首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Notch signalling pathway has recently been linked to T helper 1 (Th1)/T helper 2 (Th2) cell polarization via a mechanism involving differential expression of Notch ligands, Delta-like and Jagged, in antigen-presenting cells. However, whether stimuli other than pathogen-derived factors are involved in the regulation of Notch ligand expression in dendritic cells (DCs) remains unknown. Here, we address the effect of T helper cells (Th1 and Th2) on Delta-like 4 and Jagged 2 expression in bone marrow-derived DCs. We demonstrate that both Th1 and Th2 cells induce Delta-like 4 mRNA expression in DCs, in a process that is, in part, mediated by CD40 signalling. In contrast, only Th2 cells induce a significant increase in Jagged 2 mRNA levels in DCs. Additionally, we show that IL-4, a hallmark Th2 cytokine, plays a role in Jagged 2 expression, as evidenced by the fact that cholera toxin, a Th2-promoting stimulus, induces Jagged 2 mRNA expression in DCs only in the presence of IL-4. Finally, we demonstrate that DCs also express Notch 1 and that this expression is downregulated by IL-4. These data suggest that Notch ligands are differentially regulated in DCs: Delta-like 4 is regulated by T helper cells and by pathogen-derived Th1 stimuli, whereas Jagged 2 is regulated by Th2 cells and pathogen-derived Th2-promoting stimuli. Based on our results, we propose that the positive feedback loop that Th2 cells exert on T cell polarization may involve the induction of Jagged 2 expression in DCs.  相似文献   

2.
目的: 研究体外LPS刺激及CD40的配基化对可溶性CD40(sCD40)基因修饰树突状细胞TLR4-MD2表达及IL-12分泌的影响,为有效利用树突状细胞诱导特异性移植免疫耐受提供实验依据。方法: 脂质体法将质粒pEGFP-N1/sCD40及空质粒pEGFP-N1转染DC2.4细胞株;应用LPS及抗CD40单抗刺激6 h,流式细胞仪检测DC表面TLR4-MD2的表达,RT-PCR法检测DC 的TLR4 mRNA 表达水平,并用ELISA法检测细胞因子IL-12p70的分泌。结果: LPS刺激下调DC表面TLR4-MD2的表达,同时给予CD40配基化可引起TLR4-MD2的表达显著增高;CD40配基化对DC TLR4mRNA 水平表达无影响,但可部分地增高LPS引起的TLR4mRNA 表达降低;此外,CD40的配基化可显著诱导LPS刺激后IL-12分泌增加。sCD40基因修饰DC可拮抗以上作用。结论: 体外LPS及抗CD40单抗刺激下,sCD40基因修饰树突状细胞可显著下调其表面TLR4-MD2的表达,IL-12p70分泌减少,可能与阻断胞浆内的TLR4-MD2的转运过程有关。  相似文献   

3.
DCs represent the major cell type leading to polarized T-helper (Th) cell responses in vivo. Here, we asked whether the instruction of murine Th2 responses by DCs matured with the proinflammatory cytokine TNF is qualitatively different from maturation by different types of TLR4/MyD88-dependent variant-specific surface glycoproteins (VSGs) of Trypanosoma brucei (T. brucei). The results obtained by analyzing DC surface markers, Notch ligand mRNA, cytokines, asthma, and experimental autoimmune encephalomyelitis (EAE) models as well as performing microarrays indicate that both types of stimuli induce similar inflammatory, semi-mature DC profiles. DCs matured by TNF or VSG treatment expressed a common inflammatory signature of 24 genes correlating with their Th2-polarization capacity. However, the same 24 genes and 4498 additional genes were expressed by DCs treated with LPS that went on to induce Th1 cells. These findings support the concept of a default pathway for Th2-cell induction in DCs matured under suboptimal or inflammatory conditions, independent of the surface receptors and signaling pathways involved. Our data also indicate that quantitative differences in DC maturation might direct Th2- vs Th1-cell responses, since suboptimally matured inflammatory DCs induce default Th2-cell maturation, whereas fully mature DCs induce Th1-cell maturation.  相似文献   

