首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
The study of early events in dendritic cell (DC) differentiation is hampered by the lack of homogeneous primary cell systems that allow the study of cytokine-driven, transitional DC differentiation steps. The CD34(+) acute myeloid leukemia cell line MUTZ-3 displays a unique ability to differentiate into interstitial DC (IDC) and Langerhans cells (LC) in a cytokine-dependent manner. Phenotypic characterization revealed MUTZ-3 to consist of three distinct subpopulations. Small CD34(+)CD14(-)CD11b(-) progenitors constitute the proliferative compartment of the cell line with the ability to differentiate through a CD34(-)CD14(-)CD11b(+) stage to ultimately give rise to a morphologically large, nonproliferating CD14(+)CD11b(hi) progeny. These CD14(+)CD11b(hi) cells were identified as common, immediate myeloid DC precursors with the ability to differentiate into LC and IDC, exhibiting characteristic and mutually exclusive expression of Langerin and DC-specific ICAM-grabbing nonintegrin, respectively. The identity of the MUTZ-3-derived LC subset was confirmed further by the presence of Birbeck granules. We conclude that the MUTZ-3 cell line provides a ready and continuous supply of common myeloid precursors, which should facilitate further study of the ontogeny of myeloid DC lineages.  相似文献   

3.
Plasmacytoid dendritic cells (pDC) are well-known for their ability to produce large quantities of interferon-alpha (IFN-alpha) in response to viruses. In addition, pDC produce IFN-alpha in response to HSV-infected cells. We demonstrate that both tonsil and PBMC contain pDC that respond to stimulation with HSV either in suspension or in tonsil tissue-fragment culture. We hypothesized that other DC subsets acquire virus in the periphery and deliver the interferongenic signals to the pDC in the draining lymphoid tissue. As a model for pDC/myeloid DC interaction, we studied the interaction of pDC derived from blood with HSV-infected and uninfected monocyte derived dendritic cells (MDDC). Infected, but not uninfected, MDDC induced IFN-alpha in pDC. To further study pDC/infected MDDC interactions, we labeled MDDC with fluorescent cell trackers PKH67 or CFSE prior to infection with HSV and co-cultured with pDC. Cells were then analyzed using conventional and imaging flow cytometry. In addition, we infected MDDC with a GFP-expressing HSV prior to co-culture with pDC. Using traditional flow cytometry, we observed that pDC became fluorescent after co-incubation with uninfected or infected, fluorescently labeled MDDC, indicating that MDDC transferred fluorescent protein and membrane to pDC. By imaging flow cytometry, we observed formation of conjugates between pDC and MDDC as well as transfer and internalization of cellular components from the labeled MDDC by pDC, with preferential uptake from, and association with, infected vs. uninfected MDDC. These studies demonstrate that MDDC infected with HSV are able to stimulate IFN-alpha and chemokine production by pDC through the transfer of cellular materials from the HSV-infected MDDC to the pDC. Together, these observations indicate that heterogeneous populations of DC interact to generate an effective IFN-alpha response.  相似文献   

4.
Plasmacytoid dendritic cells (pDC) are well-known for their ability to produce large quantities of interferon-α (IFN-α) in response to viruses. In addition, pDC produce IFN-α in response to HSV-infected cells. We demonstrate that both tonsil and PBMC contain pDC that respond to stimulation with HSV either in suspension or in tonsil tissue-fragment culture. We hypothesized that other DC subsets acquire virus in the periphery and deliver the interferongenic signals to the pDC in the draining lymphoid tissue. As a model for pDC/myeloid DC interaction, we studied the interaction of pDC derived from blood with HSV-infected and uninfected monocyte derived dendritic cells (MDDC). Infected, but not uninfected, MDDC induced IFN-α in pDC. To further study pDC/infected MDDC interactions, we labeled MDDC with fluorescent cell trackers PKH67 or CFSE prior to infection with HSV and co-cultured with pDC. Cells were then analyzed using conventional and imaging flow cytometry. In addition, we infected MDDC with a GFP-expressing HSV prior to co-culture with pDC. Using traditional flow cytometry, we observed that pDC became fluorescent after co-incubation with uninfected or infected, fluorescently labeled MDDC, indicating that MDDC transferred fluorescent protein and membrane to pDC. By imaging flow cytometry, we observed formation of conjugates between pDC and MDDC as well as transfer and internalization of cellular components from the labeled MDDC by pDC, with preferential uptake from, and association with, infected vs. uninfected MDDC. These studies demonstrate that MDDC infected with HSV are able to stimulate IFN-α and chemokine production by pDC through the transfer of cellular materials from the HSV-infected MDDC to the pDC. Together, these observations indicate that heterogeneous populations of DC interact to generate an effective IFN-α response.  相似文献   

