首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Prior studies revealed associations of environmental lead exposure with risks of hypertension and elevated blood pressure.

Objective

We examined the effect of blood lead levels on blood pressure and the incidence of pregnancy-induced hypertension (PIH) in the second and third trimesters of pregnancy.

Methods

One thousand seventeen pregnant women were enrolled in two French municipalities between 2003 and 2005 for the EDEN (Etude des Déterminants pré et post natals du développement et de la santé de l′ Enfant) cohort study. Blood lead concentrations were measured by atomic absorption spectrometry in mothers between 24 and 28 weeks of gestation.

Results

PIH was diagnosed in 106 subjects (10.9%). Age, parity, weight gain, alcohol, smoking habits, and calcium supplementation were comparable between hypertensive and nonhypertensive women. Lead levels were significantly higher in PIH cases (mean ± SD, 2.2 ± 1.4 μg/dL) than in normotensive patients (1.9 ± 1.2 μg/dL; p = 0.02). Adjustment for potential confounder effects slightly attenuated but did not eliminate the significant association between blood lead levels and the risk of PIH (adjusted odds ratio of PIH = 3.3; 95% confidence interval, 1.1–9.7). We also observed geographic differences in lead exposure and in the incidence of PIH and found significant correlations between blood lead levels and unadjusted as well as adjusted systolic and diastolic blood pressures after 24 weeks of gestation.

Conclusions

These findings confirm the relationship between blood lead levels at mid-pregnancy and blood pressure and suggest that environmental lead exposure may play an etiologic role in PIH.  相似文献   

2.

Background

Recent data indicate that chronic low-level exposure to lead is associated with accelerated declines in cognition in older age, but this has not been examined in women.

Objective

We examined biomarkers of lead exposure in relation to performance on a battery of cognitive tests among older women.

Methods

Patella and tibia bone lead—measures of cumulative exposure over many years—and blood lead, a measure of recent exposure, were assessed in 587 women 47–74 years of age. We assessed their cognitive function 5 years later using validated telephone interviews.

Results

Mean ± SD lead levels in tibia, patella, and blood were 10.5 ± 9.7 μg/g bone, 12.6 ± 11.6 μg/g bone, and 2.9 ± 1.9 μg/dL, respectively, consistent with community-level exposures. In multivariable-adjusted analyses of all cognitive tests combined, levels of all three lead biomarkers were associated with worse cognitive performance. The association between bone lead and letter fluency score differed dramatically from the other bone lead-cognitive score associations, and exclusion of this particular score from the combined analyses strengthened the associations between bone lead and cognitive performance. Results were statistically significant only for tibia lead: one SD increase in tibia lead corresponded to a 0.051-unit lower standardized summary cognitive score (95% confidence interval: −0.099 to −0.003; p = 0.04), similar to the difference in cognitive scores we observed between women who were 3 years apart in age.

Conclusions

These findings suggest that cumulative exposure to lead, even at low levels experienced in community settings, may have adverse consequences for women’s cognition in older age.  相似文献   

3.

Background

Exposure to arsenic (As) concentrations in drinking water > 150 μg/L has been associated with risk of diabetes and cardiovascular disease, but little is known about the effects of lower exposures.

Objective

This study aimed to examine whether moderate As exposure, or indicators of individual As metabolism at these levels of exposure, are associated with cardiometabolic risk.

Methods

We analyzed cross-sectional associations between arsenic exposure and multiple markers of cardiometabolic risk using drinking-water As measurements and urinary As species data obtained from 1,160 adults in Chihuahua, Mexico, who were recruited in 2008–2013. Fasting blood glucose and lipid levels, the results of an oral glucose tolerance test, and blood pressure were used to characterize cardiometabolic risk. Multivariable logistic, multinomial, and linear regression were used to assess associations between cardiometabolic outcomes and water As or the sum of inorganic and methylated As species in urine.