4.
目的探索脂多糖(LPS)预致敏的人骨髓间充质干细胞(MSC)产生促炎功能的免疫调节机制。方法采用Real-time PCR和免疫荧光法检测MSC被预致敏前后TLR4信号通路相关分子(如TLR4、MyD88、TRAF6等)的表达水平,以及NF-κB的入核情况。通过Real-time PCR比较MSC被致敏前后促炎因子(IL-1β、IL-6、MIP-2、TNF-α)和Th1/Th2型细胞因子及其受体的表达差异。结果与未致敏的MSC相比,LPS预致敏的MSC中TLR4表达升高,NF-κB入核增加,促炎性因子IL-1β、IL-6、MIP-2、TNF-α表达升高,提示LPS预致敏可以激活MSC中的TLR4信号通路,并且诱导MSC中Th1型细胞因子及其受体表达升高,而Th2型细胞因子及其受体表达无变化或减少。结论MSC被LPS预致敏后TLR4信号通路激活,Th1型细胞因子及受体表达上调,从而诱导MSC分化成促炎表型。  相似文献   

5.
In schistosomiasis, a parasitic disease caused by helminths, the parasite eggs induce a T helper 2 cell (T(H)2) response in the host. Here, the specific role of human monocyte-derived dendritic cells (DCs) in initiation and polarization of the egg-specific T cell responses was examined. We demonstrate that immature DCs (iDCs) pulsed with schistosome soluble egg antigens (SEA) do not show an increase in expression of co-stimulatory molecules or cytokines, indicating that no conventional maturation was induced. The ability of SEA to affect the Toll-like receptor (TLR) induced maturation of iDCs was examined by copulsing the DCs with SEA and TLR-ligands. SEA suppressed both the maturation of iDCs induced by poly-I:C and LPS, as indicated by a decrease in co-stimulatory molecule expression and production of IL-12, IL-6 and TNF-alpha. In addition, SEA suppressed T(H)1 responses induced by the poly-I:C-pulsed DCs, and skewed the LPS-induced mixed response towards a T(H)2 response. Immature DCs rapidly internalized SEA through the C-type lectins DC-SIGN, MGL and the mannose receptor and the antigens were targeted to MHC class II-positive lysosomal compartments. The internalization of SEA by multiple C-type lectins may be important to regulate the response of the iDCs to TLR-induced signals.  相似文献   

6.
《Mucosal immunology》2013,6(5):921-930
This study identified a novel phenomenon that dendritic cells (DCs) produced interleukin (IL)-33 via Toll-like receptor (TLR)-mediated innate pathway. Mouse bone marrow–derived DCs were treated with or without microbial pathogens or recombinant murine IL-33. IL-33 mRNA and protein were found to be expressed by DCs and largely induced by several microbial pathogens, highly by lipopolysaccharide (LPS) and flagellin. Using two mouse models of topical challenge by LPS and flagellin and experimental allergic conjunctivitis, IL-33-producing DCs were observed in ocular mucosal surface and the draining cervical lymph nodes in vivo. The increased expression levels of myeloid differentiation primary-response protein 88 (MyD88), nuclear factor (NF)-κB1, NF-κB2, and RelA accompanied by NF-κB p65 nuclear translocation were observed in DCs exposed to flagellin. IL-33 induction by flagellin was significantly blocked by TLR5 antibody or NF-κB inhibitor quinazoline and diminished in DCs from MyD88 knockout mice. IL-33 stimulated the expression of DC maturation markers, CD40 and CD80, and proallergic cytokines and chemokines, OX40L, IL-4, IL-5, IL-13, CCL17 (C-C motif chemokine ligand 17), TNF-α (tumor necrosis factor-α), and IL-1β. This stimulatory effect of IL-33 in DCs was significantly blocked by ST2 antibody or soluble ST2. Our findings demonstrate that DCs produce IL-33 via TLR/NF-κB signaling pathways, suggesting a molecular mechanism by which local allergic inflammatory response may be amplified by DC-produced IL-33 through potential autocrine regulation.  相似文献   

