首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The substantia nigra receives a strong GABAergic input from the ipsilateral striatum and globus pallidus. Nigral GABAergic synaptic interactions have been described in the pars compacta (SNC) and pars reticulata (SNR) but not in the pars lateralis (SNL). The SNR and particularly the SNL are the nodal points of the GABAergic nigrotectal pathway. The present study analyzes the synaptic connections of GABAergic and dopaminergic neurons in each of the divisions of the substantia nigra by employing a double-labeling immunocytochemical technique at the light and electron microscope levels. Glutamic acid decar☐ylase (GAD)-containing terminals make symmetrical synaptic contacts with dopaminergic neurons in the SNC and SNR. Neurons that contain GAD also receive a GABAergic input in the SNR and SNL. The proportion of GAD-GAD contacts appears to be highest in the SNL where virtually all GAD-positive terminals are found to be in synaptic contact with or apposed to GAD positive profiles. This study demonstrates a strong GABAergic input onto nigral dopaminergic neurons and GABAergic neurons in the SNR and SNL. This GABAergic influence which is ontensibly striatal or pallidal in origin is particularly prominent in relation to the SNL-mediated nigro-collicular pathway.  相似文献   

2.
Glial cell line-derived neurotrophic factor (GDNF) is a survival factor for several types of neurons, including dopaminergic (DAergic) neurons. GDNF binds with high affinity to the GDNF family receptor alpha-1 (GFRalpha-1), which is highly expressed in the midbrain. Using anatomical and lesion techniques, we demonstrated that GFRalpha-1 was expressed in DAergic and non-DAergic neurons in the rat midbrain. Immunohistochemical characterization of GFRalpha-1-expressing neurons indicated that most of the neurons that were immunopositive for the DAergic marker tyrosine hydroxylase (TH) expressed GFRalpha-1 in the substantia nigra pars compacta (SNC). In contrast, fewer TH-containing neurons expressed GFRalpha-1 in the substantia nigra pars reticulata (SNR) and the ventral tegmental area (VTA). Depletion of GFRalpha-1/TH neurons was observed in the SNC following treatment with the neurotoxin 6-hydroxydopamine (6-OHDA); however, GFRalpha-1 expression remained in some neurons located in the SNR. The gamma-aminobutyric acid (GABA)ergic nature of GFRalpha-1-expressing neurons located in the SNR, which were resistant to (6-hydroxydopamine) 6-OHDA, was established by their expression of glutamic acid decarboxylase (GAD; the synthesizing enzyme for GABA). Further analysis indicated that coexpression of GFRalpha-1 and GAD varied in a rostrocaudal gradient in the SNR, substantia nigra pars lateralis (SNL), and VTA. Midbrain DAergic and GABAergic neurons have been previously classified according to their Ca(2+) binding protein (CaBP) content; thus, we also sought to investigate the proportion of midbrain GFRalpha-1-expressing neurons containing parvalbumin (PV), calbindin (CB), and calretinin (CR) in the midbrain. Although GFRalpha-1 expression was found mainly in CB- and CR-immunoreactive neurons, it was rarely observed in PV-immunolabeled neurons. Analysis of the proportion of GFRalpha-1-expressing neurons for each CaBP subpopulation indicated the coexistence of GFRalpha-1 with CR in the VTA and all subdivisions of the SN; double-labeled GFRalpha-1/CR neurons were distributed in the SNC, SNR, SNL, and VTA. GFRalpha-1/CB neurons were also detected in the SNC, SNL, and VTA. Expression of GFRalpha-1 in DAergic and non-DAergic neurons in the rat SN and VTA suggests that GDNF, via GFRalpha-1, might modulate DAergic and GABAergic functions in the nigrostriatal, mesolimbic, and nigrothalamic circuits of the adult rat.  相似文献   