5.
6.
Dendritic cells (DC) are increasingly applied in the immunotherapy of cancer. As the development of a standardized DC vaccine product is often hampered by the limited availability of DC precursors and inter- and intra-donor variability, and the preparation of individual vaccines is labor-intensive, it would be preferable to use DC from a readily available and unlimited source, such as cell lines can provide. It has been described that leukemia-derived cell lines are able to differentiate into functional DC, creating possibilities for the development of highly reproducible DC vaccines and providing in vitro model systems for in-depth studies about DC physiology. This review discusses the different human DC cell line differentiation models described so far. Based on the available data, characteristics that determine the ability of leukemia cells to differentiate along the different precursor stages into functional DC will be formulated. In addition, evidence will be provided that the human CD34+ acute myeloid leukemia cell line MUTZ-3 provides DC that exhibit the functional properties that are crucial for the in vivo generation of CTL-mediated immunity and thus, currently, represents the most valuable, sustainable model system for myeloid DC differentiation and clinical DC vaccination studies.  相似文献   

7.
Myeloid dendritic cells probably play an important role in the immune response against HIV and SIV, and in the enhancement of CD4+ T cell infection. Here, we have investigated phenotypic and functional features of myeloid monocyte-derived DC (MDDC) from African green monkeys (AGMs). AGMs are natural hosts of SIV and exhibit no signs of abnormal T cell activation despite high SIV plasma viremia. We identified mAbs that cross-react specifically with homologous molecules expressed on AGM DC. We adapted a protocol to derive AGM MDDC by culture in the presence of GM-CSF and IL-4. The differentiated cells possessed a typical dendritic morphology and the majority were CD11c+ DC-SIGN+. AGM MDDC displayed a high expression of typical maturation markers, such as CD83, CD86 and DC-LAMP, and moderate immunostimulatory capacity, suggesting that the cells were in a semi-mature state. Stimulation resulted in further maturation, as shown by up-regulation of CD80 and decrease of endocytosis ability. However, neither increase of HLA-DR or CD40 expression nor enhanced immunostimulatory capacity was observed. The latter was associated with a low pro-inflammatory cytokine production during mixed lymphocyte reactions and a cytokine balance in favour of IL-10 in contrast to human MDDC. This is the first characterization of AGM MDDC. The tools described here are a crucial step for future studies in vivo or in vitro on the function of myeloid DC using the AGM animal model.  相似文献   

8.
Direct exosome stimulation of peripheral human T cells detected by ELISPOT   总被引:5,自引:0,他引:5  
Exosomes from APC are nano-vesicles that can induce antigen-specific T cell responses and are presently explored as therapeutic tools in different clinical settings. Investigations of the capacity of exosomes to stimulate T cells in vitro have mostly been performed on T cell hybridomas, clones or lines. Whether exosomes can stimulate T cells directly or need the presence of dendritic cells (DC) is debated. We could detect exosome-induced antigen-specific CD8(+) T cell responses in peripheral blood from humans. Exosomes from monocyte-derived DC (MDDC) were loaded with a mix of 23 immunogenic peptides from EBV, CMV and influenza virus, and added to autologous peripheral CD8(+) T cells. IFN-gamma-producing cells were detected by enzyme-linked immunospot assay (ELISPOT). MDDC-exosomes induced IFN-gamma production in CD8(+) T cells without addition of DC. The response was exosome dose dependent, and dependent on exosomal MHC class I. Furthermore, we detected an enhanced T cell stimulatory capacity by exosomes from lipopolysaccharide-matured MDDC compared to exosomes from immature MDDC. Exosomes could also induce TNF-alpha production. These results show, for the first time, that exosomes can directly stimulate human peripheral CD8(+) T cells in an antigen-specific manner and that ELISPOT is a suitable method for detecting exosome-induced peripheral T cell responses. This system may provide a useful tool when developing exosomes as therapeutic agents.  相似文献   

