首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Ito  K Ono    A Noma 《The Journal of physiology》1994,476(1):55-68
Single myocytes were dissociated from the rabbit sino-atrial node, and the membrane background conductance produced by spontaneous opening of the muscarinic K+ channels was investigated by recording whole-cell and single channel currents in both normal K+ (5.4 mM) and high-K+ (145 mM) external solutions. Increasing external K+ concentration ([K+]o) from 5.4 to 145 mM induced a large inward shift of the whole-cell current accompanied by considerable current fluctuations at -50 mV. The high-K(+)-induced current was both K+ selective and voltage dependent, which was examined by varying [K+]o. This current was almost completely suppressed by 1-5 mM Ba2+ or 2-10 mM Cs+ and it was partly blocked by 10 microM atropine. In high-K+ (145 mM) solution, 20 nM acetylcholine (ACh) further increased the K+ conductance as well as the current noise. The power density spectrum of the noise was fitted with a sum of two Lorentzian functions. The corner frequencies of both the slow (approximately 5 Hz) and fast (approximately 120 Hz) components were comparable between the noise before and during the ACh application. Internal dialysis with a non-hydrolysable derivative of ATP, 5'-adenylylimido-diphosphate (AMP-PNP) or Mg(2+)-free solution markedly decreased both the amplitude and fluctuations of the high-K(+)-induced current. The relation between the variance of the current fluctuations and the mean current amplitude was linear in every experiment using dialysis of AMP-PNP or Mg(2+)-free internal solution, or using superfusion of ACh. The slopes of these relations gave comparable single channel current amplitudes of -0.7 pA at -50 mV. These results indicate that the spontaneous opening of the muscarinic K+ channels is largely responsible for the high-K(+)-induced current. In the high-K+ solution, the variance-mean relation at -50 mV showed that the muscarinic K+ channel provides an inward current of 3.12 +/- 2.13 pA pF-1 (n = 23), which was about 60% of the total inward background current. In the normal K+ solution, the variance-mean relation at -50 mV indicated that an outward current of 6.0 +/- 2.0 pA (0.33 +/- 0.28 pA pF-1, n = 8) was provided by the K+ channel. The single channel current amplitude was estimated to be 0.06 +/- 0.02 pA (n = 9). Cell-attached recordings in the absence of ACh demonstrated sporadic and brief openings of channels identical to the ACh-induced channels. The power density spectra of the single channel currents exhibited kinetic properties comparable with those of the whole-cell currents.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
1. Single-electrode voltage-clamp recordings were made from CA3 pyramidal cells in organotypic hippocampal slice cultures for measurement of membrane currents underlying both the gamma-aminobutyric acid (GABA)-mediated, Cl- -dependent inhibitory postsynaptic potential (IPSC), evoked in response to stimulation of the mossy fiber pathway, and responses to iontophoretically applied GABA. Their reversal potentials are presumed to equal the equilibrium potential for Cl- (37). Mechanisms underlying activity-dependent increases in the intracellular concentration of Cl- ([Cl-]i) were investigated by describing active and passive pathways for Cl- influx and efflux. 2. During 99-s applications of GABA, driving force declined by 51% due to increases in [Cl-]i; thus passive Cl- influx through GABA-activated pathways can significantly affect [Cl-]i. 3. Decreasing the extracellular K+ concentration ([K+]o) from 5.8 to 1 mM caused a rapid hyperpolarizing shift in the mean IPSC reversal potential (EIPSC) from -67.6 to -81.9 mV, even when membrane potential (Vm) was maintained constant and depolarized with respect to EIPSC. 4. Decreasing [K+]o from 5.8 to 1 mM caused a rapid hyperpolarizing shift in the mean GABA reversal potential (EGABA) from -64.7 to -81.1 mV, even when Vm was maintained constant and depolarized with respect to EGABA. Reducing the extracellular Cl- concentration from 153 to 89 mM, while maintaining [K+]o constant at 1 mM, shifted the mean EGABA from -81.1 to -66.2 mV, an amount close to that predicted by the Nernst equation for Cl-. We conclude that reducing [K+]o caused a hyperpolarizing shift in EGABA and EIPSC by decreasing [Cl-]i. 5. The shift of EIPSC and EGABA upon alteration of [K+]o did not result from contamination of the responses by additional K+-mediated components because it was unaffected by block of K+ channels with intracellular Cs+. 