Results

After multivariable adjustment, concentrations in the second quartile of water As (25.5 to < 47.9 μg/L) and concentrations of total speciated urinary As (< 55.8 μg/L) below the median were significantly associated with elevated triglycerides, high total cholesterol, and diabetes. However, moderate water and urinary As levels were also positively associated with HDL cholesterol. Associations between arsenic exposure and both dysglycemia and triglyceridemia were higher among individuals with higher proportions of dimethylarsenic in urine.

Conclusions

Moderate exposure to As may increase cardiometabolic risk, particularly in individuals with high proportions of urinary dimethylarsenic. In this cohort, As exposure was associated with several markers of increased cardiometabolic risk (diabetes, triglyceridemia, and cholesterolemia), but exposure was also associated with higher rather than lower HDL cholesterol.

Citation

Mendez MA, González-Horta C, Sánchez-Ramírez B, Ballinas-Casarrubias L, Hernández Cerón R, Viniegra Morales D, Baeza Terrazas FA, Ishida MC, Gutiérrez-Torres DS, Saunders RJ, Drobná Z, Fry RC, Buse JB, Loomis D, García-Vargas GG, Del Razo LM, Stýblo M. 2016. Chronic exposure to arsenic and markers of cardiometabolic risk: a cross-sectional study in Chihuahua, Mexico. Environ Health Perspect 124:104–111; http://dx.doi.org/10.1289/ehp.1408742  相似文献   

4.

Background

Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in many products and have been detected in human samples worldwide. Limited data show that concentrations are elevated in young children.

Objectives

We investigated the association between PBDEs and age with an emphasis on young children from Australia in 2006–2007.

Methods

We collected human blood serum samples (n = 2,420), which we stratified by age and sex and pooled for analysis of PBDEs.

Results

The sum of BDE-47, -99, -100, and -153 concentrations (∑4PBDE) increased from 0–0.5 years (mean ± SD, 14 ± 3.4 ng/g lipid) to peak at 2.6–3 years (51 ± 36 ng/g lipid; p < 0.001) and then decreased until 31–45 years (9.9 ± 1.6 ng/g lipid). We observed no further significant decrease among ages 31–45, 45–60 (p = 0.964), or > 60 years (p = 0.894). The mean ∑4PBDE concentration in cord blood (24 ± 14 ng/g lipid) did not differ significantly from that in adult serum at ages 15–30 (p = 0.198) or 31–45 years (p = 0.140). We found no temporal trend when we compared the present results with Australian PBDE data from 2002–2005. PBDE concentrations were higher in males than in females; however, this difference reached statistical significance only for BDE-153 (p = 0.05).

Conclusions

The observed peak concentration at 2.6–3 years of age is later than the period when breast-feeding is typically ceased. This suggests that in addition to the exposure via human milk, young children have higher exposure to these chemicals and/or a lower capacity to eliminate them.  相似文献   

5.

Background

Coplanar polychlorinated biphenyls (PCBs) promote adipocyte inflammation and impair glucose homeostasis in lean mice. The diabetes-promoting effects of lipophilic PCBs have been observed only during weight loss in obese mice. The molecular mechanisms linking PCB exposures to impaired glucose metabolism are unclear.

Objectives

In this study we tested the hypothesis that coplanar PCBs act at adipocyte aryl hydrocarbon receptors (AhRs) to promote adipose inflammation and impair glucose homeostasis in lean mice and in obese mice during weight loss.

Methods and Results

PCB-77 administration impaired glucose and insulin tolerance in LF (low fat diet)–fed control (AhRfl/fl) mice but not in adipocyte AhR–deficient mice (AhRAdQ). Unexpectedly, AhRAdQ mice exhibited increased fat mass when fed a standard LF or high fat (HF) diet. In mice fed a HF diet, both genotypes became obese, but AhRAdQ mice administered vehicle (VEH) exhibited increased body weight, adipose mass, adipose inflammation, and impaired glucose tolerance compared with AhRfl/fl controls. Impairment of glucose homeostasis in response to PCB-77 was not observed in obese mice of either genotype. However, upon weight loss, AhRfl/fl mice administered PCB-77 exhibited increased abundance of adipose tumor necrosis factor-α (TNF-α) mRNA and impaired glucose homeostasis compared with those administered VEH. In contrast, PCB-77 had no effect on TNF-α or glucose homeostasis in AhRAdQ mice exhibiting weight loss.

