首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma glucose and insulin responses to a muscarinic agonist (bethanechol chloride) and a muscarinic antagonist (atropine) were evaluated in obese C57BL/6J ob/ob mice and in lean C57BL/6J + /? mice. In lean +/? mice, plasma glucose decreased in response to 1 and 2 micrograms/g bethanechol chloride, whereas insulin increased significantly. In ob/ob mice, insulin increased remarkably in response to bethanechol administration (saline, 632 +/- 80 microU/ml; 2 micrograms/g bethanechol chloride, 1794 +/- 97 microU/ml; n = 10), but surprisingly, plasma glucose also rose significantly (saline, 230 +/- 14 mg/dl; 2 micrograms/g bethanechol chloride, 363 +/- 18 mg/dl, n = 10). This exaggerated hyperglycemia in ob/ob mice was not associated with significant changes in plasma glucagon. Furthermore, administration of propranolol hydrochloride did not diminish bethanechol chloride-induced hyperglycemia in ob/ob mice. Administration of atropine (2.5, 5, and 10 mg/kg body wt) induced a significant decrease in plasma insulin without changes in plasma glucose in ob/ob mice, whereas neither plasma insulin nor plasma glucose changed in lean mice. Finally, conversion of [14C]alanine to glucose was increased in ob/ob mice after bethanechol chloride administration, indicating that muscarinic stimulation increases gluconeogenesis in an animal model of type II (non-insulin-dependent) diabetes.  相似文献   

2.
Diet-induced type II diabetes in C57BL/6J mice   总被引:35,自引:0,他引:35  
We investigated the effects of diet-induced obesity on glucose metabolism in two strains of mice, C57BL/6J and A/J. Twenty animals from each strain received ad libitum exposure to a high-fat high-simple-carbohydrate diet or standard Purina Rodent Chow for 6 mo. Exposure to the high-fat, high-simple-carbohydrate, low-fiber diet produced obesity in both A/J and C57BL/6J mice. Whereas obesity was associated with only moderate glucose intolerance and insulin resistance in A/J mice, obese C57BL/6J mice showed clear-cut diabetes with fasting blood glucose levels of greater than 240 mg/dl and blood insulin levels of greater than 150 microU/ml. C57BL/6J mice showed larger glycemic responses to stress and epinephrine in the lean state than AJ mice, and these responses were exaggerated by obesity. These data suggest that the C57BL/6J mouse carries a genetic predisposition to develop non-insulin-dependent (type II) diabetes. Furthermore, altered glycemic response to adrenergic stimulation may be a biologic marker for this genetic predisposition to develop type II diabetes.  相似文献   

3.
Dehydroepiandrosterone (DHEA) was fed at 0.1-0.4% in the diet to genetically diabetic (db/db) or obese (ob/ob) C57BL/KsJ (BL/Ks) or C57BL/6J (BL/6) mice. Treatment of BL/Ks-db/db or ob/ob mice with 0.4% DHEA prevented hyperglycemia, islet atrophy, and severe diabetes associated with this inbred background, but did not affect weight gain and food consumption. Homozygous obese (ob) or diabetes (db) mice on the BL/6 background were more sensitive to DHEA, and the mild, transient hyperglycemia associated with ob or db gene expression on the BL/6 inbred background could be prevented by 0.1% DHEA. Both body weight and food consumption were decreased in BL/6 mutants maintained on 0.1% DHEA whereas this effect was not seen in BL/Ks mutants fed up to 0.4% DHEA. Early therapy with 0.4% DHEA, initiated at 2 wk of age, prevented the development of most diabetes symptoms and decreased the rate of weight gain in pups of all genotypes. In addition to therapeutic effects on both obese mutants, DHEA effected significant changes in an aging study using normal BL/6 female mice. Four weeks of DHEA treatment initiated at 2 yr of age improved glucose tolerance and at the same time reduced plasma insulin to a "younger" level. This suggests that DHEA may act in insulin-resistant mutant mice and in aging normal mice to increase the sensitivity to insulin.  相似文献   