3.
The substantia nigra (SN) is a midbrain center composed of dopaminergic (DA-) and gamma aminobutyric acid (GABA)ergic (GABA-) neurons. In this study, we investigated the topographical relationship between both cell populations and their chemical profile by using single and double immunostaining for tyrosine hydroxylase (TH), glutamic acid decarboxylase (GAD), cholecystokinin (CCK), calretinin (CR), calbindin (CB), parvalbumin (PV), and nitric oxide synthase (NOS). Our results showed that DA-cells are arranged in two bands, one rostrodorsal that corresponds to the SN pars compacta (SNC), and another caudoventral that corresponds to the SN pars reticulata (SNR) and emits cell bridges that make contact with the rostrodorsal one. In the SNR, GABA-cells are arranged in dorsoventrally elongated clusters that occupy DA-cell free regions. According to cytoarchitectural, topographical, and chemical criteria, we identified ten different cell groups: five dopaminergic ones, and five GABAergic ones. Within DA-cells, we found a cell group in the dorsomedial portion of the SNC which contains CCK, CR, and CB (dmSNC); DA-cells in the SN pars lateralis (SNL) which also contain CCK, CR and CB; DA-cells in the rostral half of the SNC containing CCK and CR (rSNC); DA-cells in the SNR and the caudal half of the SNC which only express CR (cSNC-SNR), and a DA-cell group in the lateral part of the SNC that contains none of the markers studied (lSNC). Within GABA-cells, we distinguished: large GABA-cells in the SNL that contain PV; large GABA-cells in the rostrolateral part of the SNR containing PV and NOS (rlSNR), small GABA-cells in the caudomedial part of the SNR containing PV (cmSNR), and two groups of small GABA-cells in the rostromedial portion of the SNR, one of them containing CR (rmcSNR), and the other containing NOS (rmnSNR). These data suggest that over a compartmental and complementary organization, DA- and GABA-nigral cells form a mosaic of neurochemically different subnuclei which probably differ in their physiological and pharmacological properties and vulnerability to aggression.  相似文献   

4.
Repetitive behaviors (such as circling) are one of the defining features of autism. The substantia nigra (SN) is involved in circling. We used unilateral SN pars reticulata (SNR) infusions of the GABA agonist muscimol to induce circling and deoxyglucose autoradiography mapping in adult and postnatal day (PN) 15 male and female rats to determine its substrates. In adults, muscimol infusions in posterior SNR induced a higher circling rate than in anterior SNR, after which males displayed faster circling than females. In contrast, PN15 female rats circled faster than PN15 male rats. Autoradiograms demonstrated age- and sex-specific alterations of deoxyglucose uptake in the SN pars compacta (SNC) associated with highest circling rates. The data suggest that there is a close relationship of the GABAergic SNR and dopaminergic SNC in the induction of circling; there is a topographic organization of the SNR in terms of circling behavior and associated deoxyglucose uptake, which is dependent on age and sex.  相似文献   

5.
The output of the basal ganglia is directed through the entopeduncular nucleus (EPN) and the substantia nigra pars reticulata (SNR) and pars lateralis (SNL), which provide a γ-aminobutyric acidergic (GABAergic) projection to various nuclei of the thalamus and brainstem. Although many neurons within the SNR and EPN have been described as modality specific, the morphological and neurochemical similarities preclude their precise identification. In the present study, the immunocytochemical localization of parvalbumin, a calcium-binding protein, is used in combination with axonal tracing to verify neuronal heterogeneity within the SNR, SNL, and EPN. The results reveal that the majority of neurons in all three centers contain parvalbumin. The parvalbumin-containing neurons are distributed in the caudal two-thirds of the EPN, the rostral part of the SNL, and the lateral two-thirds of the entire rostrocaudal extent of the SNR, the areas involved in sensorimotor function of the basal ganglia. Moreover, the negrothalamic, nigrocollicular, and EPN-thalamic neurons possess parvalbumin immunoreactivity, whereas the EPN-habenular neurons are devoid of parvalbumin immunoreactivity. The results indicate a neurochemical heterogeneity within the GABAergic output neurons of the basal ganglia and suggest that the parvalbumin-containing neurons of the SNR, SNL, and EPN are the tonically active output neurons that form a major link in the disinhibitory neuronal circuit of the basal ganglia, especially that concerned with sensorimotor function. © 1994 Wiley-Liss, Inc.  相似文献   