Conclusions

Our results demonstrate that adipocyte AhR mediates PCB-induced adipose inflammation and impairment of glucose homeostasis in mice. Moreover, deficiency of AhR in adipocytes augmented the development of obesity, indicating that endogenous ligand(s) for AhR regulate adipose homeostasis.

Citation

Baker NA, Shoemaker R, English V, Larian N, Sunkara M, Morris AJ, Walker M, Yiannikouris F, Cassis LA. 2015. Effects of adipocyte aryl hydrocarbon receptor deficiency on PCB-induced disruption of glucose homeostasis in lean and obese mice. Environ Health Perspect 123:944–950; http://dx.doi.org/10.1289/ehp.1408594  相似文献   

6.

Background

Exposure to arsenic is a critical risk factor in the complex interplay among genetics, the environment, and human disease. Despite the potential for in utero exposure, the mechanism of arsenic action on vertebrate development and disease is unknown.

Objectives

The objective of this study was to identify genes and gene networks perturbed by arsenic during development in order to enhance understanding of the molecular mechanisms of arsenic action.

Methods

We exposed zebrafish embryos at 0.25–1.25 hr postfertilization to 10 or 100 ppb arsenic for 24 or 48 hr. We then used total RNA to interrogate genome microarrays and to test levels of gene expression changes by quantitative real-time polymerase chain reaction (QPCR). Computational analysis was used to identify gene expression networks perturbed by arsenic during vertebrate development.

Results

We identified a set of 99 genes that responded to low levels of arsenic. Nineteen of these genes were predicted to function in a common regulatory network that was significantly associated with immune response and cancer (p < 10−41). Arsenic-mediated expression changes were validated by QPCR.

Conclusions

In this study we demonstrated that arsenic significantly down-regulates expression levels of multiple genes potentially critical for regulating the establishment of an immune response. The data also provide molecular evidence consistent with phenotypic observations reported in other model systems. Additional mechanistic studies will help explain molecular events regulating early stages of the immune system and long-term consequences of arsenic-mediated perturbation of this system during development.  相似文献   

7.

Background

Prenatal exposure to endocrine-disrupting chemicals (EDCs) may induce weight gain and obesity in children, but the obesogenic effects of mixtures have not been studied.

Objective

We evaluated the associations between pre- and perinatal biomarker concentrations of 27 EDCs and child weight status at 7 years of age.

Methods

In pregnant women enrolled in a Spanish birth cohort study between 2004 and 2006, we measured the concentrations of 10 phthalate metabolites, bisphenol A, cadmium, arsenic, and lead in two maternal pregnancy urine samples; 6 organochlorine compounds in maternal pregnancy serum; mercury in cord blood; and 6 polybrominated diphenyl ether congeners in colostrum. Among 470 children at 7 years, body mass index (BMI) z-scores were calculated, and overweight was defined as BMI > 85th percentile. We estimated associations with EDCs in single-pollutant models and applied principal-component analysis (PCA) on the 27 pollutant concentrations.

Results

In single-pollutant models, HCB (hexachlorobenzene), βHCH (β-hexachlorocyclohexane), and polychlorinated biphenyl (PCB) congeners 138 and 180 were associated with increased child BMI z-scores; and HCB, βHCH, PCB-138, and DDE (dichlorodiphenyldichloroethylene) with overweight risk. PCA generated four factors that accounted for 43.4% of the total variance. The organochlorine factor was positively associated with BMI z-scores and with overweight (adjusted RR, tertile 3 vs. 1: 2.59; 95% CI: 1.19, 5.63), and these associations were robust to adjustment for other EDCs. Exposure in the second tertile of the phthalate factor was inversely associated with overweight.

Conclusions

Prenatal exposure to organochlorines was positively associated with overweight at age 7 years in our study population. Other EDCs exposures did not confound this association.