4.
Somatostatin-like immunoreactivity (SRIF-LI) content in 2 N acetic acid extracts of hypothalamus, gastric antrum, and pancreas was measured in genetically obese (C57BL/6J ob/ob and db/db) and diabetic (C57BL/KsJ db/db and ob/ob) mice and normal littermate controls from 5 to 24 wk to determine the relationship of previously reported changes to the development of metabolic abnormalities. Hypothalamic SRIF-L concentration was similar in control, diabetic, and obese mice at all ages and increased progressively with age in all groups. Gastric antrum SRIF-LI was similar in all groups of mice at all ages. Obese mice gained weight progressively and showed moderate hyperglycemia and marked hyperinsulinemia from 5 wk of age. Pancreatic SRIF-LI content in obese (C57BL/6J) animals was similar to that in lean littermate controls, but pancreatic SRIF-LI concentration (expressed by weight or protein content) was decreased until 8 (6J ob/ob) and 10 (6J db/db) wk. Diabetic (C57BL/KsJ) mice showed a similar metabolic pattern until 10 wk with no change in pancreatic SRIF-LI content or concentration. Thereafter a progressive fall in serum insulin and a marked rise in serum glucose was associated with increasing pancreatic SRIF-LI content and concentration. These studies suggest that the genetically hyperphagic syndromes are unassociated with any change in hypothalamic or gastric SRIF-LI; that pancreatic SRIF-LI increases occur in response to, rather than as the cause of, relative hypoinsulinemia; and that the genetic background of the mice (KsJ or 6J) rather than the mutant gene (db or ob) determines the defect in carbohydrate metabolism and the pancreatic SRIF-LI response.  相似文献   

5.
Ciglitazone, 5-[4-(1-methylcyclohexylmethoxy) benzyl]-thiazolidine-2,4-dione, is a new hypoglycemic agent orally active in the obese-hyperglycemic animal models. In C57BL/6J-ob/ob mice, treatment with 100 mg/kg ciglitazone for 2 days elicited a drastic fall in blood glucose. It also decreased plasma insulin, triglycerides, and free fatty acids and food intake without affecting the body weight. Its hypoglycemic activity was independent of its effect on food intake. Regranulation of islet beta-cells and increased pancreatic insulin content were observed in ob/ob mice treated for 41-44 days with 100 mg/kg/day ciglitazone. Ciglitazone showed no effect on food intake, blood glucose, or pancreatic islet beta-cells in a group of lean C57BL/6J-+/? mice concomitantly treated at a dose of 150 mg/kg/day. In C57BL/KsJ-db/db mice, ciglitazone decreased blood glucose and food intake. The untreated db/db mice lost weight despite hyperphagia, whereas the ciglitazone-treated db/db mice gained weight. In the spontaneously diabetic Chinese hamsters, ciglitazone showed no significant effect on food intake, body weight, blood glucose, or insulin content in either plasma or pancreas, but it lowered plasma lipids. In normal rats, ciglitazone failed to affect fasting blood glucose but improved glucose tolerance without increasing insulin secretory response to glucose. In streptozotocin-diabetic rats, it showed no effect on blood glucose or glycemic response to exogenous insulin. The hypoglycemic activity of ciglitazone was specific for obese-hyperglycemic and insulin-resistant animals.  相似文献   

6.
S M Brichard  C J Bailey  J C Henquin 《Diabetes》1990,39(11):1326-1332
The trace element vanadium exerts insulinlike effects in vitro and decreases hyperglycemia in insulin-deficient animals. This study examined whether vanadate can improve glucose homeostasis in genetically obese hyperglycemic insulin-resistant ob/ob mice, which present metabolic abnormalities similar to those of human non-insulin-dependent diabetes. Sodium orthovanadate (0.3 mg/ml) was administered for 7 wk in H2O. Vanadate treatment induced a fall in fed and fasted plasma glucose and insulin levels and improved tolerance to oral glucose; the stimulated glucose area was decreased by 65%, and an early peak of insulin secretion was restored. During an intravenous glucose tolerance test, the glucose disappearance rate was twofold higher in vanadate-treated mice, and the reappearance of a significant insulin response was also observed. Moreover, vanadate produced a twofold increase in hepatic glycogen content and prevented the exhaustion of pancreatic insulin stores. The hypoglycemic response to exogenous insulin was similar in control and treated mice. In vitro experiments showed that basal glucose oxidation by hemidiaphragms was 32% higher in vanadate-treated mice than in controls, although stimulation by insulin was similar in both groups. In conclusion, oral vanadate caused a marked and sustained improvement of glucose homeostasis in diabetic insulin-resistant mice by exerting an insulinlike effect on peripheral tissues and apparently preventing the exhaustion of pancreatic insulin stores.  相似文献   