6.
7.
The topographical organization of the efferent projections from the cat substantia nigra (SN) to the thalamus and the superior colliculus was examined using the anterograde transport of horseradish peroxidase-wheat germ agglutinin (HRP-WGA) and of labelled proteins. HRP-WGA or a mixture of [14C]amino acids was injected into various areas of the SN and the transported material visualized on coronal brain sections by histochemistry or autoradiography, respectively. The retrograde transport of [14C]gamma-aminobutyric acid ([14C]GABA) injected into thalamic nuclei was used also to determine the identity of the nigrothalamic projections. Identical results were found using either the anterograde transport of HRP-WGA or of labelled proteins. In the thalamus, dense nigral projections were observed in the nucleus ventralis medialis (VM) and in the rostromedioventral part of the nucleus ventralis lateralis (VL) whilst more limited projections were seen in the nuclei centralis lateralis (CL) and paracentralis (PC) as well as in the paralamellar zone of the nucleus medialis dorsalis (MD-Il). In addition, a patchy distribution of HRP-WGA or of radioactivity was found in the intermediate layer of the superior colliculus. More precisely, labelling of the VM was dense following injection of [14C]amino acids into the intermediate part of the SN pars reticulata (SNR) regardless of the depth of the injection site, whilst the intralaminar nuclei were labelled preferentially following injections made into the dorsal part of the intermediate SNR. Nigral projections to the intermediate layer of the superior colliculus were visualized over the whole mediocaudal and laterorostral extent when [14C]amino acids were injected into the rostral part of the SNR. Labelling of the superior colliculus was also seen following injection of [14C]amino acids into the intermediate part of the SNR but, in this case, ventral injections led to a more intense labelling than dorsal ones. Both the SNR and the SN pars compacta (SNC) were labelled when [14C]GABA was injected into the VM nucleus of the thalamus, confirming that the nigro VM projection is GABAergic and showing that recurrent collaterals of these GABAergic cells innervating the SNC also contained the transported radioactive material. In this condition ([14C]GABA injection into the VM), the thalamic reticularis nucleus also exhibited a dense labelling.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Vibratome sections of rat substantia nigra (SN) topically injected with colchicine were processed for glutamate decarboxylase (GAD) immunocytochemistry to reveal GABAergic neurons using electronmicroscopic procedures. Both, GAD-immunoreactive neurons and non-immunoreactive neurons receive a dense innervation of GAD-immunoreactive nerve terminals. In an attempt to clarify the origin(s) of this GABAergic input, the projections between caudate-putamen (CP) and SN were lesioned by circumscribed ibotenic acid injections in CP, or by complete hemitransection either at the level of the globus pallidus or at the frontal pole of SN. In addition, the axonal transport was blocked by local injection of colchicine. After survival times from 40 h to 7 days, the interrelations of GAD-immunoreactive neurons and of unstained neurons with degenerated and preserved boutons were investigated. Striatal terminals contact GAD-negative (presumably dopaminergic) neurons, and, at least as frequently, the GABAergic pars reticulata neurons. Numerous GAD-immunoreactive boutons are apparently intact after the different types of lesions; also the spared GABAergic boutons synapse on both, GAD-positive and GAD-negative neurons. Thus, at the level of SN the striatonigrostriatal loop as well as the striatonigrothalamic (-tectal) projections are under the control of inhibitory axon collaterals of the GABAergic pars reticulata neurons.  相似文献   

9.
The distribution of substance P (SP), tyrosine hydroxylase (TH), and glutamic acid decarboxylase (GAD) immunoreactivity in the substantia nigra of the rat was studied by means of an ultrastructural double-labeling immunocytochemical method. Direct synaptic contact between SP-immunoreactive terminals and GAD-positive nigral neurons was more often observed in the pars lateralis than the pars reticularis and was rarely observed in the pars compacta. Substance P-positive terminals also formed synapses with cell bodies and dendrites of TH-positive, dopaminergic neurons in the pars compacta and pars reticulata. Multiple SP-immunoreactive terminals were often observed with symmetrical and, less frequently, asymmetrical synapses on individual TH-containing dendrites. Evidence of SP-containing terminals contacting both GABAergic and dopaminergic neurons in the substantia nigra suggests a direct excitatory action upon nigral projection neurons.  相似文献   