Citation

Agay-Shay K, Martinez D, Valvi D, Garcia-Esteban R, Basagaña X, Robinson O, Casas M, Sunyer J, Vrijheid M. 2015. Exposure to endocrine-disrupting chemicals during pregnancy and weight at 7 years of age: a multi-pollutant approach. Environ Health Perspect 123:1030–1037; http://dx.doi.org/10.1289/ehp.1409049  相似文献   

8.

Background

Inorganic arsenic exposure has been related to the risk of increased blood pressure based largely on cross-sectional studies conducted in highly exposed populations. Pregnancy is a period of particular vulnerability to environmental insults. However, little is known about the cardiovascular impacts of arsenic exposure during pregnancy.

Objectives

We evaluated the association between prenatal arsenic exposure and maternal blood pressure over the course of pregnancy in a U.S. population.

Methods

The New Hampshire Birth Cohort Study is an ongoing prospective cohort study in which > 10% of participant household wells exceed the arsenic maximum contaminant level of 10 μg/L established by the U.S. EPA. Total urinary arsenic measured at 24–28 weeks gestation was measured and used as a biomarker of exposure during pregnancy in 514 pregnant women, 18–45 years of age, who used a private well in their household. Outcomes were repeated blood pressure measurements (systolic, diastolic, and pulse pressure) recorded during pregnancy.

Results

Using linear mixed effects models, we estimated that, on average, each 5-μg/L increase in urinary arsenic was associated with a 0.15-mmHg (95% CI: 0.02, 0.29; p = 0.022) increase in systolic blood pressure per month and a 0.14-mmHg (95% CI: 0.02, 0.25; p = 0.021) increase in pulse pressure per month over the course of pregnancy.

Conclusions

In our U.S. cohort of pregnant women, arsenic exposure was associated with greater increases in blood pressure over the course of pregnancy. These findings may have important implications because even modest increases in blood pressure impact cardiovascular disease risk.

Citation

Farzan SF, Chen Y, Wu F, Jiang J, Liu M, Baker E, Korrick SA, Karagas MR. 2015. Blood pressure changes in relation to arsenic exposure in a U.S. pregnancy cohort. Environ Health Perspect 123:999–1006; http://dx.doi.org/10.1289/ehp.1408472  相似文献   

9.

Background

Diesel exhaust particulate (DEP) is a key arbiter of the adverse cardiovascular effects of air pollution.

Objectives

We assessed the in vitro effects of DEP on vascular function, nitric oxide (NO) availability, and the generation of oxygen-centered free radicals.

Methods

We assessed the direct vascular effects of DEP (10–100 μg/mL) in isolated rat aortic rings using myography. We investigated NO scavenging and oxygen-centered free radical generation using an NO electrode and electron paramagnetic resonance (EPR) with the Tempone-H (1-hydroxyl-2,2,6,6-tetramethyl-4-oxo-piperidine) spin trap, respectively.

Results

Acetylcholine-induced relaxation was attenuated by DEP (maximum relaxation reduced from 91 ± 4% to 49 ± 6% with 100 μg/mL DEP; p < 0.001) but was restored by superoxide dismutase (SOD; maximum relaxation, 73 ± 6%; p < 0.001). DEP caused a modest inhibition of relaxation to NO donor drugs, an effect that could be reversed by SOD (p < 0.01). At 10 μg/mL, DEP did not affect verapamil-induced relaxation (p = 0.73), but at 100 μg/mL DEP inhibited relaxation (p < 0.001) by a mechanism independent of SOD. NO concentrations generated by 2-(N,N-diethylamino)-diazenolate-2-oxide (DEA/NO; 10 μM) were reduced by DEP (100 μg/mL; from 5.2 ± 0.4 to 3.3 ± 0.4 μM; p = 0.002). Free radical generation was increased by DEP (10 μg/mL; 9-fold increase in EPR spectra; p = 0.004) in a manner that could be attenuated by SOD (p = 0.015).

Conclusions

DEP caused oxidative stress through the generation of oxygen-centered free radicals that reduced the bioavailability of endothelium-derived NO without prior interaction with the lung or vascular tissue. These findings provide a mechanism for the adverse cardiovascular effects of particulate air pollution.  相似文献   

10.