6. Reducing the extracellular Na+ concentration from 141 to 70 mM had no effect on EGABA. 7. Furosemide, bath-applied at 5 X 10(-4) M while holding Vm depolarized with respect to EIPSC, caused a rapid, reversible decrease in IPSC driving force averaging 69%, consistent with the presence of a furosemide-sensitive outward Cl- -transport system. 8. Reducing [K+]o from 5.8 to 1 mM in the presence of 5 X 10(-4) M furosemide produced a smaller shift of EIPSC from -61.0 to -71.2 mV, however, after washout of furosemide from [K+]o = 1 mM saline, EIPSC shifted further to -89.8 mV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Altering [K+]o might have different effects on action potential duration (APD) in myocytes from different regions. Therefore, the effects of [K+]o on regional differences in action potential characteristics were investigated in sub-endocardial, mid-myocardial and sub-epicardial myocytes isolated from the base of guinea-pig left ventricular free wall using three different [K+]o (2.7, 5.4 and 8.1 mM KCl). Action potentials were recorded using the switch-clamp technique at 0.5 Hz. Increasing [K+]o from 2.7 to 8.1 mM shortened the action potential duration to 90 % repolarization (APD90; mean APD90 values in sub-endocardial, mid-myocardial and sub-epicardial myocytes were, respectively, 295 +/- 9, 286 +/- 9 and 266 +/- 8 ms in 2.7 mM [K+]o, 270 +/- 7, 255 +/- 7 and 215 +/- 7 ms in 5.4 mM [K+]o, 234 + 7, 212 +/- 10 and 155 +/- 8 ms in 8.1 mM [K+]o), depolarized the resting potential, and reduced the amplitude of the action potential. The effect of increasing [K+]o on action potential characteristics was more pronounced in sub-epicardial myocytes than in sub-endocardial and mid-myocardial myocytes. The regional differences in APD90 in 5.4 mM [K+]o were increased in 8.1 mM [K+]o and abolished in 2.7 mM [K+]o. In conclusion, changing [K+]o produces more pronounced effects on action potentials in sub-epicardial myocytes than in sub-endocardial myocytes, modifying the normal heterogeneity of action potentials. The differences in the response of sub-epicardium and sub-endocardium to [K+]o may contribute to the flattening or inversion of the T wave commonly seen in patients presenting with hypokalaemia and the upright and tall T waves observed in electrocardiograms recorded during hyperkalaemia, although the underlying ionic currents remain to be determined.  相似文献   

4.
The characteristics of adenosine 5'-triphosphate (ATP)-sensitive K+ channels in acutely isolated striatal neurons from adult rats were examined. Neurons had a resting membrane potential of -53.9+/-1.2 mV (n=66), with evoked or spontaneous action potentials firing at 10+/-0.7 Hz, and large inwards and outwards whole-cell currents. In cell-attached patches with a high [K+] in the pipette, a voltage-independent, ATP-insensitive 16.5+/-1.5 pS channel was observed in 375 out of 452 cells. Bath application of Na+-azide (0.5-2 mM) to 108 neurons revealed another 145.7+/-3.5 pS (LKATP) channel in 65 neurons; this channel was blocked by tolbutamide. The LKATP channel exhibited a high open probability (Po, 0.8+/-0.05) at 0 mV pipette potential. Varying the pipette [K+] shifted the reversal potential of LKATP, showing the channel's K+ selectivity. Cytoplasmic ATP (ATPi) reversibly inhibited LKATP, with an inhibitory constant (Ki) of 0.12 mM. LKATP was sensitive to intracellular Ca2+ but insensitive to iberiotoxin. In 25% of cell-attached patches, the presence of quinpirole in the pipette opened a third type of channel (90.6+/-1.7 pS, termed D2KATP). Sulpiride, a dopamine D2-receptor antagonist, inhibited D2KATP. ATPi reversibly inhibited D2KATP, with a Ki of 0.212 mM. The Na+-azide- or quinpirole-induced current caused a tolbutamide-sensitive membrane hyperpolarization and a marked reduction in action potential frequency. We propose that ATP-sensitive K+ channels play a metabolism-dependent role in striatal neurons.  相似文献   

5.