10.
GABAergic inhibition of the substantia nigra pars reticulata (SNR) has been shown to suppress seizures in most models of epilepsy, including the amygdala-kindling model of temporal lobe epilepsy (TLE). A dysfunction of this seizure gating mechanism of the SNR may lead to facilitation of seizure propagation in such models. In post-status epilepticus models of TLE, GABAergic neurons in the SNR are damaged, but it is not known whether such damage also occurs in kindling. By using stereological techniques for cell counting in amygdala-kindled rats, we determined the density of SNR neurons that were labeled for GABA by immunohistochemistry or for the two isoforms of the GABA-synthesizing enzyme glutamate decarboxylase (GAD), GAD65 and GAD67, by in situ hybridization (ISH). In addition, GABA neurons in the basolateral amygdala (BLA) were counted. While there was a significant reduction of GAD65 mRNA expressing neurons in the BLA of kindled rats, no alteration in the density of neurons was observed in the anterior or posterior SNR when cells were counted 6 weeks after the last kindled seizure. Our previous finding of reduced GAD and GABA levels in synaptosomes isolated from the SN of kindled rats together with the present observation of unchanged density of SNR neurons in such rats suggest that kindling affects the GABAergic projections from the striatum or globus pallidus to the SNR rather than directly affecting GABA neurons in the SNR.  相似文献   

11.
This study explores the organisation and neurochemical nature of the projections from the zona incerta (ZI) to the basal ganglia. Sprague-Dawley rats were anaesthetised with ketamine (100 mg/kg) and Rompun (10 mg/kg), and injections of cholera toxin subunit B were made into each of the following nuclei: the ZI, the substantia nigra (SN), the pedunculopontine tegmental nucleus (PpT), and the entopeduncular nucleus (Ep). Brains were aldehyde fixed, sectioned, and processed using standard methods. Tracer-labelled sections were then doubly labelled with antibodies to glutamate (Glu), nitric oxide synthase (NOS), parvalbumin (Pv), or glutamic acid decarboxylase (GAD; the latter two are markers for GABAergic cells); these neurochemicals characterise most types of ZI cells. After ZI injections, labelling was nonuniform across the different basal ganglia nuclei. The bulk of labelling, both anterograde and retrograde, was seen in the SN and PpT and, to a lesser extent, within the other nuclei of the basal ganglia (e.g., caudate-putamen, globus pallidus, subthalamus, Ep). In the SN, labelling was found in both major parts of the nucleus, the pars compacta and pars reticulata. Within the PpT, however, the bulk of labelling was limited to only one of the two sectors of the nucleus, namely, the pars dissipata (PpTd). The pars compacta of the PpT (PpTc) remained largely free of labelled profiles. After CTb injections into three basal ganglia nuclei (SN, PpT, Ep), most labelled cells in the ZI were glutamate+ and very few were NOS+ or gamma-aminobutyric acidergic. Overall, the results indicate that the ZI is in a position to influence preferentially the activity of the SN and PpTd of the basal ganglia via an excitatory, glutamatergic input.  相似文献   