9.
Cholera toxin (CT) and heat-labile enterotoxin (LT) are powerful mucosal adjuvants whose cellular targets and mechanism of action are unknown. There is emerging evidence that dendritic cells (DC) are one of the principal cell types that mediate the adjuvant effects of these toxins in vivo. Here we investigate the effects of CT and LT on the maturation of human monocyte-derived DC (MDDC) in vitro. We found that an enzymatically active A domain is necessary for both CT and LT to induce the maturation of MDDC and that this activation is strictly cyclic AMP (cAMP) dependent. ADP-ribosylation-defective derivatives of these toxins failed to induce maturation of MDDC, whereas dibutyryl-cyclic-3',5'-AMP and Forskolin mimic the maturation of MDDC induced by CT and LT. In addition, an inhibitor of cAMP-dependent kinases, Rp-8-Br-cAMPs, blocked the ability of CT, LT, and Forskolin to activate MDDC. CT, LT, dibutyryl-cyclic-3',5'-AMP, and Forskolin also dominantly inhibit interleukin 12 and tumor necrosis factor alpha production by MDDC in the presence of saturating concentrations of lipopolysaccharide. Taken together, these results show that the effects of CT and LT on MDDC are mediated by cAMP.  相似文献   

10.
Cholera toxin B subunit (CTB) is an efficient mucosal carrier molecule for the generation of immune responses to linked antigens. There is also good evidence that CTB acts as an immunosuppressant, as it is able to down-modulate human monocyte/macrophage cell line activation and to suppress Th1-type responses. In the present study, we examined the possibility that recombinant CTB (rCTB) may affect human dendritic cell (DC) functions in response to LPS stimulation and may induce the generation of DC with the capacity to generate CD4(+) regulatory T cells (Tregs). Our findings show that rCTB partially prevents the LPS-induced maturation process of monocyte-derived DC (MDDC) and decreases their IL-12 production with no relevant effect on IL-10 production. LPS-stimulated MDDC pretreated with rCTB are able to promote the induction of low proliferating T cells, which show an enhanced IL-10 production associated with a reduced IFN-gamma production and the same high levels of TGF-beta as the control. These T cells suppress proliferation of activated autologous T cells. Transwell experiments and blockade of IL-10R and TGF-beta showed that the immunomodulatory effect is mediated by soluble factors. Thus, T cells induced by rCTB-conditioned MDDC acquire a regulatory phenotype and activity similar to those described for type 1 Tregs.  相似文献   

11.
Understanding how mucosal pathogens modulate the immune response may facilitate the development of vaccines for disparate human diseases. In the present study, human monocyte-derived DC (MDDC)were pulsed with LPS of the oral pathogen Porphyromonas gingivalis and Escherichia coli 25922 and analyzed for: (i) production of Th-biasing/inflammatory cytokines; (ii) maturation/costimulatory molecules; and (iii) induction of allogeneic CD4+ and naive CD45RA+ T cell proliferation and release of Th1 or Th2 cytokines. We show that E. coli LPS-pulsed MDDC released Th1-biasing cytokines - consisting of high levels of IL-12 p70, IFN-gamma-inducible protein 10 (IP-10) - but also TNF-alpha, IL-10, IL-6 and IL-1beta. In contrast, no IL-12 p70 or IP-10, and lower levels of TNF-alpha and IL-10 were induced by P. gingivalis LPS. These differences were sustained at LPS doses that yielded nearly equivalent maturation of MDDC; moreover the T cell response was consistent: E. coli LPS-pulsed MDDC induced higher T cell proliferation, and T cells released more IFN-gamma and IL-2, but less IL-5 than T cells co-cultured with P. gingivalis LPS pulsed-MDDC. IL-13 was secreted by naive CD45RA+CD45RO-CD4+ T cells in response to P. gingivalisLPS-pulsed MDDC. These results suggest that human MDDC can be polarized by LPS from the mucosal pathogen P. gingivalis to induce a Th2 effector response in vitro.  相似文献   