Caffeine (4 mM) produces a depolarization of about 10 mV in frog muscle fibres (Leptodactylus ocellatus). The aim of this work was to study the mechanisms of this effect. An approximately threefold rise in membrane resistance [Cl--free (SO(4)2-) medium] substantially increased, and both Na+-free medium and Ni2+ (5 mM) reduced, the caffeine-induced depolarization. In voltage-clamped (-60 mV) short fibres from lumbricalis muscle of the toad (Buffo arenarum), caffeine generated an inward current of 4.13 +/- 0.48 microA cm(-2). This caffeine-induced current was reduced by 60% in Na+-free medium, 44% in the presence of 5 mM amiloride and 48% by 5 mM Ni2+, suggesting that the activation of the Na+-Ca2+ exchanger in its forward mode may play a role in the observed electrical effects of the drug. Caffeine also produced a marked release of K+. Net K+ efflux increased from 3.5 +/- 0.2 (control) to 22.1 +/- 2.3 pmol s(-1) cm(-2) (caffeine). It is shown that in the presence of the drug, [K+] in the lumen of the T tubules may well increase to levels which could produce, in part, both the observed depolarization and the caffeine-induced current under voltage clamp conditions. The caffeine-induced K+ efflux was not reduced by 5 mM Ni2+. At a holding potential of 30 mV the caffeine-induced current was reversed (outward) and roughly halved by 5 mM Ni2+. The Ni2+-sensitive fraction of the caffeine-induced current, assumed to represent the Na+-Ca2+ exchanger current, had an estimated reversal potential close to 12 mV ([Na+]o = 115 mM; [Ca2+]o = 1 mM). In conclusion, the depolarizing effect of caffeine described here would be produced by two mechanisms: (a) an inward current generated by the activation of the Na+-Ca2+ exchanger in its forward mode, and (b) the rise of the external [K+] in restricted spaces like the T tubules.  相似文献   

6.
7.
This study was designed to identify and characterize Na+-activated K+ current (I(K(Na))) in guinea pig gastric myocytes under whole-cell patch clamp. After whole-cell configuration was established under 110 mM intracellular Na+ concentration ([Na+]i) at holding potential of -60 mV, a large inward current was produced by external 60 mM K+([K+]degrees). This inward current was not affected by removal of external Ca2+. K+ channel blockers had little effects on the current (p>0.05). Only TEA (5 mM) inhibited steady-state current to 68+/-2.7% of the control (p<0.05). In the presence of K+ channel blocker cocktail (mixture of Ba2+, glibenclamide, 4-AP, apamin, quinidine and TEA), a large inward current was activated. However, the amplitude of the steady-state current produced under [K+]degrees (140 mM) was significantly smaller when Na+ in pipette solution was replaced with K+- and Li+ in the presence of K+ channel blocker cocktail than under 110 mM [Na+]i. In the presence of K+ channel blocker cocktail under low Cl- pipette solution, this current was still activated and seemed K+-selective, since reversal potentials (E(rev)) of various concentrations of [K+]degrees-induced current in current/voltage (I/V) relationship were nearly identical to expected values. R-56865 (10-20 microM), a blocker of I(K(Na)), completely and reversibly inhibited this current. The characteristics of the current coincide with those of I(K(Na)) of other cells. Our results indicate the presence of I(K(Na)) in guinea pig gastric myocytes.  相似文献   

8.
An inwardly rectifying K+ current was analysed in isolated toad retinal pigment epithelial (RPE) cells using the perforated-patch clamp technique. The zero-current potential (Vo) of RPE cells averaged -71 mV when the extracellular K+ concentration ([K+]o) was 2 mM. Increasing [K+]o from 0.5 to 5 mM shifted V0 by +43 mV, indicating a relative K+ conductance (TK) of 0.74. At [K+]o greater than 5 mM, TK decreased to 0.53. Currents were larger in response to hyperpolarizing voltage pulses than depolarizing pulses, indicating an inwardly rectifying conductance. Currents were time independent except in response to voltage pulses to potentials positive to 0 mV, where the outward current decayed with an exponential time course. Both the inwardly rectifying current and the transient outward current were eliminated by the addition of 0.5 mM Ba2+, 5 mM Cs+ or 2 mM Rb+ to the extracellular solution. The current blocked by these ions reversed near the K+ equilibrium potential (EK) over a wide range of [K+]o, indicating a highly selective K+ channel. The current-voltage relationship of the isolated K+ current exhibited mild inward rectification at voltages negative to -20 mV and a negative slope conductance at voltages positive to -20 mV. The Cs(+)- and Ba(2+)-induced blocks of the K+ current were concentration dependent but voltage independent. The apparent dissociation constants were 0.8 mM for Cs+ and 40 microM for Ba2+. The K+ conductance decreased when extracellular Na+ was removed. Increasing [K+]o decreased the K+ chord conductance (gK) at negative membrane potentials. In the physiological voltage range, increasing [K+]o from 2 to 5 mM caused gK to decrease by approximately 25%. We conclude that the inwardly rectifying K+ conductance represents the resting K+ conductance of the toad RPE apical membrane. The unusual properties of this conductance may enhance the ability of the RPE to buffer [K+]o changes that take place in the subretinal space at the transition between dark and light.  相似文献   

9.