7.
The purpose of this study was to establish whether a relationship may exist between the hyperinsulinemia, the exaggerated insulin secretion, and the resistance to insulin characteristic of the obese-hyperglycemic syndrome and the zinc status of the ob/ob mouse. To this end, mice were given control and zinc-supplemented diets, and the effects of zinc supplementation on insulin secretion in vivo and in vitro as well as on glucose tolerance were studied. These data were compared with those obtained with oxytetracycline treatment, which is known to ameliorate the insulin sensitivity and glucose tolerance of these animals. The levels of zinc were measured in several tissues of lean and obese mice and the results show that zinc supplementation attenuated the exaggerated insulin secretion in vivo and in vitro without improving the tolerance to glucose. Zinc levels were significantly higher in the tissues of the obese than of the lean mice, with the exception of bone and pancreas. The results suggest a maldistribution of zinc in the tissues of the obese mouse.  相似文献   

8.
The mouse ob gene encodes leptin, an adipocyte hormone that regulates body weight and energy expenditure. Leptin has potent metabolic effects on fat and glucose metabolism. A mutation of the ob gene results in mice with severe hereditary obesity and diabetes that can be corrected by treatment with the hormone. In lean mice, leptin acutely increases glucose metabolism in an insulin-independent manner, which could account, at least in part, for some of the antidiabetic effect of the hormone. To investigate further the acute effect of leptin on glucose metabolism in insulin-resistant obese diabetic mice, leptin (40 ng x g(-1) x h(-1)) was administered intravenously for 6 h in C57Bl/6J ob/ob mice. Leptin increased glucose turnover and stimulated glucose uptake in brown adipose tissue (BAT), brain, and heart with no increase in heart rate. A slight increase in all splanchnic tissues was also noticed. Conversely, no increase in skeletal muscle or white adipose tissue (WAT) glucose uptake was observed. Plasma insulin concentration increased moderately but neither glucose, glucagon, thyroid hormones, growth hormone, nor IGF-1 levels were different from phosphate-buffered saline-infused C57Bl/6J ob/ob mice. In addition, leptin stimulated hepatic glucose production, which was associated with increased glucose-6-phosphatase activity. Conversely, PEPCK activity was rather diminished. Interestingly, hepatic insulin receptor substrate (IRS)1-associated phosphatidylinositol 3-kinase activity was slightly elevated, but neither the content of glucose transporter GLUT2 nor the phosphorylation state of the insulin receptor and IRS-1 were changed by acute leptin treatment. Hepatic lipid metabolism was not stimulated during the acute leptin infusion, since the content of triglycerides, glycerol, and citrate was unchanged. These findings suggest that in ob/ob mice, the antidiabetic antiobesity effect of leptin could be the result of a profound alteration of glucose metabolism in liver, BAT, heart, and consequently, glucose turnover. Insulin resistance of skeletal muscle and WAT, while not affected by acute leptin treatment, could also be corrected in the long term and account for some of leptin's antidiabetic effects.  相似文献   

9.
The low-dose streptozocin (STZ) model of diabetes has been reported to involve direct STZ beta-cytotoxicity and/or immunologically mediated beta-cell destruction. Because the T-lymphocyte dependency of such a model is controversial, we further assessed the role of T-lymphocytes by determining the occurrence and magnitude of hyperglycemia as well as the pancreatic insulin contents in both STZ-injected nude C57BL/6J male mice and STZ-injected euthymic C57BL/6J male mice selectively depleted in helper and/or cytotoxic T-lymphocytes with monoclonal antibodies (MoAbs). The effectiveness of MoAb treatment was assessed in lymph node cells by flow-microfluorometry analysis and in spleen cells by concanavalin A stimulation, allospecific cytotoxic T-lymphocyte activity, and T-lymphocyte lymphokine production. Sixteen days after the first STZ injection, hyperglycemia (plasma glucose greater than 200 mg/dl) occurred in significantly fewer helper T-lymphocyte-depleted mice (P less than .005) or helper and cytotoxic T-lymphocyte-depleted mice (P less than .001) than in non-MoAb-treated mice. However, a progressive increase in the number of mice with hyperglycemia ensued in all MoAb-treated groups, and 2 mo after STZ was administered, the prevalence of hyperglycemia, mean plasma glucose levels, and pancreatic insulin contents did not differ significantly from the values obtained in the non-MoAb-treated animals. Similarly, STZ-injected C57BL/6J male nude mice developed hyperglycemia that was associated with a marked decrease in pancreatic insulin contents on a time course comparable with that of STZ-injected euthymic C57BL/6J male mice depleted in helper or in helper and cytotoxic T-lymphocytes by MoAbs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The "M" variant of the encephalomyocarditis (EMC) virus causes a diabetes-like disease in some, but not all, strains of mice. The genetic basis for either resistance or susceptibility to the diabetogenic effect of the virus is not known. After infection with EMC, C57BL/6 mice seldom develop hyperglycemia and the insular lesions are subtle. To explore the possible effects of metabolic influences on the viral susceptibility of the islets, we studied C57BL/6 mice that were carriers of the ob gene. After virus inoculation, obese homozygous C57BL/6-ob/ob mice consistently developed hyperglycemia during the acute stages of infection, whereas nonobese littermates did not. Infection induced more severe lesions in the pancreatic islets of obese mice than in islets of the lean littermates. These studies suggest that the functional activity of the beta-cells influences the severity of the viral injury to the beta-cell, and the consequent occurrence of diabetes.  相似文献   

