首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
白藜芦醇诱导U87胶质瘤细胞凋亡及caspase-3的激活   总被引:7,自引:2,他引:5  
目的探讨白藜芦醇(Res)抑制体外脑胶质瘤细胞系U87生长并诱导其凋亡,激活 caspase-3的作用。方法四甲基偶氮唑蓝(MTT)法绘制不同浓度Res作用6 h、24 h、48 h后的细胞生长曲线,流式细胞仪Annexin V—FITC和PI双染检测凋亡率,Hoechst 33342荧光染色及透射电镜 (TEM)观察细胞增殖改变:Western-blot分析caspase-3酶原的变化,半定量RT—PCR检测caspase-3 mRNA水平的改变,比色法测定caspase-3的相对活性。结果 Res明显抑制U87细胞的增殖 (P<0.01),呈浓度及时问依赖性反应;Res可诱导U87胶质瘤细胞凋亡并呈浓度依赖关系。用不同浓度 Res处理U87细胞24 h,随药物浓度增加,caspase-3酶原的蛋白水平减少,caspase-3 mRNA水平增加 (P<0.01)。用200 μmol/L Res分别处理细胞0.5、2、6、12、24 h,caspase-3活性于2 h开始升高,12 h达高峰(P<0.01);用不同浓度的Res处理细胞12 h,caspase-3活性呈浓度依赖性的升高(P<0.01)。结论 Res明显抑制U87细胞生长并诱导其发生凋亡,凋亡过程中有caspase-3的激活。  相似文献   

2.
The Alzheimer disease-associated beta-amyloid peptide has been shown to induce apoptotic neuronal death. In the present study, we test the hypothesis that the apoptotic pathway activated by beta-amyloid is similar to the pathway activated by the Fas/TNFR family of death receptors, which requires caspase-8 activity and adaptor proteins such as FADD. We demonstrate that the selective caspase-8 inhibitor IETD-fmk blocks neuronal death induced by beta-amyloid. Furthermore, using viral-mediated gene delivery, we show that neurons expressing dominant-negative FADD are protected from apoptosis induced by beta-amyloid. Together these results indicate that the apoptotic pathway activated by beta-amyloid requires both caspase-8 activity and FADD. These findings further support the hypothesis that beta-amyloid might initiate apoptosis by cross-linking death receptors of the Fas/TNFR family.  相似文献   

3.
It is now generally accepted that massive neuronal death due to oxidative stress is a regular feature of brains in neurodegenerative diseases. However, much less attention has been given to the death of glial cells. In this study, we examined p53-sensitive apoptosis of cells by using human glioblastoma A172 cells and p53-deficient mouse astrocytes. In human A172 cells, hydrogen peroxide (H2O2) caused cell death in a time- and concentration-dependent manner, accompanied by nucleosomal DNA fragmentation and chromatin condensation. After treatment with H2O2, p53 protein was highly expressed and protein levels of Bak, p21WAF1/CIP1 and GADD45 were also enhanced. However, the protein levels of Bcl-2 and Bax did not change. On the other hand, primary cultured astrocytes from p53-deficient mouse brain grew faster than wild-type and heterozygous astrocytes. In addition, p53-deficient astrocytes were more resistant to H2O2-induced apoptosis than wild-type and heterozygous astrocytes. These results suggest that glial proliferation and the repair of damaged DNA may be regulated by p53-induced p21WAF1/CIP1 and GADD45, and that glial apoptosis caused by oxidative stress may be mediated by p53-induced Bak. GLIA 25:154–164, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

4.
Lee JE  Kang JS  Shin IC  Lee SJ  Hyun DH  Lee KS  Koh HC 《Neurotoxicology》2011,32(6):702-710
A number of epidemiological studies have demonstrated a strong association between the incidence of neurodegenerative disease and pesticide exposure. Fluazinam (FZN) is a preventative fungicide from the pyridinamine group that was introduced in the 1990 s and that quickly established itself as a new standard for the control of blight caused by Phytophthora infestans in potatoes. We used human neuroblastoma SH-SY5Y cells to investigate mechanisms of neuronal cell death in response to FZN and showed that FZN was cytotoxic to SH-SY5Y cells in a concentration- and time-dependent manner. Additionally, we showed that FZN treatment significantly decreased the neuron numbers including dopaminergic neurons and mitochondrial complex I activity. The cytotoxic effects of FZN were associated with an increase in reactive oxygen species (ROS) generation because pretreatment with N-acetyl cysteine, an anti-oxidant, reduced cell death. We showed that neuronal cell death in response to FZN was due to apoptosis because FZN increased cytochrome C release into the cytosol and activated caspase-3 through the accumulation of p53. FZN also reduced the levels of Bcl-2 protein but increased the levels of Bax. Our results provide insight into the molecular mechanisms of FZN-induced apoptosis in neuronal cells.  相似文献   