12.
The cellular localization of calbindin D-28k (CB) and parvalbumin (PV) was analyzed by means of double-immunohistochemical techniques applied to single sections in the entopeduncular nucleus (EP), the subthalamic nucleus (STh), and the substantia nigra (SN) of the rat. In EP, PV-positive cells abounded centrally, where CB immunostaining was minimal. The medial and ventral sectors of EP were markedly enriched with CB neurophil but devoid of PV-positive cells. CB-positive neurons abounded particularly in the rostral pole of EP. In STh, PV-positive neurons and neuropil were concentrated in the lateral two thirds of this nucleus. Only a few PV-positive cells were detected in sectors of STh devoid of PV-positive neuropil. The STh was completely devoid of CB immunostaining. In the rostral two thirds of SN, PV-positive neurons were largely confined to the lateral half of the pars reticulata (SNR), and occurred more ventrally and medially in the caudal third. Intense CB-immunoreactive neuropil was found in medial and dorsal parts of rostral SNR, and CB-positive cells were observed in the SN pars compacta and the ventral tegmental area. PV and CB cells were also observed in the pars lateralis of SN. The markedly heterogeneous pattern of distribution of PV and CB in EP, STh, and SN suggests that these two calcium-binding proteins may label distinct functional domains in each of these three components of the rat basal ganglia. Synapse 25:359–367, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Parkinson's disease results from the death of the dopamine-containing neurons in the substantia nigra pars compacta (SNC). This is accompanied by a loss of dopamine in brain regions, such as the corpus striatum, which receives input from dopaminergic neurons in the substantia nigra (SN). Since the corpus striatum is the primary target for these dopaminergic neurons, it has long been thought that the corpus striatum is the principal region affected. It was, therefore, natural to assume that replenishing dopamine in the striatum might be an effective treatment for Parkinson's disease. In fact, the dopamine precursor L-dihydroxyphenylalanine (L-dopa), the current drug of choice for treatment of Parkinson's disease, is believed to exert its therapeutic effect by replenishing dopamine levels in the corpus striatum via enzymatic decarboxylation within the synaptic terminals of surviving nigrostriatal neurons (Hornykiewicz, 1974). However, dopamine is also synthesized, stored, and released from the dendrites of SNC neurons that arborize in the substantia nigra pars reticulata (SNR) (Cheramy et al., 1981). Using a classic animal model for Parkinson's disease (rats with a unilateral 6-hydroxydopamine lesion of the SN), we show that L-dopa is also converted to dopamine in significant amounts within the 6-OHDA-lesioned SN. Furthermore, in contrast to the situation in the striatum where dopamine levels are only elevated for a short time, dopamine levels in the SN remain elevated until the behavioral effects of L-dopa have subsided. This elevation of nigral dopamine levels produces rotation that can be blocked by injecting a selective D1 dopamine receptor antagonist (SCH 23390, 2 micrograms in 1 microliter) directly into the SN pars reticulata. Infusion of SCH 23390 into the ipsilateral striatum produced only a modest reduction in L-dopa-induced circling behavior. These results suggest that D1 dopamine receptors in the SN may be at least as important as D1 dopamine receptors in the striatum as a site for the effects of L-dopa. This may have important implications for the therapy of Parkinson's disease.  相似文献   

14.
Extracellular unit recordings were obtained from neurons in the ventral tegmental area (VTA), the substantia nigra, zona compacta (SNC) and zona reticulata (SNR) of adult female albino rats anaesthetized with urethane and chloral hydrate. Neurons were divided into two types based on their electrophysiological characteristics; Type I neurons had long duration action potentials (>2.6 msec) and slow discharge rates and Type II neurons had shorter duration action potentials and a wider range of discharge rates. Both types of neurons were found in the VTA and SNC, but there were only Type II neurons in the SNR. The effects of single pulse stimuli delivered to the ipsilateral ventromedial (VMH) or lateral (LH) hypothalamic areas on activities of the two types of neurons were investigated. Only a small portion of neurons in the VTA and SNC responded to VMH stimulation, but in contrast a majority of the two types of neurons in the VTA and SNC responded to LH stimulation. Most neurons in the SNR did not respond to VMH or to LH stimulation. Type II neurons in the VTA and SNC were predominantly suppressed by LH stimulation with short onset latencies (<6 msec), indicating the possibility of monosynaptic mediation. However Type I neurons in the VTA and SNC were activated and suppressed and the onset latencies of these responses were relatively longer. The high proportion of neurons of VTA and SNC responding to electrical stimulation of LH is consistent with anatomical evidence. Suppression and activation of Type I neurons in VTA and SNC suggest that the LH exerts modulatory influences on these neurons of the midbrain.  相似文献   