7.
Human endothelial cells (EC) express Toll-like receptor 4 (TLR4), a receptor for lipopolysaccharides (LPS), but little or no TLR2, a lipopeptide receptor. The aim of this study was to investigate to what extent inflammatory stimuli modify the expression by EC of TLR4 and TLR2, of the TLR2 co-receptors TLR1 and TLR6 and of the TLR2-accessory proteins CD14 and CD36. Stimulation of umbilical vein derived EC with TNF-alpha, LPS or IL-1beta for 24h induced a strong increase in TLR2 mRNA but not in TLR1, TLR4 and TLR6 mRNA. Inflammatory activation had little effect on CD14 mRNA, but decreased the expression of CD36 mRNA. TLR2 antigen was readily detected by flow cytometry on activated EC, but not on resting EC. A significant proportion of TLR2 was found to be located intracellularly. By using specific signalling pathway inhibitors we established that the induction of TLR2 by inflammatory stimuli was dependent on NF-kappaB, p38-MAP kinase and c-Jun kinase. IRAK-1 phosphorylation after treatment with 10mug/ml of lipoteichoic acid (LTA), a TLR2 agonist, was only observed in TNF-alpha-stimulated EC and not in resting EC. Furthermore, LTA potentiated the increase of the inflammatory markers E-Selectin or IL-8 in EC pre-treated with TNF-alpha, LPS or IL-1beta, but not in resting EC. These results imply that the up-regulated TLR2 is functionally active. Interestingly, LTA had no effect on TLR2 expression, nor maintained TLR2 expression, in activated EC. This suggests that lipopeptide responses of EC are dependent on the continued presence of inflammatory cytokines, provided by other cell types, or LPS. In conclusion, inflammatory stimuli induce a high TLR2 expression in EC, which in turn enables the cells to strongly respond to lipopeptides. The up-regulation of TLR2 may be of relevance for the vascular effects of Gram-positive bacteria.  相似文献   

8.
While interleukin (IL)-33, a novel member of the IL-1 family, seems to promote T helper type 2 (Th2)-associated inflammations and allergic diseases, the stimulating factors for IL-33 production are less well characterized. Prostaglandin E2 (PGE2) has been shown to suppress immune cell functions. However, the immune enhancement by this mediator is not well understood. In the present study, we examined the effect of PGE2 on IL-33 production by dendritic cells (DCs). Bone marrow-derived DCs were stimulated with lipopolysaccharide (LPS) in the presence or absence of PGE2. LPS increased mRNA expression of the IL-1 family members, IL-1, IL-18, and IL-33 in DCs. PGE2 alone showed slight effect on IL-1, IL-18, and IL-33 mRNA expression in DCs. Of note, LPS combined with PGE2 caused in a synergistic enhancement of mRNA expression of IL-33 but not IL-1 and IL-18. In addition, PGE2 dramatically enhanced IL-33 protein production by DCs upon LPS stimulation. The protein kinase A (PKA) inhibitor H89 significantly inhibited the PGE2-mediated enhancement of IL-33 production by DCs. Thus, PGE2 appears to enhance IL-33 mRNA expression and its protein synthesis via PKA pathway in DCs. PGE2 may promote Th2-mediated inflammations through the enhancement of IL-33 production by DCs, which might be associated with the pathogenesis of allergic diseases.  相似文献   

9.
Liver injury after experimental acetaminophen treatment is mediated both by direct hepatocyte injury through a P450-generated toxic metabolite and indirectly by activated liver Kupffer cells and neutrophils. This study was designed to investigate the role of Notch signaling in the regulation of innate immune responses in acetaminophen (APAP)-induced liver injury. Using a mouse model of APAP-induced liver injury, wild-type (WT) and toll-like receptor 4 knockout (TLR4 KO) mice were injected intraperitoneally with APAP or PBS. Some animals were injected with γ-secretase inhibitor DAPT or DMSO vehicle. For the in vitro study, bone marrow-derived macrophages (BMMs) were transfected with Notch1 siRNA, TLR4 siRNA, and non-specific (NS) siRNA and stimulated with LPS. Indeed, paracetamol/acetaminophen-induced liver damage was worse after Notch blockade with DAPT in wild-type mice, which was accompanied by significantly increased ALT levels, diminished hairy and enhancer of split-1 (Hes1), and phosphorylated Stat3 and Akt but enhanced high mobility group box 1 (HMGB1), TLR4, NF-κB, and NLRP3 activation after APAP challenge. Mice receiving DAPT increased macrophage and neutrophil accumulation and hepatocellular apoptosis. However, TLR4 KO mice that received DAPT reduced APAP-induced liver damage and NF-κB, NLRP3, and cleaved caspase-1 activation. BMMs transfected with Notch1 siRNA reduced Hes1 and phosphorylated Stat3 and Akt but augmented HMGB1, TLR4, NF-κB, and NLRP3. Furthermore, TLR4 siRNA knockdown resulted in decreased NF-κB and NLRP3 and cleaved caspase-1 and IL-1β levels following LPS stimulation. These results demonstrate that Notch signaling regulates innate NLRP3 inflammasome activation through regulation of HMGB1/TLR4/NF-κB activation in APAP-induced liver injury. Our novel findings underscore the critical role of the Notch1-Hes1 signaling cascade in the regulation of innate immunity in APAP-triggered liver inflammation. This might imply a novel therapeutic potential for the drug-induced damage-associated lethal hepatitis.  相似文献   