Background

DNA methylation is an epigenetic mark that regulates gene expression. Changes in DNA methylation within white blood cells may result from cumulative exposure to environmental metals such as lead. Bone lead, a marker of cumulative exposure, may therefore better predict DNA methylation than does blood lead.

Objective

In this study we compared associations between lead biomarkers and DNA methylation.

Methods

We measured global methylation in participants of the Normative Aging Study (all men) who had archived DNA samples. We measured patella and tibia lead levels by K-X-Ray fluorescence and blood lead by atomic absorption spectrophotometry. DNA samples from blood were used to determine global methylation averages within CpG islands of long interspersed nuclear elements-1 (LINE-1) and Alu retrotransposons. A mixed-effects model using repeated measures of Alu or LINE-1 as the dependent variable and blood/bone lead (tibia or patella in separate models) as the primary exposure marker was fit to the data.

Results

Overall mean global methylation (± SD) was 26.3 ± 1.0 as measured by Alu and 76.8 ± 1.9 as measured by LINE-1. In the mixed-effects model, patella lead levels were inversely associated with LINE-1 (β = −0.25; p < 0.01) but not Alu (β = −0.03; p = 0.4). Tibia lead and blood lead did not predict global methylation for either Alu or LINE-1.

Conclusion

Patella lead levels predicted reduced global DNA methylation within LINE-1 elements. The association between lead exposure and LINE-1 DNA methylation may have implications for the mechanisms of action of lead on health outcomes, and also suggests that changes in DNA methylation may represent a biomarker of past lead exposure.  相似文献   

11.

Background

Anogenital distance (AGD) is sexually dimorphic in rodents and humans, being 2- to 2.5-fold greater in males. It is a reliable marker of androgen and antiandrogen effects in rodent reproductive toxicologic studies. Data on AGD in humans are sparse, with no longitudinal data collected during infancy.

Objective

This study was designed to determine AGD from birth to 2 years in males and females and relate this to other anthropometric measures.

Materials and Methods

Infants were recruited from the Cambridge Baby Growth Study. AGD was measured from the center of the anus to the base of the scrotum in males and to the posterior fourchette in females. Measurements were performed at birth and at 3, 12, 18, and 24 months of age.

Results

Data included 2,168 longitudinal AGD measurements from 463 male and 426 female full-term infants (median = 2 measurements per infant). Mean AGD (± SD) at birth was 19.8 ± 6.1 mm in males and 9.1 ± 2.8 mm in females (p < 0.0001). AGD increased up to 12 months in both sexes and in a sex-dimorphic pattern. AGD was positively correlated with penile length at birth (r = 0.18, p = 0.003) and the increase in AGD from birth to 3 months was correlated with penile growth (r= 0.20, p = 0.001).

Conclusion

We report novel, longitudinal data for AGD during infancy in a large U.K. birth cohort. AGD was sex dimorphic at all ages studied. The availability of normative data provides a means of utilizing this biological marker of androgen action in population studies of the effects of environmental chemicals on genital development.  相似文献   

12.

Background

Determining arsenic exposure in groups based on geographic location, dietary behaviors, or lifestyles is important, as even moderate exposures may lead to health concerns.

Objectives/Methods

The Korean community in Washington State, represents a group warranting investigation, as they consume foods (e.g., shellfish, rice, finfish, and seaweed) known to contain arsenic. As part of the Arsenic Mercury Intake Biometric Study, we examined the arsenic levels in hair and urine along with the diets of 108 women of childbearing age from within this community. Arsenic levels in indoor air and drinking water were also investigated, and shellfish commonly consumed were collected and analyzed for total and speciated arsenic.

Results

The six shellfish species analyzed (n = 667) contain total arsenic (range, 1–5 μg/g) but are a small source of inorganic arsenic (range, 0.01–0.12 μg/g). Six percent of the individuals may have elevated urinary inorganic arsenic levels (> 10 μg/L) due to diet. Seaweed, rice, shellfish, and finfish are principal sources for total arsenic intake/excretion based on mass balance estimates. Rice consumption (163 g/person/day) may be a significant source of inorganic arsenic. Air and water are not significant sources of exposure. Hair is a poor biometric for examining arsenic levels at low to moderate exposures.