11.
The minor hemoglobins AIa, AIb, and AIc were studied in mice with either genetic or chemically induced diabetes. Hemoglobin AIc was elevated approximately twofold in all the phenotypically diabetic mice studied (C57BL/KsJ-db/db, C57BL/KsJ-ob/ob, C57BL/6J-db/db, and alloxan- and streptozotocin-treated mice). Elevation of the hemoglobin AIc in C57BL/6J-db/db mice was of short duration, reflecting the transitory diabetes characteristic of these mice. The degree of increase of hemoglobin AIc levels was unrelated to severity of hyperglycemia, duration of diabetes, age of mouse, or body weight. It is not known what factor(s) dictates the steady-state concentration of hemoglobin AIc.  相似文献   

12.
In type 2 diabetes, glucagon levels are elevated in relation to the prevailing insulin and glucose levels. The relative hyperglucagonemia is linked to increased hepatic glucose output (HGO) and hyperglycemia. Antagonizing the effects of glucagon is therefore considered an attractive target for treatment of type 2 diabetes. In the current study, effects of eliminating glucagon signaling with a glucagon monoclonal antibody (mAb) were investigated in the diabetic ob/ob mouse. Acute effects of inhibiting glucagon action were studied by an oral glucose tolerance test (OGTT) and by measurement of HGO. In addition, the effects of subchronic (5 and 14 days) glucagon mAb treatment on plasma glucose, insulin, triglycerides, and HbA1c (A1C) levels were investigated. Glucagon mAb treatment reduced the area under the curve for glucose after an OGTT, reduced HGO, and increased the rate of hepatic glycogen synthesis. Glucagon mAb treatment for 5 days lowered plasma glucose and triglyceride levels, whereas 14 days of glucagon mAb treatment reduced A1C. In conclusion, acute and subchronic neutralization of endogenous glucagon improves glycemic control, thus supporting the contention that glucagon antagonism may represent a beneficial treatment of diabetes.  相似文献   

13.
The insulin release from isolated pancreatic islets grafted under the kidney capsule was examined by means of a modified kidney-perfusion technique. The grafts, consisting of 150 C57BL/6 or 250 C57BL/Ks mouse islets, were implanted syngeneically under the left kidney capsule of normoglycemic or alloxan-induced diabetic recipients 4 wk before the perfusion. In both mouse strains, islets grafted to normoglycemic animals showed an immediate distinct peak of insulin release when challenged with high glucose, whereas no response was observed from islets grafted to hyperglycemic mice. In a similar way in C57BL/Ks mice, arginine stimulated insulin release from the islet grafts in normoglycemic but not in hyperglycemic recipients. Insulin treatment of the diabetic recipients, however, partially normalized the insulin response to glucose. Islet grafts were removed in toto and analyzed for contents of insulin, glucagon, somatostatin, and DNA or rates of glucose-stimulated (pro)insulin biosynthesis. In both mouse strains, islets implanted into hyperglycemic animals contained significantly less insulin, and their rates of (pro)insulin biosynthesis were markedly decreased. Insulin treatment only marginally affected these parameters. The glucagon content of the grafted islets was unaffected by the hyperglycemia in both strains of mice, whereas a significant decrease in the somatostatin content was observed in the C57BL/Ks mice. We concluded that grafted islets exposed to prolonged hyperglycemic stress become functionally impaired in mice of both strains. Our perfusion technique of islet-graft-bearing kidneys in combination with biochemical studies on the removed grafts provides a suitable model for studies of the effects of prolonged hyperglycemia on islet beta-cell function.  相似文献   