10.
11.
Toll-like receptors (TLRs) play an important role in the innate recognition of pathogens by dendritic cells (DCs) and in the induction of immune responses. Few studies have been devoted to address the impact of TLR2 (a fully MyD88-dependent receptor) and TLR3 (a fully TRIF-dependent receptor) co-activation on DC functions, especially in the mouse system. Using canonical agonists, we show that TLR2 acts in concert with TLR3 to induce the synthesis of inflammatory cytokines (TNF-alpha, IL-6), of some IL-12 family members (IL-12p40, IL-12p23, IL-27p28) and of the Notch ligand Delta-4 by mouse DCs. In contrast, TLR2 interferes with the TLR3-induced expression of type I interferon stimulated genes (MIG/CXCL9, IP-10/CXCL10, GARG39) and IL-12p35. We also report that TLR2 cooperates with TLR3 to enhance the DC-mediated production of IFN-gamma by Natural Killer cells and by conventional Ag-specific T lymphocytes. To conclude, our data support the existence of TLR2 and TLR3 synergy and cross-inhibition in DCs that could be important to strengthen immune responses during infection.  相似文献   

12.
How the development of antibacterial T helper 17 (Th17) cells is selectively promoted by antigen-presenting dendritic cells (DCs) is unclear. We showed that bacteria, but not viruses, primed human DCs to promote IL-17 production in memory Th cells through the nucleotide oligomerization domain 2 (NOD2)-ligand muramyldipeptide (MDP), a derivative of bacterial peptidoglycan. MDP enhanced obligate bacterial Toll-like receptor (TLR) agonist induction of IL-23 and IL-1, which promoted IL-17 expression in T cells. The role of NOD2 in this IL-23-IL-1-IL-17 axis could be confirmed in NOD2-deficient DCs, such as DCs from selected Crohn's disease patients. Thus, antibacterial Th17-mediated immunity in humans is orchestrated by DCs upon sensing bacterial NOD2-ligand MDP.  相似文献   

13.
14.
Brucella abortus is a Gram-negative intracellular bacterium that induces MyD88-dependent IL-12 production in dentritic cells (DCs) and a subsequent protective Th1 immune response. Previous studies have shown that the Toll-like receptor 2 (TLR2) is required for tumor-necrosis factor (TNF) production, whereas TLR9 is responsible for IL-12 induction in DCs after exposure to heat-killed Brucella abortus (HKBA). TLR2 is located on the cell surface and is required for optimal microorganism-induced phagocytosis by innate immune cells; thus, phagocytosis is an indispensable preliminary step for bacterial genomic DNA recognition by TLR9 in late-endosomal compartments. Here, we hypothesized that TLR2-triggered signals after HKBA stimulation might cross-regulate TLR9 signaling through the indirect modulation of the phagocytic function of DCs or the direct modulation of cytokine gene expression. Our results indicate that HKBA phagocytosis was TLR2-dependent and an essential step for IL-12p40 induction. In addition, HKBA exposure triggered the TLR2-mediated activation of both p38 and extracellular signal-regulated kinase 1/2 (ERK1/2). Interestingly, although p38 was required for HKBA phagocytosis and phagosome maturation, ERK1/2 did not affect these processes but negatively regulated IL-12 production. Although p38 inhibitors tempered both TNF and IL-12 responses to HKBA, pre-treatment with an ERK1/2 inhibitor significantly increased IL-12p40 and abrogated TNF production in HKBA-stimulated DCs. Further experiments showed that the signaling events that mediated ERK1/2 activation after TLR2 triggering also required HKBA-induced Ras activation. Furthermore, Ras-guanine nucleotide-releasing protein 1 (RasGRP1) mediated the TLR2-induced ERK1/2 activation and inhibition of IL-12p40 production. Taken together, our results demonstrated that HKBA-mediated TLR2-triggering activates both the p38 and ERK1/2 signaling subpathways, which divergently regulate TLR9 activation at several levels to induce an appropriate protective IL-12 response.  相似文献   