12.
Peritoneal dialysis (PD) is a well-established therapy for end-stage renal failure, but its efficiency is limited by recurrent peritonitis. As PD solutions impair local inflammatory responses within the peritoneal cavity, we have analyzed their influence on the in vitro maturation of human monocyte-derived dendritic cells (MDDC). Evaluation of MDDC maturation parameters [expression of adhesion and costimulatory molecules, receptor-mediated endocytosis, allogeneic T cell activation, production of tumor necrosis factor alpha, interleukin (IL)-6 and IL-12 p70, and nuclear factor (NF)-kappaB activation] revealed that currently used PD solutions differentially inhibit the lipopolysaccharide (LPS)-induced maturation of MDDC, an inhibition that correlated with their ability to impair the LPS-stimulated NF-kappaB activation. Evaluation of PD components revealed that sodium lactate and glucose-degradation products impaired the acquisition of maturation parameters and NF-kappaB activation in a dose-dependent manner. Moreover, PD solutions impaired monocyte-MDDC differentiation, inhibiting the acquisition of DC markers such as CD1a and DC-specific intercellular adhesion molecule-3 grabbing nonintegrin (CD209). These findings have important implications for the initiation of immune responses under high lactate conditions, such as those occurring within tumor tissues or after macrophage activation.  相似文献   

13.
Background Surfactant protein D (SP‐D), a secreted pattern recognition molecule associated with pulmonary innate immunity, has been shown to mediate the clearance of pathogens in multiple ways. However, how SP‐D interacts with alveolar macrophages (AMs) and dendritic cells (DCs) during allergen exposure remains unclear. Objective This study was performed to characterize the immunomodulatory effects of SP‐D on mite allergen (Dermatophagoides pteronyssinus, Der p)‐induced inflammatory signalling in AMs and DCs. Methods Murine AM, alveolar macrophage cell line derived from BALB/c mice (MH‐S cells), and human monocyte‐derived dendritic cells (MDDC) were used as model systems. The production of nitric oxide (NO) and TNF‐α, expression of surface Toll‐like receptors (TLRs), and expression of the C‐type lectin receptor known as dendritic cell (DC)‐specific ICAM‐grabbing non‐integrin (DC‐SIGN) were measured as a function of pretreatment with SP‐D and subsequent exposure to Der p. Der p‐dependent cellular activations that were modified by SP‐D in these model systems were then identified. Results Pretreatment of MH‐S cells with SP‐D reduced Der p‐dependent production of NO, TNF‐α, and the downstream activations of IL‐1 receptor‐associated kinase, mitogen activated protein kinase (MAPK) kinase, and nuclear factor‐κB. SP‐D interacted with CD14 such that CD14 binding to Der p was inhibited and Der p‐induced signalling via TLRs was blocked. DC‐SIGN expression was suppressed by Der p in MH‐S and MDDC; this down‐regulation of DC‐SIGN expression was prevented by pretreatment with SP‐D. Conclusions These results indicated that the inhibition of Der p‐induced activation of MH‐S and MDDC by SP‐D is mediated through suppression of the CD14/TLR signalling pathway and maintenance of DC‐SIGN expression, which may protect allergen‐induced airway inflammation. Cite this as: C‐F Liu, M. Rivere, H‐J Huang, G. Puzo and J‐Y Wang, Clinical & Experimental Allergy, 2010 (40) 111–122.  相似文献   

14.
15.
Several subsets of mononuclear phagocytes and DCs (MDC) populate the small intestine (SI), and these cells reportedly exert specialized functions in anti-microbial immunity and tolerance. Given the specialized phenotype of these cells, differing from other MDC family members, including their putative circulating blood precursors, local intestinal factors play key instructive roles in their differentiation. We designed an SI cell culture model composed of three intestinal epithelial cell (IEC) types, including absorptive enterocytes (E cells), antigen delivering microfold (M) cells, and mucus-producing goblet (G) cells plus T lymphocytes and soluble B cell-derived factors. This model was used to study the differentiation fate of CD34+ hematopoietic progenitor cell-derived monocyte/DC precursors. Progeny cells can be analyzed after a 3-week co-culture period, mimicking the physiologic turn-over time of intestinal MDC. A dominant monocyte differentiation pathway was suppressed, in favor of partial differentiation along DC and macrophage pathways, with low percentages of cells acquired DC or macrophage markers. Moreover, E and G cells play opposing roles in CX3CR1+ vs CD103dim cell differentiation, indicating that both together might counter-balance M/DC differentiation. Thus, SI epithelial cells suppress M/DC differentiation, supporting a key role for exogenous factors in M/DC differentiation.  相似文献   