5.
The mechanisms of injury-induced apoptosis of neurons within the CNS are not understood. We used a model of cortical injury in rat and mouse to induce retrograde neuronal apoptosis in thalamus. In this animal model, unilateral ablation of the occipital cortex causes unequivocal apoptosis of corticopetal projection neurons in the dorsal lateral geniculate nucleus (LGN) by 7 days postlesion. We tested the hypothesis that p53 and Bax regulate this retrograde neuronal apoptosis. We found, by using immunocytochemistry, that p53 accumulates in nuclei of neurons destined to undergo apoptosis. By immunoblotting, p53 levels increase ( approximately 150% of control) in nuclear-enriched fractions of the ipsilateral LGN by 5 days after occipital cortex ablation. p53 is functionally activated in nuclear fractions of the ipsilateral LGN at 5 days postlesion, as shown by DNA binding assay (approximately fourfold increase) and by immunodetection of phosphorylated p53. The levels of procaspase-3 increase at 4 days postlesion, and caspase-3 is activated prominently at 5 days postlesion. To identify whether neuronal apoptosis in the adult brain is dependent on p53 and Bax, cortical ablations were done on p53 and bax null mice. Neuronal apoptosis in the dorsal LGN is significantly attenuated (approximately 34%) in p53(-/-) mice. In lesioned p53(+/+) mice, Bax immunostaining is enhanced in the ipsilateral dorsal LGN and Bax immunoreactivity accumulates at perinuclear locations in dorsal LGN neurons. The enhancement and redistribution of Bax immunostaining is attenuated in lesioned p53(-/-) mice. Neuronal apoptosis in the dorsal LGN is blocked completely in bax(-/-) mice. We conclude that neuronal apoptosis in the adult thalamus after cortical injury requires Bax and is modulated by p53.  相似文献   

6.
Continuous and long-lasting exposure to tert-butylhydroperoxide (t-BOOH) increased the number of apoptotic SH-SY5Y human neuroblastoma cells both in the presence and in the absence of the intracellular Ca(2+) ion chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). In addition, t-BOOH exposure induced activation of CPP32, as demonstrated by poly-(ADP-ribose) polymerase (PARP) cleavage, and of ICH-1L caspases. Exposure to t-BOOH also induced a time-dependent release of cytochrome c. Interestingly, in the presence of BAPTA, CPP32 activation still occurred, whereas ICH-1L activation was blocked. Ac-DEVD-CHO, an inhibitor of CPP32 activity, prevented the appearance of apoptotic cells, whereas the inhibitor of ICH-1L activity Z-VDVAD-FMK did not. Collectively, these findings demonstrate that in SH-SY5Y neuroblastoma cells exposure to continuous and long-lasting oxidative stress induced activation of caspase-3 that was independent of intracellular Ca(2+) ion concentration ([Ca(2+)](i)) elevation but led to cell apoptosis. In contrast, caspase-2 activation was dependent on [Ca(2+)](i) increase but did not result in apoptosis.  相似文献   

7.
Reovirus infection of the central nervous system (CNS) is an important experimental system for understanding the pathogenesis of neurotropic viral infection. Infection of neonatal mice with T3 reoviruses causes lethal encephalitis in which injury results from virus-induced apoptosis. We now show that this apoptosis in vivo is associated with activation of caspase 3, and use neuroblastoma and primary neuronal cultures to identify the cellular pathways involved. Reovirus-induced apoptosis in neuronal cultures is initiated by activation of the tumor necrosis factor (TNF) receptor superfamily death receptors and is inhibited by treatment with soluble death receptors (DRs). The DR-associated initiator caspase, caspase 8, is activated following infection, this activation is inhibited by a cell-permeable peptide inhibitor (IETD-CHO). In contrast to our previous findings in non-neuronal cell lines, reovirus-induced neuronal apoptosis is not accompanied by significant release of cytochrome c from the mitochondria or with caspase 9 activation following infection. This suggests that in neuronal cells, unlike their non-neuronal counterparts, the mitochondria-mediated apoptotic pathway associated with cytochrome c release and caspase 9 activation does not play a significant role in augmenting reovirus-induced apoptosis. Consistent with these results, peptide caspase inhibitors show a hierarchy of efficacy in inhibiting reovirus-induced apoptosis, with inhibitors of caspase 3 > caspase 8 > caspase 9. These studies provide a comprehensive profile of the pattern of virus-induced apoptotic pathway activation in neuronal culture.  相似文献   

