首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 15 毫秒
1.
There has been little evaluation of maximum likelihood approximation methods for non-linear mixed effects modelling of count data. The aim of this study was to explore the estimation accuracy of population parameters from six count models, using two different methods and programs. Simulations of 100 data sets were performed in NONMEM for each probability distribution with parameter values derived from a real case study on 551 epileptic patients. Models investigated were: Poisson (PS), Poisson with Markov elements (PMAK), Poisson with a mixture distribution for individual observations (PMIX), Zero Inflated Poisson (ZIP), Generalized Poisson (GP) and Negative Binomial (NB). Estimations of simulated datasets were completed with Laplacian approximation (LAPLACE) in NONMEM and LAPLACE/Gaussian Quadrature (GQ) in SAS. With LAPLACE, the average absolute value of the bias (AVB) in all models was 1.02% for fixed effects, and ranged 0.32–8.24% for the estimation of the random effect of the mean count (λ). The random effect of the overdispersion parameter present in ZIP, GP and NB was underestimated (−25.87, −15.73 and −21.93% of relative bias, respectively). Analysis with GQ 9 points resulted in an improvement in these parameters (3.80% average AVB). Methods implemented in SAS had a lower fraction of successful minimizations, and GQ 9 points was considerably slower than 1 point. Simulations showed that parameter estimates, even when biased, resulted in data that were only marginally different from data simulated from the true model. Thus all methods investigated appear to provide useful results for the investigated count data models.  相似文献   

2.
Pharmacogenetics is now widely investigated and health institutions acknowledge its place in clinical pharmacokinetics. Our objective is to assess through a simulation study, the impact of design on the statistical performances of three different tests used for analysis of pharmacogenetic information with nonlinear mixed effects models: (i) an ANOVA to test the relationship between the empirical Bayes estimates of the model parameter of interest and the genetic covariate, (ii) a global Wald test to assess whether estimates for the gene effect are significant, and (iii) a likelihood ratio test (LRT) between the model with and without the genetic covariate. We use the stochastic EM algorithm (SAEM) implemented in MONOLIX 2.1 software. The simulation setting is inspired from a real pharmacokinetic study. We investigate four designs with N the number of subjects and n the number of samples per subject: (i) N = 40/n = 4, similar to the original study, (ii) N = 80/n = 2 sorted in 4 groups, a design optimized using the PFIM software, (iii) a combined design, N = 20/n = 4 plus N = 80 with only a trough concentration and (iv) N = 200/n = 4, to approach asymptotic conditions. We find that the ANOVA has a correct type I error estimate regardless of design, however the sparser design was optimized. The type I error of the Wald test and LRT are moderatly inflated in the designs far from the asymptotic (<10%). For each design, the corrected power is analogous for the three tests. Among the three designs with a total of 160 observations, the design N = 80/n = 2 optimized with PFIM provides both the lowest standard error on the effect coefficients and the best power for the Wald test and the LRT while a high shrinkage decreases the power of the ANOVA. In conclusion, a correction method should be used for model-based tests in pharmacogenetic studies with reduced sample size and/or sparse sampling and, for the same amount of samples, some designs have better power than others.  相似文献   

3.
目的 以核磁共振(NMR)分析不同年龄SD大鼠尿样中内源性代谢物的改变实验数据为基础,提出新的积分方法.方法 通过在原有固定步长积分的基础上引入步长变动区间,使数据积分区间可以根据峰的位置进行一定范围的调整,形成变步长积分方法.以固定步长和变步长积分方法,对实际实验数据进行比较研究.结果 变步长积分方法既能够增强样品聚类能力,能够减少差异代谢物指认缺失现象的发生.结论 变步长积分方法克服了固定步长积分方法存在的不足,解决了固定步长积分方法不能够同时兼顾图谱分辨率和减少由于环境引起的化学位移变化的矛盾.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号