The intracellular K activity (aKi) and membrane potential of sensory neurons in the leech central nervous system were measured in normal and altered external K+ concentrations, [K+]o, using double-barreled, liquid ion-exchanger microelectrodes. In control experiments membrane potential measurements were made using potassium chloride-filled single-barreled microelectrodes. All values are means +/- SD. At the normal [K+]o (4 mM) the mean aKi of all cells tested was 72.6 +/- 10.6 mM (n = 40) and the average membrane potential was -47.3 +/- 5.2 mM (n = 40). When measured with single-barreled microelectrodes, the membrane potential averaged -45.3 +/- 2.9 mV (n = 12). Assuming an intracellular K+ activity coefficient of 0.75, the intracellular K+ concentration of sensory neurons would be 96.8 +/- 14.1 mM). With an extracellular K+ concentration of 5.8 mM in the intact ganglion compared to the K+ concentration of 4 mM in the bath, the K+ equilibrium potential was -71.5 mV. When the ganglion capsule was opened, the extracellular K+ concentrations in the ganglion were similar to that of the bathing medium and the calculated K+ equilibrium potential was -81 mV. The membrane of sensory neurons depolarized following the changes to elevated [K+]o (greater than or equal to 10-100 mM), whereas aKi changed only little or not at all. At very low [K+]o (0.2, 0 mM) aKi and membrane potential showed little short-term (less than 3 min) effect but began to change after longer exposure (greater than 3 min). Reduction of [K+]o from 4 to 0.2 mM (or 0 mM) produced first a slow, and then a more rapid decrease of aKi and membrane resistance, accompanied by a slow membrane hyperpolarization. Following readdition of normal [K+]o, the membrane first depolarized and then transiently hyperpolarized, eventually returning slowly to the normal membrane potential.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The whole-cell patch-clamp technique combined with rapid caffeine (CAF) applications was used to measure Na+-Ca2+ exchange (NCX) currents (I(NCX)). The rate of Ca2+ extrusion and the amount of Ca2+ extruded from the cell upon a rapid CAF exposure were obtained from I(NCX) and its time integral, respectively. This gave a maximal NCX rate (V(NCX)) of 151 amol pF(-1) s(-1) or 2.3 mM s(-1) and a half-maximal V(NCX) (K0.5) at a total cellular [Ca2+] ([Ca2+]tot) of 15.4 amol pF(-1). Using the same approach for the tail current induced by repolarization to -80 mV gave a K0.5 of 7.0 amol pF(-1) corresponding to 108 microM total or 2-4 microM free Ca2+. The relationship between [Ca2+]tot and V(NCX) was linear in the physiological range. Inhibition of the SR function with cyclopiazonic acid plus ryanodine reduced the slope significantly from 23.2+/-1.4 to 17.6+/-1.6 s(-1), while ryanodine alone had no effect. The relationship between [Ca2+]tot and V(NCX) was steeper at more negative membrane potentials, and with identical SR Ca2+ loads the maximal VNCX at -10 mV was reduced to 39.7+/-2.7% of the value at -90 mV. Long depolarizations caused SR Ca2+ loading through reverse-mode NCX. Between -30 and +10 mV reverse mode V(NCX)=Vm.0.047 amol pF(-1) s(-1) mV(-1)+2.51 amol pF(-1) s(-1), giving a reversal potential of -54 mV. In conclusion, the relationship between V(NCX) and [Ca2+]tot shows that the NCX is capable of removing a total Ca2+ transient of 60 microM at physiological heart rates, while reverse-mode NCX reloads the sarcoplasmic reticulum (SR) during depolarization. Furthermore, small alterations in the action potential configuration are predicted to change significantly the relative importance of the NCX in the regulation of cytosolic [Ca2+] and SR Ca2+ loading.  相似文献   

11.