8.
KI0477959 (Herbkines) has been used for the purpose of development of physical strength in wasting diseases, like cancer. In the present study, apoptosis-inducing activities of butanol fraction of KI0477959 were studied in human leukemia cell line, HL-60 cells. KI0477959 increased cytotoxicity but had less effect on human peripheral blood mononuclear cells. KI0477959-induced apoptosis was accompanied by activation of caspase-3 and specific proteolytic cleavage of poly-ADP-ribose polymerase. Increased apoptosis was reduced by treatment with p38 and extracellular signal-regulated protein kinase (ERK) inhibitors. These results suggest that KI0477959 induces apoptosis through activation of caspase-3, p38, and ERK in HL-60 cells.  相似文献   

9.
The hetero-bifunctional nitroimidazole radiosensitizer CI-1010, R-alpha-[[(2-bromoethyl)-amino]methyl]-2-nitro-1H-imidazole-1-ethanol monohydrobromide, causes selective irreversible apoptotic loss of retinal photoreceptor cells in vivo. The human neuroblastoma cell line, SH-SY5Y, was used as a neuronotypic model of CI-1010-mediated retinal degeneration. Exposure to CI-1010 for 24 h induced apoptosis in neuroblastoma cells, as determined by histopathological and ultrastructural analysis and by TUNEL technique. CI-1010 causes a dose-dependent decrease in cell viability in SY5Y cells, as measured by the reduction of MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Superoxide dismutase reduced loss of cell viability following CI-1010 treatment suggesting an oxidative stress-mediated mechanism of toxicity. The effects of CI-1010 on mitochondrial membrane potential and intracellular levels of reactive oxygen species were assessed in live SY5Y cells by confocal microscopy using the fluorescent dyes, tetramethylrhodamine methyl ester and 5,6-carboxy-2',7'-dihydrodichlorofluorescein diacetate. CI-1010 caused a rapid depolarization of mitochondria in SY5Y cells followed by an increase in ROS. Both CI-1010-induced mitochondrial depolarization and subsequent increases in ROS were prevented by pretreatment with either the permeability transition pore inhibitor, cyclosporin A (CsA), and by the antioxidant, alpha-tocopherol. However, CsA and alpha-tocopherol were unable to prevent apoptosis in CI-1010-treated cells, suggesting the influence of additional mechanism(s) of CI-1010-induced toxicity. This study evaluates intracellular oxidative stress associated with pore opening prior to apoptosis and provides evidence in support of a mitochondrial mechanism of CI-1010-induced neuronal cell death.  相似文献   

10.
Mitogen-activated protein kinase (MAPK) p38 plays pivotal role in cell proliferation, differentiation, and apoptosis when cysteine protease caspase induces apoptosis in different cell systems. SB 203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1 H-imidazole) is widely used as a specific inhibitor of p38 MAPK, and prevents apoptosis induced by various agents. The effect of SB 203580 on nitric oxide(NO)- or peroxynitrite-induced cell death is not known. Western blotting results indicate that p38 MAPK was activated significantly in NO- or peroxynitrite-induced cell death in a time-dependent manner, and subsequently this cell death was markedly inhibited by SB 203580, as determined by fluorescence-activated cell sorting (FACS)-can analyzer. Furthermore, NO/peroxynitrite-induced caspase-3 activation was notably inhibited by SB 203580, however, phosphorylation of either p38 MAPK or p44/42 was not influenced by SB 203580. Thus, it is likely that SB 203580 prevents NO/peroxynitrite-induced cell death by inhibiting caspase-3 activation in PC-12 cells.  相似文献   