15.
A synthetic Nod2 agonist, muramyldipeptide (MDP), and two Nod1 agonists, FK565 and FK156, mimic the bacterial peptidoglycan moiety and are powerful adjuvants that induce cell-mediated immunity, especially delayed-type hypersensitivity. In this study, we used human dendritic cell (DC) cultures to examine possible T helper type 1 (Th1) responses induced by MDP and FK565/156 in combination with various synthetic Toll-like receptor (TLR) agonists, including synthetic lipid A (TLR4 agonist), the synthetic triacyl lipopeptide Pam3CSSNA (TLR2 agonist), poly(I:C) (TLR3 agonist), and CpG DNA (TLR9 agonist). Immature DCs derived from human monocytes expressed mRNAs for Nod1, Nod2, TLR2, TLR3, TLR4, and TLR9. The stimulation of DCs with MDP and FK565 in combination with lipid A, poly(I:C), and CpG DNA, but not with Pam3CSSNA, synergistically induced interleukin-12 (IL-12) p70 and gamma interferon (IFN-gamma), but not IL-18, in culture supernatants and induced IL-15 on the cell surface. In correlation with the cytokine induction, an upregulation of the mRNA expression of these cytokine genes was observed. Notably, IL-12 p35 mRNA expression increased >1,000-fold upon stimulation with lipid A plus either MDP or FK565 compared with stimulation with each stimulant alone. In contrast, for the expression of CD83 and costimulatory molecules such as CD40, CD80, and CD86, no synergistic effects were observed upon stimulation with Nod plus TLR agonists. The culture supernatants of DCs stimulated with lipid A plus either MDP or FK565 activated human T cells to produce high levels of IFN-gamma, and the activity was attributable to DC-derived IL-12. These findings suggest that Nod1 and Nod2 agonists in combination with TLR3, TLR4, and TLR9 agonists synergistically induce IL-12 and IFN-gamma production in DCs to induce Th1-lineage immune responses.  相似文献   

16.
Dendritic cells (DCs) utilize polarizing signals to instruct the differentiation of T helper (Th) cells into Th1 and Th2 effector cells: antigen‐specific ‘signal 1’, costimulatory ‘signal 2’ and polarizing cytokines ‘signal 3’. Accumulating evidence suggests the involvement of an additional signal, the Notch signalling pathway. We reported that in response to Th1‐promoting stimuli, both mouse and human DCs generated in the presence of the immune modulator nicotine (nicDCs) fail to support the development of effector memory Th1 cells. However, in response to Th2‐promoting stimuli, these nicDCs preferentially support the differentiation of antigen‐specific IL‐4‐producing Th2 effector cells. Here, we show that when compared to their control counterparts, immature mouse and human nicDCs display higher levels of the Notch ligands D1, D4 and J2 mRNA expression. In response to Th1‐ and Th2‐promoting stimuli, mouse nicDCs display higher levels of the Notch ligands D1, D4 and J2, while human nicDCs show higher levels of D1, D4 and J1 mRNA expression. Furthermore, both stimulated mouse and human nicDCs express higher CD86 to CD80 ratio and produce lower amount of IL‐12. Collectively, our data suggest that these changes in addition to an increase in Jagged expression correlate with the ability of nicDCs to modulate the Th1/Th2 balance in favour of Th2 generation.  相似文献   

17.
Th2 cytokines such as interleukin-13 (IL-13) have both, stimulatory and inhibitory effects on effector functions of macrophages. Reactive nitrogen species are classically induced in Th1 cytokines and/or lipopolysaccharides (LPS) activated macrophages and this response is inhibited by IL-13. In contrast, IL-13 primes macrophages to produce NO in response to LPS when IL-13 treatment happens prior to LPS exposure. This mechanism occurs through a complex signalling pathway, which involves the scavenger receptor CD36, the LPS receptor CD14 and the nuclear receptor PPARgamma. The enhancement of NO production is the consequence of iNOS induction at mRNA and protein levels. The increase of the NO production induced by LPS in IL-13 pre-treated macrophages is found to potentiate the inhibition of Toxoplasma gondii intracellular replication. These results reveal a novel IL-13 signalling pathway that primes the antimicrobial activity of macrophages induced by LPS caused by overexpression of the iNOS-NO axis.  相似文献   

