C]-2DG) uptake in the tumor cell lines was variable. In vivo, [18F]-FDG and [18F]-FLT uptake was highly variable across tumor types and uptake of one tracer was not predictive for the other. [14C]-2DG uptake in vitro did not predict for [18F]-FDG uptake in vivo. [18F]-FDG SUV was inversely proportional to Ki67 and necrosis levels and positively correlated with HKI. [18F]-FLT uptake positively correlated with Ki67 and TK1.

Conclusion

When evaluating imaging biomarkers in response to therapy, the choice of tumor model should take into account in vivo baseline radiotracer uptake, which can vary significantly between models.  相似文献   

17.

Purpose

TH-MYCN transgenic mice represent a valuable preclinical model of neuroblastoma. Current methods to study tumor progression in these mice are inaccurate or invasive, limiting the potential of this murine model. The aim of our study was to assess the potential of small animal positron emission tomography (SA-PET) to study neuroblastoma progression in TH-MYCN mice.

Procedure

Serial SA-PET scans using the tracer 2-deoxy-2-[18F]fluoro-d-glucose (18F-FDG) have been performed in TH-MYCN mice. Image analysis of tumor progression has been compared with ex vivo evaluation of tumor volumes and histological features.

Results

[18F]FDG-SA-PET allowed to detect early staged tumors in almost 100 % of TH-MYCN mice positive for disease. Image analysis of tumor evolution reflected the modifications of the tumor volume, histological features, and malignancy during disease progression. Image analysis of TH-MYCN mice undergoing chemotherapy treatment against neuroblastoma provided information on drug-induced alterations in tumor metabolic activity.

Conclusions

These data show for the first time that [18F]FDG-SA-PET is a useful tool to study neuroblastoma presence and progression in TH-MYCN transgenic mice.  相似文献   

18.

Purpose

We identified and validated [18F]-CP18, a DEVD (the caspase 3 substrate recognition motif) containing substrate-based compound as an imaging tracer for caspase-3 activity in apoptotic cells.

Procedures

CP18 was radiolabeled with fluorine-18 using click chemistry. The affinity and selectivity of CP18 for caspase-3 were evaluated in vitro. The biodistribution and metabolism pattern of [18F]-CP18 were assessed in vivo. [18F]-CP18 positron emission tomography (PET) scans were performed in a dexamethasone-induced thymic apoptosis mouse model. After imaging, the mice were sacrificed, and individual organs were collected, measured in a gamma counter, and tested for caspase-3 activity.

Results

In vitro enzymatic caspase-3 assay demonstrated specific cleavage of CP18. In vivo, [18F]-CP18 is predominantly cleared through the kidneys and urine, and is rapidly eliminated from the bloodstream. There was a sixfold increase in caspase activity and a fourfold increase of [18F]-CP18 retention in the dexamethasone-induced thymus of treated versus control mice.

Conclusions

We report the use [18F]-CP18 as a PET tracer for imaging apoptosis. Our data support further development of this tracer for clinical PET applications.  相似文献   

19.

Purpose

An insulin-resistant rat model, induced by dexamethasone, was used to evaluate a Michaelis–Menten-based kinetic model using 6-deoxy-6-[18F]fluoro-d-glucose (6-[18F]FDG) to quantify glucose transport with PET.

Procedures

Seventeen, male, Sprague–Dawley rats were studied in three groups: control (Ctrl), control?+?insulin (Ctrl?+?I), and dexamethasone?+?insulin (Dex?+?I). PET scans were acquired for 2 h under euglycemic conditions in the Ctrl group and under hyperinsulinemic-euglycemic conditions in the Ctrl?+?I and Dex?+?I groups.

Results

Glucose transport, assessed according to the 6-[18F]FDG concentration, was highest in skeletal muscle in the Ctrl?+?I, intermediate in the Dex?+?I, and lowest in the Ctrl group, while that in the brain was similar among the groups. Modeling analysis applied to the skeletal muscle uptake curves yielded values of parameters related to glucose transport that were greatest in the Ctrl?+?I group and increased to a lesser degree in the Dex?+?I group, compared to the Ctrl group.

Conclusion

6-[18F]FDG and the Michaelis–Menten-based model can be used to measure insulin-stimulated glucose transport under basal and an insulin resistant state in vivo.  相似文献   

20.

Purpose

The purpose of this study is to evaluate the diagnostic concordance and metric correlations of amide proton transfer (APT) imaging with gadolinium-enhanced magnetic resonance imaging (MRI) and 2-deoxy-2-[18F-]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET), using hybrid brain PET/MRI.

Procedures

Twenty-one subjects underwent brain gadolinium-enhanced [18F]FDG PET/MRI prospectively. Imaging accuracy was compared between unenhanced MRI, MRI with enhancement, APT-weighted (APTW) images, and PET based on six diagnostic criteria. Among tumors, the McNemar test was further used for concordance assessment between gadolinium-enhanced imaging, APT imaging, and [18F]FDG PET. As well, the relation of metrics between APT imaging and PET was analyzed by the Pearson correlation analysis.

Results

APT imaging and gadolinium-enhanced MRI showed superior and similar diagnostic accuracy. APTW signal intensity and gadolinium enhancement were concordant in 19 tumors (100 %), while high [18F]FDG avidity was shown in only 12 (63.2 %). For the metrics from APT imaging and PET, there was significant correlation for 13 hypermetabolic tumors (P < 0.05) and no correlation for the remaining six [18F]FDG-avid tumors.

Conclusions

APT imaging can be used to increase diagnostic accuracy with no need to administer gadolinium chelates. APT imaging may provide an added value to [18F]FDG PET in the evaluation of tumor metabolic activity during brain PET/MR studies.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号