11.
The neurotoxicity of anesthetics on the developing brain has drawn the attention of anesthesiologists. Several studies have shown that apoptosis is enhanced by exposure to anesthesia during brain development. Although apoptosis is a physiological developmental step occurring before the maturation of neural networks and the integration of brain function, pathological damage also involves apoptosis. Previous studies have shown that prolonged exposure to anesthetics causes apoptosis. Exactly when the apoptotic cascade starts in the brain remains uncertain. If it starts during the early stage of anesthesia, even short-term anesthesia could harm the brain. Therefore, apoptogenesis should be continuously monitored to elucidate when the apoptotic cascade is triggered by anesthesia. Here, we describe the development of a continuous monitoring system to detect caspase-3 activation using an in vivo model. Brain slices from postnatal days 0–4 SCAT3 transgenic mice with a heterozygous genotype (n = 20) were used for the monitoring of caspase-3 cleavage. SCAT3 is a fusion protein of ECFP and Venus connected by a caspase-3 cleavable peptide, DEVD. A specimen from the hippocampal CA1 sector was mounted on a confocal laser microscope and was continuously superfused with artificial cerebrospinal fluid, propofol (2,6-diisopropylphenol, 1 μM or 10 μM), and dimethyl sulfoxide. Images were obtained every hour for five hours. A pixel analysis of the ECFP/Venus ratio images was performed using a histogram showing the number of pixels with each ratio. In the histogram of the ECFP/Venus ratio, an area with a ratio > 1 indicated the number of pixels from caspase-3-activated CA1 neurons. We observed a shift in the histogram toward the right over time, indicating caspase-3 activation. This right-ward shift dramatically changed at five hours in the propofol 1 μM and 10 μM groups and was obviously different from that in the control group. Thus, real-time fluorescence energy transfer (FRET) imaging was capable of identifying the onset of apoptosis triggered by propofol in neonatal brain slices. This model may be a useful tool for monitoring apoptogenesis in the developing brain.  相似文献   

12.
Glutamate receptor stimulation reportedly activates NF-kappaB in vitro and in vivo, although underlying mechanisms remain to be elucidated. Here we evaluated the role of proteases in mediating N-methyl-D-aspartate (NMDA) receptor agonist-induced NF-kappaB activation and apoptosis in rat striatum. The intrastriatal infusion of quinolinic acid (QA, 60 nmol) had no effect on levels of NF-kappaB family proteins, including p65, p50, p52, c-Rel and Rel B. In contrast, QA decreased IkappaB-alpha protein levels by 60% (P<0. 05); other members of the IkappaB family, including IkappaB-beta, IkappaB-gamma, IkappaB-epsilon and Bcl-3, were not altered. The QA-stimulated degradation of IkappaB-alpha was completely blocked by the NMDA receptor antagonist MK-801. QA-induced IkappaB-alpha degradation and NF-kappaB activation were not affected by the proteasome inhibitor MG-132 (1-4 microg). On the other hand, the caspase-3 inhibitor Ac-DEVD.CHO (2-8 microgram) blocked QA-induced IkappaB-alpha degradation in a dose-dependent manner (P<0.05). Ac-DEVD.CHO (4 microgram) also substantially reduced QA-induced NF-kappaB activation (P<0.05), but had no effect on QA-induced AP-1 activation. Furthermore, Ac-DEVD.CHO, but not MG-132, dose-dependently attenuated QA-induced internucleosomal DNA fragmentation. These findings suggest that NF-kappaB activation by NMDA receptor stimulation involves IkappaB-alpha degradation by a caspase-3-like cysteine protease dependent mechanism. Caspase-3 thus appears to contribute to the excitotoxin-induced apoptosis in rat striatal neurons occurring at least partially as a consequence of NF-kappaB activation.  相似文献   

13.
14.
The present study was undertaken to evaluate whether in a neonatal model of stroke a prophylactic neuroprotective treatment with simvastatin modulates hypoxia-ischemia-induced inflammatory and apoptotic signaling. Procaspase-3 and cleaved caspase-3 expression showed a peak at 24 h and returned to control values after 5 days. Caspase-3 activity followed the same pattern of caspase-3 proteolytic cleavage. In simvastatin-treated ischemic animals, the expression of these proteins and caspase-3 activity were significantly lower when compared to that of ischemic animals. alpha-Spectrin and protein kinase C-alpha (PKCalpha) cleavages were not affected by the treatment. Poly (ADP-ribose) polymerase fragmentation, caspase-1 activation, and IL-1beta and ICAM-1 mRNA expression were increased by hypoxia-ischemia and significantly reduced in simvastatin-treated animals. The results indicate that simvastatin-induced attenuation of hypoxia-ischemia brain injury in the newborn rat occurs through reduction of the inflammatory response, caspase-3 activation, and apoptotic cell death.  相似文献   