Conclusions

We conclude that a portion of this community may have dietary inorganic arsenic exposure resulting in urine levels exceeding 10 μg/L. Although their exposure is below that associated with populations exposed to high levels of arsenic from drinking water (> 100 μg/L), their exposure may be among the highest in the United States.  相似文献   

13.

Background

Cadmium exposure has been inconsistently related to blood pressure.

Objectives

We updated and reevaluated the evidence regarding the relationships of blood cadmium (BCd) and urine cadmium (UCd) with blood pressure (BP) and hypertension (HTN) in nonoccupationally exposed populations.

Data sources and extraction

We searched PubMed and Web of Science for articles on BCd or UCd and BP or HTN in nonoccupationally exposed populations and extracted information from studies that provided sufficient data on population, smoking status, exposure, outcomes, and design.

Data synthesis

Twelve articles met inclusion criteria: eight provided data adequate for comparison, and five reported enough data for meta-analysis. Individual studies reported significant positive associations between BCd and systolic BP (SBP) among nonsmoking women [β = 3.14 mmHg per 1 μg/L untransformed BCd; 95% confidence interval (CI), 0.14–6.14] and among premenopausal women (β = 4.83 mmHg per 1 nmol/L log-transformed BCd; 95% CI, 0.17–9.49), and between BCd and diastolic BP (DBP) among women (β = 1.78 mmHg comparing BCd in the 90th and 10th percentiles; 95% CI, 0.64–2.92) and among premenopausal women (β = 3.84 mmHg per 1 nmol/L log-transformed BCd; 95% CI, 0.86–6.82). Three meta-analyses, each of three studies, showed positive associations between BCd and SBP (p = 0.006) and DBP (p < 0.001) among women, with minimal heterogeneity (I2 = 3%), and a significant inverse association between UCd and HTN among men and women, with substantial heterogeneity (I2 = 80%).

Conclusion

Our results suggest a positive association between BCd and BP among women; the results, however, are inconclusive because of the limited number of representative population-based studies of never-smokers. Associations between UCd and HTN suggest inverse relationships, but inconsistent outcome definitions limit interpretation. We believe a longitudinal study is merited.  相似文献   

14.

Background

There is general concern that persistent organic pollutants (POPs) found in the environment, wildlife, food, water, house dust, human tissues, and fluids may alter normal human physiologic activities (e.g., fetal development, immune and endocrine systems). Although the levels of some POPs [polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCs)] in these matrices have decreased after their ban, others [polybrominated diphenyl ethers (PBDEs)] have increased in recent years.

Objective

To determine the longitudinal trend of specific POPs in human fetal tissues for risk assessment purposes.

Methods

We analyzed early to mid-gestation fetal liver (n = 52) and placental (n = 60) tissues, obtained after elective abortions during 1998–2006, for selected PBDEs, PCBs, and OCs using gas chromatography–mass spectroscopy.

Results

Total PBDEs in fetal liver increased over time (mean ± SE: 1998, 284.4 ± 229.8 ng/g lipid; 2006, 1,607.7 ± 605.9; p < 0.03), whereas placental levels were generally lower, with no clear trend. Low levels of PCBs and OCs varied yearly, with no evident trend. The major analytes in 1998 were OCs (liver, 49%; placenta, 71%), whereas the major analytes in 2006 were PBDEs (liver, 89%; placenta, 98%). The 1998–2006 tissue PBDE congener profile is similar to that of DE-71, a commercial primarily pentabrominated diphenyl ether mixture manufactured in North America.

Conclusions

Although commercial production of penta- and octa-brominated diphenyl ethers in North America was halted in 2004, their concentrations in fetal liver and placenta are now greater than the tissue burdens for the analyzed OCs and PCBs. Our findings also demonstrate that PBDEs accumulate within the fetal compartment at a very early stage in gestation.  相似文献   

15.