14.
Nonlinear interactions between obesity and genetic risk factors are thought to determine susceptibility to type 2 diabetes. We used genetic obesity as a tool to uncover latent differences in diabetes susceptibility between two mouse strains, C57BL/6J (B6) and BTBR. Although both BTBR and B6 lean mice are euglycemic and glucose tolerant, lean BTBR x B6 F1 male mice are profoundly insulin resistant. We hypothesized that the genetic determinants of the insulin resistance syndrome might also predispose genetically obese mice to severe diabetes. Introgressing the ob allele into BTBR revealed large differences in diabetes susceptibility between the strain backgrounds. In a population of F2-ob/ob mice segregating for BTBR and B6 alleles, we observed large variation in pancreatic compensation for the underlying insulin resistance. We also detected two loci that substantially modify diabetes severity, and a third locus that strongly links to fasting plasma insulin levels. Amplification of the genetic signal from these latent diabetes susceptibility alleles in F2-ob/ob mice permitted discovery of an interaction between the two loci that substantially increased the risk of severe type 2 diabetes.  相似文献   

15.
Maternal diabetes (types 1 and 2) induces a broad array of congenital malformations, including neural tube defects (NTDs), in humans. One of the difficulties associated with studying diabetic embryopathy is the rarity of individual malformations. In an attempt to develop a sensitive animal model for maternal diabetes-induced NTDs, the present study uses chemically induced diabetes in an inbred mouse model with or without the splotch (Sp) mutation, a putatively nonfunctional allele of Pax3. Pax3 deficiency has been associated with an increase in NTDs. Female C57BL/6J mice, either with or without the Sp allele, were injected intravenously with alloxan (100 mg/kg), and plasma glucose was measured 3 days later. A wide range of hyperglycemia was induced, and these diabetic mice were bred to C57BL/6J males, some carrying the Sp allele. Gestational-day-18 fetuses were examined for developmental malformations. Fetuses from matings in which either parent carried the Sp allele were genotyped by polymerase chain reaction. Maternal diabetes significantly decreased fetal weight and increased the number of resorptions and malformations, including NTDs. A significant correlation was found between the level of maternal hyperglycemia and the malformation rate. The sex ratio for live fetuses in diabetic litters was significantly skewed toward male fetuses. Matings involving the Sp allele yielded litters with significantly higher percentages of maternal diabetes-induced spina bifida aperta but not exencephaly, and this increase was shown to be associated with the presence of a single copy of the Sp allele in affected fetuses. Thus, Pax3 haploinsufficiency in this murine model of diabetic embryopathy is associated with caudal but not cranial NTDs.  相似文献   

16.
Loss of resistin improves glucose homeostasis in leptin deficiency   总被引:12,自引:0,他引:12  
Qi Y  Nie Z  Lee YS  Singhal NS  Scherer PE  Lazar MA  Ahima RS 《Diabetes》2006,55(11):3083-3090
Resistin levels are increased in obesity, and hyperresistinemia impairs glucose homeostasis in rodents. Here, we have determined the role of resistin in ob/ob mice that are obese and insulin resistant because of genetic deficiency of leptin. Loss of resistin increased obesity in ob/ob mice by further lowering the metabolic rate without affecting food intake. Nevertheless, resistin deficiency improved glucose tolerance and insulin sensitivity in these severely obese mice, largely by enhancing insulin-mediated glucose disposal in muscle and adipose tissue. In contrast, in C57BL/6J mice with diet-induced obesity but wild-type leptin alleles, resistin deficiency reduced hepatic glucose production and increased peripheral glucose uptake. Resistin deficiency enhanced Akt phosphorylation in muscle and liver and decreased suppressor of cytokine signaling-3 level in muscle, and these changes were reversed by resistin replacement. Together, these results provide strong support for an important role of resistin in insulin resistance and diabetes associated with genetic or diet-induced obesity.  相似文献   