Elevated levels of NH4+ in the brain impair neuronal function. We studied the effects of NH4+ on postsynaptic inhibition of cultured rat brain neurons using whole cell recording under nominally HCO3- -free conditions. Application of NH4+ shifted the reversal potentials for spontaneous inhibitory postsynaptic currents and currents elicited by dendritic GABA applications in a positive direction because [Cl-]i increased. The positive shift of the reversal potentials of GABA-induced Cl- currents was equal on equimolar elevation of [NH4+]o or [K+]o, respectively. The NH4+-induced increase in [Cl-]i was reversed by an inhibitor of cation-anion cotransport, furosemide (0.1 mM), but not by bumetanide (0.01 mM) or by replacement of [Na+]o by Li+. We conclude that neuron-specific K-Cl cotransporter (KCC2) transports NH4+ similar to K+. Despite this fact, the small increase of [NH4+]o during metabolic encephalopathies will barely elevate [Cl-]i. However, an impairment of neuronal function may result because KCC2 provides a pathway to accumulate NH4+, and thereby, a continuous acid load to neurons.  相似文献   

12.
The effects of a lipid component of oxidized low-density lipoproteins (ox-LDL), L-alpha-palmitoyl-lysophosphatidylcholine (LPC), on membrane currents of isolated canine renal artery smooth muscle cells (RASMC) were examined using the whole-cell configuration of the patch-clamp technique. In RASMC exposed to nominally Ca2+-free solutions and dialyzed with 0.1 mM EGTA and 140 mM K+, superfusion with LPC (10 microM) elicited spontaneous transient outward currents (STOCs) and/or spontaneous transient inward currents (STICs), followed by the activation of a large voltage-independent current with a reversal potential (Er) close to 0 mV. Buffering intracellular Ca2+ with 10 mM BAPTA prevented the appearance of STOCs and STICs, but not the activation of the voltage-independent current. Er of the LPC-induced voltage-independent current exhibited sensitivity to changes in [K+]o and [Na+]o in a manner consistent with a non-selective cation current (I(NSC)) and was blocked by gadolinium (Gd3+; 10 microM). Shifts in Er of the LPC-induced I(NSC) in response to changes in [Ca2+]o were used to estimate a relative Ca2+ to Na+ permeability ratio (P(Ca)/P(Na)) of 1.67. These results suggest that LPC causes abnormal sarcoplasmic reticulum Ca2+ regulation, leading to the appearance of STOCs and STICs, and the activation of I(NSC) in vascular smooth muscle cells. These effects may explain the ability of ox-LDLs to elevate [Ca2+]i in vascular smooth muscle and inhibit endothelium-dependent relaxation.  相似文献   

13.
BK channels in human glioma cells   总被引:4,自引:0,他引:4  
Ion channels in inexcitable cells are involved in proliferation and volume regulation. Glioma cells robustly proliferate and undergo shape and volume changes during invasive migration. We investigated ion channel expression in two human glioma cell lines (D54MG and STTG-1). With low [Ca2+]i, both cell types displayed voltage-dependent currents that activated at positive voltages (more than +50 mV). Current density was sensitive to intracellular cation replacement with the following rank order; K+ > Cs+ approximately = Li+ > Na+. Currents were >80% inhibited by iberiotoxin (33 nM), charybdotoxin (50 nM), quinine (1 mM), tetrandrine (30 microM), and tetraethylammonium ion (TEA; 1 mM). Extracellular phloretin (100 microM), an activator of BK(Ca2+) channels, and elevated intracellular Ca2+ negatively shifted the I-V curve of whole cell currents. With 0, 0.1, and 1 microM [Ca2+]i, the half-maximal voltages, V(0.5), for whole cell current activation were +150, +65, and +12 mV, respectively. Elevating [K+]o potentiated whole cell currents in a fashion proportional to the square-root of [K+]o. Recording from cell-attached patches revealed large conductance channels (150-200 pS) with similar voltage dependence and activation kinetics as whole cell currents. These data indicate that human glioma cells express large-conductance, Ca2+ activated K+ (BK) channels. In amphotericin-perforated patches bradykinin (1 microM) activated TEA-sensitive currents that were abolished by preincubation with bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid-AM (BAPTA-AM). The BK channels described here may influence the responses of glioma cells to stimuli that increase [Ca2+]i.  相似文献   

14.