15.
The technique of intracellular recording and staining of the same neuron with horseradish peroxidase (HRP) was used to study the soma-dendritic and axonal morphology of nigrothalamic and nigrotectal cells in the rats. The nigrothalamic and nigrotectal cells were spread throughout the dorsoventral extent of the pars reticulata (SNR) and exhibited the same soma-dendritic and axonal features. Both populations consisted of medium-sized and large cells with extensive dendritic fields overlapping in all three directions. Their axons collateralized within the substantia nigra (SN) and in the mesencephalic tegmentum. The intrinsic collaterals were thin and branched partly within the dendritic field of a parent cell partly in remote regions of the SNR, and even in the pars compacta (SNC). The extrinsic branches involved thin arborizations in the rostroventral mesencephalic reticular substance and thicker descending and ascending collaterals. This material was supplemented by physiologically nonidentified HRP stained medium-sized and large neurons located in the SNR. The two kinds displayed the same extent and orientation of their dendrites but the branching patterns differed slightly. Proximal dendrites of all cells were coarse and smooth; thinner distal dendrites had varicosities and spinelike appendages. Some dendrites, especially those near the crus cerebri, terminated in dendritic thickets bearing many pleomorphic appendages. The orientation of dendritic fields varied with dorsoventral position of cells within the SNR. The most ventral region of the SNR contained neurons with dendrites oriented parallel to the crus cerebri and thus remained confined to the deepest stratum. The dendrites of cells in the central region of SNR were oriented mainly anteroposteriorly and ventrally, the ventral dendrites terminating in the ventralmost layer. Cells in the dorsolateral part of the SNR were characterized by the large dorsoventral extent of their dendrites which penetrated the entire thickness of SN. This variation in the arrangement of dendritic fields indicates that the SN is organized in three dorsoventral layers.  相似文献   

16.
Extracellular recordings were obtained from neurons in the ventral tegmental area (VTA), the substantia nigra, including the zona compacta (SNC) and the zona reticulata (SNR), and the midbrain reticular formation (FOR) of adult female albino rats anesthetized with urethane and chloral hydrate. Based on electrophysiological characteristics the neurons were divided into two types. Type I neurons, with relatively long spike durations and slow discharge rates, were confined to the VTA and SNC. Type II neurons, with shorter spike durations and faster discharge rates, were observed in the SNR and FOR as well as the VTA and SNC. The effects of foot pinch (FP), tail pinch (TP) and stimulation of the vaginal cervix (VC) on the activity of the two types of neurons were investigated. Previously it was demonstrated that FP was aversive, TP elicited locomotion, sniffing and gnawing responses and VC lordosis response, vocalization and immobility. For approximately two-thirds of the neurons the effects of the three peripheral stimuli were similar; either they were activated or suppressed. Approximately 8 percent of the neurons were suppressed by FP and TP and activated by VC whereas a similar number were activated by FP and TP and suppressed by VC. Type 1 and Type II neurons in the VTA and SN were activated and suppressed by the peripheral stimuli with suppression being the most common response to FP and TP. The results are consistent with the view that VTA and SN neurons integrate a number of central and peripheral inputs.  相似文献   

17.
Re-examination of the strio-nigral substance P (SP) tract by means of an experimental immunohistochemical method in the rats demonstrated the presence of two distinct pathways from the nucleus caudatus putamen (CP) to the substantia nigra (SN). Destruction of the posterior portion of the CP resulted in the disappearance of SP-positive fibers in the SN pars lateralis but not in the SN pars compacta or reticulata. On the other hand, destruction of the ventrolateral portion of the anterior portion of the CP caused the disappearance of SP-positive fibers in the SN pars compacta and pars reticulata but not in the SN pars lateralis. In addition, destruction of the dorsal portion of the anterior portion of the CP, where 3-6 cell islets of SP-positive cells are located, failed to decrease SP-positive fibers in any of the subdivisions of the SN. These findings strongly suggest that SP-positive neurons in the posterior portion of the CP project to the SN pars lateralis (posterior strio-nigral SP tract), SP-positive cells in the lateroventral part of the anterior portion of the CP extend to the SN pars compacta and pars reticulata, but SP-positive cells in the dorsal part of the anterior portion of the CP do not innervate the SN.  相似文献   