Background

Mice exposed to high levels of arsenic in utero have increased susceptibility to tumors such as hepatic and pulmonary carcinomas when they reach adulthood. However, the effects of in utero arsenic exposure on general physiological functions such as reproduction and metabolism remain unclear.

Objectives

We evaluated the effects of in utero exposure to inorganic arsenic at the U.S. Environmental Protection Agency (EPA) drinking water standard (10 ppb) and at tumor-inducing levels (42.5 ppm) on reproductive end points and metabolic parameters when the exposed females reached adulthood.

Methods

Pregnant CD-1 mice were exposed to sodium arsenite [none (control), 10 ppb, or 42.5 ppm] in drinking water from gestational day 10 to birth, the window of organ formation. At birth, exposed offspring were fostered to unexposed dams. We examined reproductive end points (age at vaginal opening, reproductive hormone levels, estrous cyclicity, and fertility) and metabolic parameters (body weight changes, hormone levels, body fat content, and glucose tolerance) in the exposed females when they reached adulthood.

Results

Arsenic-exposed females (10 ppb and 42.5 ppm) exhibited early onset of vaginal opening. Fertility was not affected when females were exposed to the 10-ppb dose. However, the number of litters per female was decreased in females exposed to 42.5 ppm of arsenic in utero. In both 10-ppb and 42.5-ppm groups, arsenic-exposed females had significantly greater body weight gain, body fat content, and glucose intolerance.

Conclusion

Our findings revealed unexpected effects of in utero exposure to arsenic: exposure to both a human-relevant low dose and a tumor-inducing level led to early onset of vaginal opening and to obesity in female CD-1 mice.

Citation

Rodriguez KF, Ungewitter EK, Crespo-Mejias Y, Liu C, Nicol B, Kissling GE, Yao HH. 2016. Effects of in utero exposure to arsenic during the second half of gestation on reproductive end points and metabolic parameters in female CD-1 mice. Environ Health Perspect 124:336–343; http://dx.doi.org/10.1289/ehp.1509703  相似文献   

16.
17.
18.

Background

Cadmium (Cd) is a carcinogenic heavy metal of environmental concern. Exposure to both Cd and carcinogenic organic compounds, such as polycyclic aromatic hydrocarbons or aromatic amines (AAs), is a common environmental problem. Human arylamine N-acetyltransferases (NATs) are xenobiotic-metabolizing enzymes that play a key role in the biotransformation of AA carcinogens. Changes in NAT activity have long been associated with variations in susceptibility to different cancers in relation with exposure to certain AAs.

Objective

We explored the possible interactions between Cd and the NAT-dependent biotransformation of carcinogenic AAs.

Methods

We exposed purified enzymes, lung epithelial cells, and mouse models to Cd and subsequently analyzed NAT-dependent metabolism of AAs.

Results

We found that Cd, at biologically relevant concentrations, impairs the NAT-dependent acetylation of carcinogenic AAs such as 2-aminofluorene (2-AF) in lung epithelial cells. NAT activity was strongly impaired in the tissues of mice exposed to Cd. Accordingly, mice exposed to Cd and 2-AF displayed altered in vivo toxicokinetics with a significant decrease (~ 50%) in acetylated 2-AF in plasma. We found that human NAT1 was rapidly and irreversibly inhibited by Cd [median inhibitory concentration (IC50) ≈ 55 nM; rate inhibition constant (kinact) = 5 × 104 M−1 · sec−1], with results of acetyl coenzyme A (acetyl-CoA) protection assays indicating that Cd-mediated inhibition was due to the reaction of metal with the active-site cysteine residue of the enzyme. We found similar results for human NAT2, although this isoform was less sensitive to inactivation (IC50 ≈ 1 μM; kinact = 1 × 104 M−1 · sec−1).

Conclusions

Our data suggest that Cd can alter the metabolism of carcinogenic AAs through the impairment of the NAT-dependent pathway, which may have important toxicological consequences.  相似文献   

19.