16.
17.
Dendritic cells (DC) at mucosal surfaces mature when exposed to "danger" signals such as LPS. Bacterial vaginosis (BV) is a prevalent alteration of the vaginal bacterial flora associated with preterm childbirth and increased risk for HIV acquisition. We examined the effect of mucosal fluid from women with BV or healthy flora on DC function. IL-12, IL-23 and p40 production by monocyte-derived dendritic cells (MDDC) were all induced by BV samples. Activation/maturation markers HLA-DR, CD40 and CD83 on MDDC incubated with BV CVL were also induced. BV CVL also decreased the endocytic ability of MDDC and increased proliferation of T cells in allogeneic MLR. Plasmacytoid dendritic cell (pDC) CD86 expression was induced by BV CVL. Healthy flora CVL had little effect in any of the tests. This study suggests that BV, but not healthy flora, affects local dendritic cell function in vivo suggesting a mechanism through which BV affects mucosal immunity.  相似文献   

18.
Pertussis toxin (PT) and adenylate cyclase toxin (AT) are AB enterotoxins produced by Bordetella pertussis. PT is a powerful mucosal adjuvant whose cellular target and mechanism of action are unknown; however, emerging evidence suggests that dendritic cells (DC) may be a principal adjuvant target of PT. Here, we investigate the mechanism underlying the effects of these toxins on human monocyte-derived DC (MDDC) in vitro. We found that the effects of PT and AT on MDDC, including maturation, are mediated by cyclic adenosine monophosphate (cAMP). In this regard, adenosine 5'-diphosphate-ribosylation-defective derivatives of PT failed to induce maturation of MDDC, whereas dibutyryl-cAMP (d-cAMP) and Forskolin mimic the maturation of MDDC and dominant inhibition of cytokine production induced by these toxins. Also, cAMP-dependent kinase inhibitors blocked the ability of PT, AT, d-cAMP, and Forskolin to activate MDDC. Taken together, these results show that the effects of PT and AT on MDDC are mediated strictly by cAMP.  相似文献   

19.
B lymphoblast cells were immortalized by infection with a v-myc and v-raf/mil containing recombinant retrovirus. The immortalized B cells do not require exogenous growth factors or mitogens for growth. These cells express characteristic mature B cell phenotypic markers including IgM and IgD. Northern blot analysis detected mu and delta mRNA, and Southern blot analysis revealed rearrangements of Ig genes but not TCR genes in these cells. The immortalized B cells were found to respond to B cell mitogens by proliferation and IgM secretion, and to respond to IL-4 by an increase in la expression. Furthermore, they were found to differentiate to secrete IgM and to switch to IgG1 production following interaction with Staphylococcal enterotoxin B- activated Th2 cells. These cell lines are thus valuable tools for analyzing the molecular events involved in B lymphocyte growth and differentiation.  相似文献   

20.
The human airway epithelium serves as structural and functional barrier against inhaled particulate antigen. Previously, we demonstrated in an in vitro epithelial barrier model that monocyte derived dendritic cells (MDDC) and monocyte derived macrophages (MDM) take up particulate antigen by building a trans-epithelial interacting network. Although the epithelial tight junction (TJ) belt was penetrated by processes of MDDC and MDM, the integrity of the epithelium was not affected. These results brought up two main questions: (1) Do MDM and MDDC exchange particles? (2) Are those cells expressing TJ proteins, which are believed to interact with the TJ belt of the epithelium to preserve the epithelial integrity?The expression of TJ and adherens junction (AJ) mRNA and proteins in MDM and MDDC monocultures was determined by RT-PCR, and immunofluorescence, respectively. Particle uptake and exchange was quantified by flow cytometry and laser scanning microscopy in co-cultures of MDM and MDDC exposed to polystyrene particles (1 μm in diameter).MDM and MDDC constantly expressed TJ and AJ mRNA and proteins. Flow cytometry analysis of MDM and MDDC co-cultures showed increased particle uptake in MDDC while MDM lost particles over time. Quantitative analysis revealed significantly higher particle uptake by MDDC in co-cultures of epithelial cells with MDM and MDDC present, compared to co-cultures containing only epithelial cells and MDDC.We conclude from these findings that MDM and MDDC express TJ and AJ proteins which could help to preserve the epithelial integrity during particle uptake and exchange across the lung epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号