18.
Dopaminergic neurons of the substantia nigra compacta (SNC), ventral tegmental area (VTA) and retrorubral field (RRF) play a role in reward, motivation, learning, memory, and movement. These neurons are intermingled with GABAergic neurons. Recent evidence shows that the VTA contains glutamatergic neurons expressing vesicular glutamate transporter type 2 (VGluT2); some of them co‐express tyrosine hydroxylase (TH). Here, we used a combination of radioactive in situ hybridisation and immunohistochemistry to explore whether any of the vesicular glutamate transporters [vesicular glutamate transporter type 1 (VGluT1), VGluT2, or vesicular glutamate transporter type 3 (VGluT3)] were encoded by neurons in the SNC or RRF. We found expression of VGluT2 mRNA, but not of VGluT1 or VGluT3, in the SNC and RRF. These VGluT2 neurons rarely showed TH immunoreactivity. Within the SNC, the VGluT2 neurons were infrequently found at the rostral level, but were often seen at the medial and caudal levels intercalated in the mediolateral portion of the dorsal tier, at a ratio of one VGluT2 neuron per 4.4 TH neurons. At this level, VGluT2 neurons were also found in the adjacent substantia nigra reticulata and substantia nigra pars lateralis. Within the RRF, the VGluT2 neurons showed an increasing rostrocaudal gradient of distribution. The RRF proportion of VGluT2 neurons in relation to TH neurons was constant throughout the rostrocaudal levels, showing an average ratio of one VGluT2 neuron per 1.7 TH neurons. In summary, we provide evidence indicating that the SNC and RRF, which are traditionally considered to be dopaminergic areas, have neurons with the ability to participate in glutamate signaling.  相似文献   

19.
Single unit activity of substantia nigra pars reticulata (SNR) neurons was recorded bilaterally in rats subjected to unilateral 6-hydroxydopamine lesions of the ascending mesostriatal dopaminergic pathway, resulting in an almost complete loss of dopaminergic neurons in the ipsilateral SN pars compacta. Firing rate and firing pattern of SNR neurons in lesioned rats were compared with respective data from sham-lesioned rats and naive controls. In lesioned rats, the mean firing rate of SNR neurons at the lesioned side was significantly reduced and there was an increase in the occurrence of bursting activity. In contrast, firing rate in the contralateral SNR was significantly increased without change in the frequency of bursting neurons. This asymmetrical change in spontaneous firing characteristics of SNR neurons following the lesion could be involved in the complex behavioral changes seen in this model of Parkinson's disease.  相似文献   

20.
This report describes the distribution of tyrosine hydroxylase (TH)-expressing structures in the brain of rainbow trout (Oncorhynchus mykiss). TH neurons have been localized by the use of two complementary techniques, immunocytochemistry and in situ hybridization of TH messenger RNA. Results obtained from in situ hybridization and immunocytochemistry were in agreement. TH cells were observed in many areas of the brain, with a higher density at the level of the olfactory bulbs where TH-positive neurons are abundant in the internal cell layer. In the telencephalon, two populations of TH neurons can be distinguished: one group is located in the area ventralis telencephali pars dorsalis, and the other group is located in the area ventralis telencephali pars ventralis and extends laterally in the area ventralis telencephali pars lateralis. Many labeled neurons are also seen in the preoptic area as well as in the hypothalamus, where several clusters of TH-positive cells are observed. Some of these neurons located in the paraventricular organ grow a short cytoplasmic extension directed to the ventricular wall and are known to be cerebrospinal fluid-contacting cells. The most caudal TH neurons are observed at the level of the locus caeruleus. At the level of the pituitary, TH-positive fibers are observed in the neurohypophysis. The TH-immunoreactive innervation at the level of the pituitary provides a neuroanatomic basis for the effects of dopamine and/or norepinephrine on the release of pituitary hormones in fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号