1. Intracellular recordings were obtained from histaminergic tuberomammillary (TM) neurons of rat hypothalamus in an in vitro slice preparation. The properties of a time- and voltage-dependent inward current activated on hyperpolarization, Ih, were studied by use of the single-electrode voltage-clamp technique. 2. The activation curve of Ih was well fit by a sigmoidal function, with half-maximal activation occurring at -98 +/- 6 mV. 3. The estimated reversal potential of Ih (Eh) in TM neurons was -35 +/- 9 (SD) mV. 4. The time constant of activation was well fit by a single exponential function and exhibited marked voltage dependence: at -90 mV, Ih activated with a time constant of 823 +/- 35 ms, whereas at -130 mV, Ih activated with a time constant of 280 +/- 65 ms. The time constant of deactivation of Ih at -60 mV was 302 +/- 35 ms. 5. Raising the extracellular potassium concentration ([K+]o) to 10 mM shifted Eh to a more depolarized value, while lowering the extracellular sodium concentration [( Na+]o) shifted Eh in the negative direction. Altering the extracellular chloride concentration ([Cl-]o) had little effect on Eh. 6. Increasing [K+]o to 10 mM increased the amplitude of both Ih and its underlying conductance gh, while reducing [Na+]o caused a small reduction in the amplitude of Ih with no measurable effect on gh. 7. The time constant of activation of Ih became shorter in raised [K+]o and longer in lowered [Na+]o. 8. Extracellularly applied cesium blocked Ih in a voltage-dependent manner. Extracellular barium reduced Ih but was less effective than cesium. 9. We conclude that Ih, carried by sodium and potassium ions, accounts for inward rectification of TM neurons. By increasing the whole-cell conductance during periods of prolonged hyperpolarization, Ih may act as an ionic shunt, decreasing the efficacy of synaptic inputs. This effect would be most apparent during rapid-eye-movement sleep, when TM neurons fall silent.  相似文献   

15.
The properties of hyperpolarization-activated current in pregnant rat uterus (17-19 days gestation) were investigated using microelectrode and patch-clamp techniques, and isometric tension recording. The resting membrane potentials were -58.4 mV and -48.5 mV in longitudinal and circular muscle cells, respectively. Application of hyperpolarizing current pulses produced a time-dependent anomalous inward rectification of membrane potential only in circular muscle cells. Under voltage-clamp conditions, inward currents (Ih) were activated by long hyperpolarizing pulses below -60 mV in circular but not in longitudinal muscle cells. Application of extracellular but not intracellular Cs+ reduced the amplitude of I(h) in a concentration-dependent manner (an IC50( of 0.15 mM). The reversal potential for Ih was -26.2 mV and the slope conductance was 5 nS/pF. Changes in [K+]o and [Na+]o shifted the reversal potential, and Ih amplitude increased with excess [K+]o and decreased with low [Na+]o. The steady-state activation of Ih was well fitted by a Boltzmann equation with a half-activation potential of -84.3 mV and a slope factor of 9.6 mV. Time courses of activation and deactivation of the current strongly depended on membrane potential, and were well fitted by a single exponential function. The activation time constant of Ih was dependent on temperature. In isometric tension recording, application of extracellular Cs+ to the circular muscles reduced the frequency, but not the amplitude, of spontaneous contractions in a concentration-dependent manner. It is concluded that in pregnant rat uterus Ih channels are predominantly distributed in smooth muscle cells from the circular layer. Since Ih is activated at the resting membrane potential, it is likely that this current contributes to the maintenance of resting membrane potential and spontaneous activity in circular smooth muscle cells of late pregnant rats.  相似文献   

16.