15.
TNF-α has been reported to be relevant in stroke-induced neuronal death. However the precise function of TNF-α in brain ischemia remains controversial since there are data supporting either a detrimental or a protective effect. Here we show that TNF-α is released after oxygen–glucose deprivation (OGD) of cortical cultures and is a major contributor to the apoptotic death observed without affecting the OGD-mediated necrotic cell death. In this paradigm, apoptosis depends on TNF-α-induced activation of caspase-8 and -3 without affecting the activation of caspase-9. By using knock-out mice for TNF-α receptor 1, we show that the activation of both caspase-3 and -8 by TNF-α is mediated by TNF-α receptor 1. The pro-apoptotic role of TNF-α in OGD is restricted to neurons and microglia, since astrocytes do not express either TNF-α or TNF-α receptor 1. Altogether, these results show that apoptosis of cortical neurons after OGD is mediated by TNF-α/TNF-α receptor 1.  相似文献   

16.
Apoptotic death is a physiological process with regulatory mechanisms that are under the control of different molecules such as caspases. These are classified as initiators, such as caspases-8 and -9, and effectors, such as caspases-3 and -7. The participation of caspase-2 in the effector phase of apoptosis has been commonly observed in many cell types; however, it is able to act as an initiator caspase, depending on the apoptotic stimulus. Cerebellar granule cells (CGCs) undergo apoptosis when they are transferred from high potassium (K25) to low potassium (K5); this process seems to be mediated by caspase-3 activation. Staurosporine (STS), a full strength inhibitor of kinase proteins, also induces apoptosis in these cells. To characterize the caspase cascade induced by two stimuli in the same cell type we studied the activation of different caspases in CGCs treated with STS or K5. We found that both K5 and STS induce the activation of caspase-3. This result was confirmed by the proteolytic cleavage of poly (ADP-ribose) polymerase (PARP), an endogenous caspase-3 substrate. Caspase-2 was activated preferentially by STS, which showed a temporal course suggesting that this caspase was induced before caspase-3. The initiator caspase-9 was also activated by both K5 and STS, as well as cytochrome-c release. The results obtained in this study suggest that STS and K5 induced different activation caspase pathways for apoptotic cell death of CGCs.  相似文献   

17.
Apoptotic cell death is induced in SH-SY5Y neuroblastoma cells following exposure to the protein kinase inhibitors staurosporine (100 nM) and 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine: H-7 (100 microM). This is associated with reduced levels of PARP 117 kDa and with the concomitant formation of PARP-cleaved products of 89 kDa that result from caspase-3 activation. The process is inhibited with DEVD-fmk, a potent caspase-3 (and caspase-8) inhibitor, thus indicating that staurosporine- and H-7-induced cell death in SH-SY5Y is mediated by caspase activation. Increased caspase-2- and caspase-3-like activities, but not caspase-9-like activity, were demonstrated by monitoring proteolysis of the corresponding colorimetric substrates. Caspase-2 activity peaked at 6 h, whereas caspase-3 peaked at 12 h in parallel with the maximal loss of cell viability. No modifications in the expression levels of Fas and Fas-L were observed by Western blotting. Furthermore, no activation of caspase-8 was elicited by colorimetric assays through the process of apoptosis of neuroblastoma cells. These findings indicate that the Fas/Fas-L-caspase-8 pathway of cell death signaling is not involved in staurosporine- and H-7-induced apoptosis in SH-SY5Y neuroblastoma cells.  相似文献   