18.
The Notch signalling pathway is involved in multiple cellular processes and has been recently indicated to modulate the host immune response. However, the role of the Notch pathway in dengue virus (DENV) infection remains unknown. Our study has screened the expression profile of Notch receptors, ligands and target genes in human monocytes, macrophages and dendritic cells in response to DENV infection. The real‐time PCR data showed that Notch ligand Dll1 was significantly induced in DENV‐infected monocytes; and receptor Notch4, ligands Dll1 and Dll4, and target Hes1 were dramatically enhanced in DENV‐infected macrophages and dendritic cells. In macrophages, induction of Dll1 and Dll4 mediated by DENV2 was increased by treatment with interferon‐β (IFN‐β), and was impaired by neutralization of IFN‐β. The DENV‐induced Dll1 and Dll4 expression level was decreased by silencing key innate immune molecules, including Toll‐like receptor 3 (TLR3), MyD88, RIG‐I and IPS‐I. In IFN‐receptor‐depleted macrophages, the Dll1 and Dll4 induction was significantly alleviated. Functionally, activation of Notch signalling by Dll1 in CD4+ T cells enhanced the expression of a T helper type 1 (Th1) cytokine IFN‐γ, while Notch activation in macrophages had no direct effect on replication of DENV. Our data revealed that the expressions of Notch ligands in antigen‐presenting cells were differentially induced by DENV via innate immune signalling, which is important for Th1/Th2 differentiation during adaptive immune response.  相似文献   

19.
目的:研究Toll样受体4(Toll-like receptor 4,TLR-4)在结肠炎症中的作用,探讨LPS在炎症性肠病中的治疗作用。方法:取正常肠上皮细胞进行体外脂多糖(lipopolysaccharide,LPS)干预培养。采用慢病毒转染技术,构建TLR4低表达、正常表达及高表达的肠上皮细胞亚组。正常表达组(normal组)及高表达组(high组)培养基中加入LPS诱导细胞炎症,刺激时间分别为0、2、4 h。Western blot法检测TLR4的表达;收集细胞上清液,ELISA检测各亚组细胞炎症因子TNF-α、IL-6和IL-8的水平。收集细胞,qPCR检测细胞因子TNF-α、IL-6、IL-8、IL-10和IL-1βmRNA的表达水平。划痕试验观察对比2组细胞的迁移能力。结果:LPS干预培养细胞后,TLR4的表达量显著增加(P0.05)。ELISA和qPCR检测高表达组与正常表达组组间细胞因子TNF-α、IL-6、IL-8、IL-10和IL-1β的蛋白和mRNA水平的差异均有统计学意义(P0.05)。划痕试验提示TLR4高表达组的细胞迁移能力明显高于正常对照组。结论:LPS影响TLR4炎症通路的活化,促进前炎症因子及辅助刺激分子的释放,起到调节炎症反应的作用。  相似文献   

20.
Histamine is a major inflammatory molecule released from the mast cell, and is known to activate endothelial cells. However, its ability to modulate endothelial responses to bacterial products has not been evaluated. In this study we determined the ability of histamine to modulate inflammatory responses of endothelial cells to Gram-negative and Gram-positive bacterial cell wall components and assessed the role of Toll-like receptors (TLR) 2 and 4 in the co-operation between histamine and bacterial pathogens. Human umbilical vein endothelial cells (HUVEC) were incubated with lipopolysaccharide (LPS), lipoteichoic acid (LTA), or peptidoglycan (PGN) in the presence or absence of histamine, and the expression and release of interleukin-6 (IL-6), and NF-kappaB translocation were determined. The effect of histamine on the expression of mRNA and proteins for TLR2 and TLR4 was also evaluated. Incubation of HUVEC with LPS, LTA and PGN resulted in marked enhancement of IL-6 mRNA expression and IL-6 secretion. Histamine alone markedly enhanced IL-6 mRNA expression in HUVEC, but it did not stimulate proportional IL-6 release. When HUVEC were incubated with LPS, LTA, or PGN in the presence of histamine marked amplification of both IL-6 production and mRNA expression was noted. HUVEC constitutively expressed TLR2 and TLR4 mRNA and proteins, and these were further enhanced by histamine. The expression of mRNAs encoding MD-2 and MyD88, the accessory molecules associated with TLR signalling, were unchanged by histamine treatment. These results demonstrate that histamine up-regulates the expression of TLR2 and TLR4 and amplifies endothelial cell inflammatory responses to Gram-negative and Gram-positive bacterial components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号