17.
Obesity is a strong risk factor for the development of type 2 diabetes. We have previously reported that in adipose tissue of obese (ob/ob) mice, the expression of adipogenic genes is decreased. When made genetically obese, the BTBR mouse strain is diabetes susceptible and the C57BL/6J (B6) strain is diabetes resistant. We used DNA microarrays and RT-PCR to compare the gene expression in BTBR-ob/ob versus B6-ob/ob mice in adipose tissue, liver, skeletal muscle, and pancreatic islets. Our results show: 1) there is an increased expression of genes involved in inflammation in adipose tissue of diabetic mice; 2) lipogenic gene expression was lower in adipose tissue of diabetes-susceptible mice, and it continued to decrease with the development of diabetes, compared with diabetes-resistant obese mice; 3) hepatic expression of lipogenic enzymes was increased and the hepatic triglyceride content was greatly elevated in diabetes-resistant obese mice; 4) hepatic expression of gluconeogenic genes was suppressed at the prediabetic stage but not at the onset of diabetes; and 5) genes normally not expressed in skeletal muscle and pancreatic islets were expressed in these tissues in the diabetic mice. We propose that increased hepatic lipogenic capacity protects the B6-ob/ob mice from the development of type 2 diabetes.  相似文献   

18.
Y2 receptor deletion attenuates the type 2 diabetic syndrome of ob/ob mice   总被引:4,自引:0,他引:4  
Sainsbury A  Schwarzer C  Couzens M  Herzog H 《Diabetes》2002,51(12):3420-3427
  相似文献   

19.
Wound collagen accumulation in obese hyperglycemic mice   总被引:4,自引:0,他引:4  
W H Goodson  T K Hunt 《Diabetes》1986,35(4):491-495
We used C57-BL ob/ob mice as a model to study wound healing in type II (adult-onset) diabetes. Planimetry was used to assess rate of closure in standard open skin wounds. In agreement with previous subcutaneous wound collagen-accumulation studies, closure was slower in the ob/ob mice. Subcutaneous implants were used to evaluate wound collagen accumulation. Weanling mice have collagen accumulation similar to lean littermates (mean 3.43 micrograms/cm vs. 3.46 micrograms/cm), but the same ob/ob animals had decreased wound collagen (mean 2.39 micrograms/cm vs. 3.02 micrograms/cm, P less than 0.04) when mature. Other ob/ob animals fed a restricted diet (and thus not obese) had normal collagen accumulation at the same age. Neither insulin nor diet restriction restored wound collagen accumulation in phenotypically obese mice. Because collagen accumulation is not improved by measures that control hyperglycemia (insulin and diet restriction) and the defect was seen only in phenotypically obese ob/ob mice, the decreased wound collagen accumulation may be due in part to structural changes in adipose tissue.  相似文献   

20.
X Z Khawaja  I C Green  J R Thorpe  C J Bailey 《Diabetes》1990,39(10):1289-1297
The effects of two kappa-opiate agonists, U 50488h and dynorphin A1-13, on plasma insulin and glucose concentrations in vivo and insulin release in vitro were tested in fasted genetically obese (ob/ob) and lean (+/+) mice at 12-15 wk of age. Fasting plasma insulin concentrations in ob/ob and lean mice were 1.22 +/- 0.10 and 0.23 +/- 0.05 nM, and plasma glucose levels were 6.90 +/- 0.84 and 4.70 +/- 0.29 mM, respectively. Administration of U 50488h (1 mg/kg body wt i.p.) to ob/ob mice dramatically raised plasma insulin by 670 and 790 pM at 15 and 30 min. Plasma glucose was raised from 5 min onward to a maximum increment of 4.2 mM above baseline. These effects were blocked by simultaneous administration of naloxone (10 mg/kg). A higher dose of U 50488h (10 mg/kg body wt i.p.) was required to produce significant increases in lean mouse plasma insulin (81 pM at 15 min) and glucose (0.7, 1.1, and 1.7 mM at 5, 15, and 30 min, respectively). Dynorphin (1 mg/kg body wt i.p.) raised plasma insulin in ob/ob mice by 380 and 410 pM at 15 and 30 min and raised plasma glucose by 1.6 mM at 15 min. In lean mice, the same dose of dynorphin had no effect on plasma insulin concentrations but induced a small rise in glucose. In ob/ob mice, the agonist-induced rise in glucose did not cause the insulin response, because insulin levels were not elevated by a glucose challenge.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号