18.
We have analysed 78 cerebellar pilocytic astrocytomas to assess whether histopathology, cell proliferation, apoptosis rate, p53 immunoreactivity, or flow cytometry could predict their long-term behaviour. Classic pilocytic/microcystic pattern was seen in 62 patients and 16 patients had mixed pattern with an additional non-pilocytic glial component. The overall 5-year survival was 93%, complete resection providing 100% survival. The four patients who died during the follow-up were more than 14 years of age, their primary operation had been incomplete and three of them were mixed variants. In 15 cases the tumour recurred giving a recurrence-free 5-year survival of 77%. The proliferation indices were low: Ki-67MIB-1 (median 2.0%), PCNA (1.2%) and S-phase fraction (4.4%). The Ki-67MIB-1-labelling index was significantly higher in young patients, but did not differ between the classic and mixed variants. Twenty-two per cent of the tumours were aneuploid with a significantly higher S-phase fraction than in diploid tumours. p53 seems to act as ardian of the genome' in pilocytic astrocytomas, because aberrant/increased expression of p53 and aneuploidy associated with enhanced apoptosis. Only patient age ( P =0.01), radicality of the primary operation ( P =0.0001) and histology (classic vs mixed, P =0.008) significantly correlated with survival. The poorer prognosis of the mixed variant suggests that this may represent a distinct entity. Although none of the novel parameters significantly predicted recurrence or survival, they indicate substantial biological variation among cerebellar pilocytic astrocytomas.  相似文献   

19.
Phosphorylated tau protein is the major component of paired helical filaments in Alzheimer disease (AD). We have previously shown that abnormal tau phosphorylation was induced in neuroblastoma SK-N-SH cells by the anticancer drug, paclitaxel, during apoptosis [Guise et al., 1999: Apoptosis 4:47-58]. In the present study, we first demonstrated a shift from fetal tau to hyperphosphorylated tau after incubation with paclitaxel, that showed some similarities with the hyperphosphorylated tau in AD, by using several tau antibodies, N-Term, Tau-1 and AT-8. Tau phosphorylation occurred independently of caspase-3 activation. We next showed that a sustained activation of ERK (extracellular signal-regulated kinase) induced both tau phosphorylation and apoptosis during paclitaxel treatment (1 microM). The inhibition of ERK activation by using the pharmacological MEK1/2 inhibitor, PD98059 (50 microM), or an antisense strategy, reduced tau phosphorylation and neuronal apoptosis (P < 0.001), indicating a link between ERK activation, tau phosphorylation and apoptosis. Doxorubicin (0.2 microM), an anticancer drug whose mechanism of action is independent of microtubules, also induced ERK activation, tau phosphorylation and apoptosis. Moreover, doxorubicin induced some morphological features of neurodegeneration such as loss of neurites and disorganization of the cytoskeleton in apoptotic neuroblastoma cells. Altogether, our results suggest that tau phosphorylation plays a significant role in apoptosis enhancing disruption of microtubules that in turn leads to formation of apoptotic bodies, suggesting that neurodegeneration and apoptosis are related.  相似文献   

20.
Xu R  Liu J  Chen X  Xu F  Xie Q  Yu H  Guo Q  Zhou X  Jin Y 《Brain research》2001,899(1-2):10-19
6-Hydroxydopamine (6-OHDA) is a neurotoxin used in the induction of experimental Parkinson's disease in both animals and PC12 cells, which are derived from rat pheochromocytoma tumors and have many properties similar to dopamine neurons. Biochemical and molecular approaches have shown that low doses of 6-OHDA induce apoptosis in PC12 cells and, in the processing of apoptosis, caspases are crucial mediators, and caspase inhibition is sufficient to rescue PC12 cells from apoptosis induced by 6-OHDA. However, because this caspase inhibition targets multiple caspases, it is not known whether a single caspase is primarily responsible for effecting cell death in this model. To assess the particular member (caspase-3) of the ced-3 family relevant to cell death and to position their activation within the apoptotic pathway, we constructed a hammerhead ribozyme directed against rat caspase-3, which could downregulate the expression of caspase-3 in vitro and in vivo, and transfer to PC12 cells. The results show that the ribozymes against caspase-3 could protect PC12 cells from apoptosis induced by low doses of 6-OHDA. The PC12 cell transfected with the ribozymes shows a significant decrease in caspase-3 activity compared with control cells at various time points. Parallel to the reduced caspase-3 protease activity, similar decreased levels of apoptotic cells and DNA fragmentation were also assessed by staining with Hoechst 33258 and ELISA, respectively. Overexpression of p35, a general caspase inhibitor, also protected PC12 cells from apoptosis. These results confirm that caspases play an important role in 6-OHDA-induced PC12 cell apoptosis and indicate that caspase-3 itself is one of the crucial mediators of neurotoxin-induced PC12 cell apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号