Ionic currents in the uterine smooth muscle.   总被引:3,自引:2,他引:3       下载免费PDF全文
1. Short segments of isolated longitudinal myometrium from the pregnant rate uterus have been studied in a double sucrose-gap voltage-clamp arrangement. The clamped segment averaged 65 mum times 240 mum times 100 mum, has an average total capacitance of 0-14 muF, and may contain 50-200 individual myometrial cells. 2. A significant resistance exists in series with the membrane, and limits theprecision of the quantitative information. However, it is argued that some qualitative and some comparative information is useful. 3. In Krebs-bicarbonate solution, depolarizing steps produced initial transient inward currents followed by delayed outward currents. 4. When [Na+]o was reduced by 50%, the equilibrium potential Ea shifted by an average of -17-6 mV, the maximum inward current was reduced to 0-5, the time to peak of the early current was delayed by 1-1 msec, and the maximum chord conductances for the early(Ga) and late (GK) currents remained unchanged as compared with those in normal [Na+]o. 5. When [Ca2+] was reduced to 25% of normal, Ea shifted by an average of -20-3 mV, the maximum inward current was reduced to 0-5, the time to peak was delayed 3-1 msec, and Ga was significantly reduced, while GK was unaffected. 6. The early current, and its tail when repolarization was imposed, reversed direction from inward to outward when [Na+]o was reduced from 143 mM to zero, with [Ca2+]o remaining constant at 1-9 mM. 7. From the observations in 4, 5 and 6, it was concluded that Na+ is the main charge carrier for the early current, and that Ca2+ is important in regulating Ga. 8. The late current is outwards when [K+]o equals 5-9 mM, but inwards in some voltage range when [K+]o was elevated to 120 or 148 mM. K+ is the main charge carrier for the late current. 9. The equilibrium potential for the late current, EK, is about 15 mV more negative than the natural resting potential. 10. Prolonged holding of the preparations at voltages that differ significantly from the natural resting potential tends to shift EK in a way consistent with passive changes in [K+]i by the holding current. 11. The steady-state inactivation of the early current, h, is unusual. Inward current is macimum around the resting potential, and declines with both hyperpolarizing and depolarizing changes. Half-inactivation occurred with about 9 mV depolarization and 15 mV hyperpolarization. 12. The instantaneous current-voltage relations of both early and late currents are linear. The chord conductances Ga and GKare similar in form to those in other tissues.  相似文献   

17.
The contribution of the Na+/Ca2+ exchanger to the myogenic vascular tone was examined in rat isolated skeletal muscle small arteries (ASK) with pronounced myogenic tone and mesenteric small arteries (AMS) with little myogenic tone. Myogenic tone was assessed by the vascular inner diameter at transmural pressures of 40 and 100 mmHg. To depress the Na+/Ca2+ exchanger, the extracellular Na+ concentration ([Na+]o) was lowered from 143 to 1.2 mM by substituting choline-Cl for NaCl. The ASK developed significant myogenic tone and constricted further in low [Na+]o. Nifedipine (1 microM) reduced both myogenic tone and low [Na+]o-induced contraction. Because the membrane potential of ASK was not changed by low [Na+]o (-35 +/- 2 mV at 143 mM [Na+]o, -37 +/- 3 mV at 1.2 mM [Na+]o), depolarization-induced Ca2+ influx was not a cause of the low [Na+]o-induced contraction. The AMS did not develop significant myogenic tone. Although low [Na+]o also constricted AMS, the magnitude of constriction was significantly weaker than that in ASK (17 +/- 4 vs. 47 +/- 6%, P < 0.01, at 58 mM Na+). With Bay K 8644, AMS developed myogenic tone, and low [Na+]o-induced constriction was significantly increased. In conclusion, Na+/Ca2+ exchanger may play an important role in regulating myogenic tone, likely via mediating Ca2+-extrusion.  相似文献   

18.