Background:

Inorganic arsenic (iAs) is a ubiquitous element present in the groundwater worldwide. Cardiovascular effects related to iAs exposure have been studied extensively in adult populations. Few epidemiological studies have been focused on iAs exposure–related cardiovascular disease in children.

Objective:

In this study we investigated the association between iAs exposure, blood pressure (BP), and functional and anatomical echocardiographic parameters in children.

Methods:

A cross-sectional study of 161 children between 3 and 8 years was conducted in Central Mexico. The total concentration of arsenic (As) species in urine (U-tAs) was determined by hydride generation–cryotrapping–atomic absorption spectrometry and lifetime iAs exposure was estimated by multiplying As concentrations measured in drinking water by the duration of water consumption in years (LAsE). BP was measured by standard protocols, and M-mode echocardiographic parameters were determined by ultrasonography.

Results:

U-tAs concentration and LAsE were significantly associated with diastolic (DBP) and systolic blood pressure (SBP) in multivariable linear regression models: DBP and SBP were 0.013 (95% CI: 0.002, 0.024) and 0.021 (95% CI: 0.004, 0.037) mmHg higher in association with each 1-ng/mL increase in U-tAs (p < 0.025), respectively. Left ventricular mass (LVM) was significantly associated with LAsE [5.5 g higher (95% CI: 0.65, 10.26) in children with LAsE > 620 compared with < 382 μg/L-year; p = 0.03] in an adjusted multivariable model. The systolic function parameters left ventricular ejection fraction (EF) and shortening fraction were 3.67% (95% CI: –7.14, –0.20) and 3.41% (95% CI: –6.44, –0.37) lower, respectively, in children with U-tAs > 70 ng/mL compared with < 35 ng/mL.

Conclusion:

Early-life exposure to iAs was significantly associated with higher BP and LVM and with lower EF in our study population of Mexican children.

Citation:

Osorio-Yáñez C, Ayllon-Vergara JC, Arreola-Mendoza L, Aguilar-Madrid G, Hernández-Castellanos E, Sánchez-Peña LC, Del Razo LM. 2015. Blood pressure, left ventricular geometry, and systolic function in children exposed to inorganic arsenic. Environ Health Perspect 123:629–635; http://dx.doi.org/10.1289/ehp.1307327  相似文献   

20.

Background

The mechanisms for the relationship between particulate pollution and cardiac disease are not fully understood.

Objective

We examined the effects and time course of exposure to fine particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5) on ventricular repolarization of 106 nonsmoking adults who were living in communities in central Pennsylvania.

Methods

The 24-hr beat-to-beat electrocardiogram (ECG) data were obtained using a high-resolution 12-lead Holter system. After visually identifying and removing artifacts and arrhythmic beats, we summarized normal beat-to-beat QTs from each 30-min segment as heart rate (HR)-corrected QT measures: QT prolongation index (QTI), Bazett’s HR-corrected QT (QTcB), and Fridericia’s HR-corrected QT (QTcF). A personal PM2.5 monitor was used to measure individual-level real-time PM2.5 exposures for 24 hr. We averaged these data and used 30-min time-specific average PM2.5 exposures.

Results

The mean age of the participants was 56 ± 8 years, with 41% male and 74% white. The means ± SDs for QTI, QTcB, and QTcF were 111 ± 6.6, 438 ± 23 msec, and 422 ± 22 msec, respectively; and for PM2.5, the mean ± SD was 14 ± 22 μg/m3. We used distributed lag models under a framework of linear mixed-effects models to assess the autocorrelation-corrected regression coefficients (β) between 30-min PM2.5 and the HR-corrected QT measures. Most of the adverse ventricular repolarization effects from PM2.5 exposure occurred within 3–4 hr. The multivariable adjusted β (SE, p-value) due to a 10-μg/m3 increase in lag 7 PM2.5 on QTI, QTcB, and QTcF were 0.08 (0.04, p < 0.05), 0.22 (0.08, p < 0.01), and 0.09 (0.05, p < 0.05), respectively.

Conclusions

Our results suggest a significant adverse effect of PM2.5 on ventricular repolarization. The time course of the effect is within 3–4 hr of elevated PM2.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号