1. Active and passive factors affecting the chloride gradient of cortical neurons were assessed using intracellular recordings from neurons in slices of cingulate cortex maintained in vitro. The chloride equilibrium potential (ECl-) was estimated indirectly from the reversal potentials of responses to perisomatic gamma-aminobutyric acid (GABA) application and the Cl(-)-dependent inhibitory postsynaptic potential (IPSP). Under control conditions the mean resting potential (Vm; -69.7 mV) was not significantly different than the mean IPSP reversal potential (EIPSP; -70.1 mV). 2. Increasing the external potassium concentration ([K+]o) from 1 to 10 mM shifted the mean EIPSP from -80.4 to -61.8 mV. The mean EIPSP was approximately equal to the mean Vm at all [K+]oS. The conditions of Donnan equilibrium are not met in [K+]o less than 10 mM. 3. Polarization of Vm up to 20 mV away from EIPSP for 4 min with maintained current injection had no significant effect on EIPSP. 4. The GABA reversal potential was maintained 37-52 mV less negative than Vm after equilibration in saline in which the external chloride concentration had been reduced from 133 to 5 mM by substitution with isethionate. Vm and input resistance were not significantly different from control values in cells recorded under these conditions. 5. We conclude that Cl- is not passively distributed in cortical neurons, perhaps due to a low resting Cl- permeability. 6. Impalement with electrodes containing 2 M KCl resulted in a rapid 10 mV depolarizing shift in EIPSP that then remained relatively constant. Intracellular iontophoresis of Cl- resulted in a further depolarizing shift of EIPSP of 5-10 mV that returned to control in less than 1 min. The time course of recovery of IPSP amplitude could be fit with a single exponential having a mean time constant of 6.9 +/- 1.5 s and was independent of the amount of Cl- injected or stimulation frequency. 7. Reductions in temperature from 37 to 32 degrees C significantly increased the mean time constant of IPSP recovery from Cl- injection to 11.1 +/- 3.3 s, corresponding to Q10 = 2.6.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Frog skin glands were stripped of connective tissue and investigated using the nystatin-permeabilized whole-cell patch-clamp configuration. The membrane potential in unstimulated acinar cells was -69.5+/-0.7 mV, and the conductance was dominated by K+, based on ion substitution experiments. The cells were electrically coupled through heptanol- and halothane-sensitive gap junctions. During application of gap junction blockers, the whole-cell current/voltage relationship displayed strong outward rectification. Outward currents were blocked by barium. Stimulation by agonists known to cause increases in either cytosolic cAMP ([cAMP]c) (isoproterenol, prostaglandin E2, both at 2 microM) or free cellular Ca2+ concentration ([Ca2+]c) (noradrenaline, 10 microM, added with propranolol, 5 microM; carbachol, 100 microM) in the frog skin glands caused reversible depolarization: by 34+/-3 mV, 36+/-3 mV, 25+/-3 mV (plateau-phase), and 20+/-3 mV, respectively. Ion substitution experiments showed that stimulation through either pathway (cAMP or Ca2+) resulted in the activation of a Cl- conductance. Application of noradrenaline or adrenaline resulted in a faster depolarization (rates 22 mV/s, 26 mV/s) than stimulation by isoproterenol or prostaglandin E2 (5.6-5.7 mV/s). Cells that were depolarized by exposure to isoproterenol or prostaglandin E2 partially repolarized when stimulated by noradrenaline. The repolarization was blocked by Ba2+ (5 mM) or prazosine (1 microM), consistent with the activation of Ca(2+)-dependent K+ channels via alpha1-adrenergic receptors. We conclude that in the frog skin gland both Ca(2+)-dependent and cAMP-dependent Cl- channels are present in the apical membrane. Increases in free [Ca2+]c in the cAMP-stimulated gland results in the activation of K+ channels, thereby increasing the driving force for Cl- exit.  相似文献   

20.
Ionic currents in crustacean neurosecretory cells.   总被引:2,自引:0,他引:2  
1. The patterns of electrical activity and membrane characteristics of a population of neurosecretory-cell somata in the X-organ of the crayfish were investigated with microelectrodes and whole-cell, voltage-clamp techniques. Some neurons (56%) were silent but could be excited by intracellular current injection: other cells showed spontaneous tonic activity (35%), and some had spontaneous bursting activity (9%). The spiking activity was abolished by tetrodotoxin (TTX) exposure and by severing the axon near the cell body. After axotomy, only a small, slow, regenerative depolarization remained that could be blocked by Cd2+. 2. Under voltage clamp the steady-state I-V curve in low [Ca2+]i (9 X 10(-9) M) showed a slope conductance of 16.7 +/- 3.9 (SD) nS (n = 10) at -50 mV and zero current potential of -50.1 +/- 7.7 mV. In current-clamp mode these neurons were either silent or fired tonically. With high [Ca2+]i (1.7 X 10(-6) M) both the slope conductance and inward and outward currents were reduced. In some neurons high [Ca2+]i reveals a negative slope resistance in the range of -46 to -41 mV. It could be supressed by removing [Na+]o, but it was TTX insensitive. These are the neurons that under current clamp showed bursting activity. 3. The main inward current in cell somata was a Ca2+ current of 2 +/- 0.6 nA (n = 18), activated at -40 mV and peaking at 20 mV. It showed relaxation with prolonged pulses. No Na(+)-dependent, TTX-sensitive inward currents were recorded with short (100-ms) pulses in axotomized neurons. 4. Two outward currents could be distinguished.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号