首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SAP, the gene that is altered or absent in the X-linked lymphoproliferative syndrome (XLP), encodes a small protein that comprises a single SH2 domain and binds to the cell-surface protein SLAM which is present on activated or memory T and B cells. Because defective NK cell activity also has been reported in XLP patients, we studied the SAP gene in NK cells. SAP was induced upon viral infection of SCID mice and shown to be expressed in NK cells by in vitro culturing in the presence of IL-2. Moreover, SAP was expressed in the NK cell lines YT and RNK 16. Because SLAM, the cell-surface protein with which SAP interacts, and 2B4, a membrane protein having sequence homologies with SLAM, also were found to be expressed on the surfaces of activated NK and T cell populations, they may access SAP functions in these populations. Whereas we found that 2B4 also binds SAP, 2B4-SAP interactions occurred only upon tyrosine phosphorylation of 2B4. By contrast, SLAM-SAP interactions were independent of phosphorylation of Y281 and Y327 on SLAM. As CD48, the ligand for 2B4, is expressed on the surface of Epstein-Barr virus (EBV)-infected B cells, it is likely that SAP regulates signal transduction through this pair of cell-surface molecules. These data support the hypothesis that XLP is a result of both defective NK and T lymphocyte responses to EBV. The altered responses may be due to aberrant control of the signaling cascades which are initiated by the SLAM-SLAM and 2B4-CD48 interactions.  相似文献   

2.
X-linked lymphoproliferative disease (XLP) is an inherited immunodeficiency characterized by extreme vulnerability to Epstein-Barr virus (EBV) infection, resulting in fatal infectious mononucleosis, dysgammaglobulinemia and malignant lymphoma. Recently, mutations in the SH2D1A gene, which encodes SLAM-associated protein (SAP), have been found to cause XLP. Although the molecular events behind XLP are largely unknown, there is evidence that affected males exhibited some immunohematological abnormalities, such as hypogammaglobulinemia or lymphoma, even prior to EBV infection. Because of the poor prognosis in XLP, an early diagnosis to patients and families is clinically of great importance. A glutathione-S-transferase-SAP fusion protein was used to immunize rats and generate mAb against human SAP to investigate its pathogenic role in XLP and develop a flow cytometric assay for detection of XLP. By flow cytometric and Western immunoblot analyses using an established anti-SAP mAb, termed KST-3, we determined that SAP was expressed intensely in thymocytes, but at lower levels in peripheral T cells and NK cells. In contrast, expression of SAP was negligible in B cells, monocytes or granulocytes. We found that SAP expression in T cells increased upon in vivo as well as in vitro activation. In two XLP survivors with SH2D1A mutations, a flow cytometric evaluation of activated T cells using KST-3 could demonstrate SAP deficiency as a diagnostic indicator of XLP. Through this approach, we identified three novel XLP families with SH2D1A mutations in Japan. A flow cytometric assessment of SAP expressed in activated T cells would lead to easy detection of XLP patients.  相似文献   

3.
2B4 is a cell surface glycoprotein of the Ig-superfamily structurally related to CD2-like molecules such as CD2, CD48, CD58, CD84, Ly-9, and SLAM. Engagement of 2B4 on NK cells with specific antibodies or with its ligand CD48 enhances NK cell-mediated cytotoxicity. 2B4 is also expressed on both CD8+ T cells and myeloid cells, but its function in these cells remains unknown. Signal transduction through 2B4 involves recruitment of the SH2-containing adapter molecule SAP to cytoplasmic tyrosines. SAP is deficient in patients affected by X-linked lymphoproliferative disorder (XLP), which is triggered following EBV infection. Thus, an interruption of signaling through 2B4 and related molecules may impair NK cell recognition of virally infected cells and contribute to XLP.  相似文献   

4.
X-linked lymphoproliferative disease (XLP) is a rare primary immunodeficiency affecting approximately 1–2 per 1 million males. A key feature of XLP is the exquisite sensitivity of affected individuals to disease induced following EBV infection. However, patients can also develop hypogammaglobulinemia and B-cell lymphoma independently of exposure to EBV. XLP is caused by loss-of function mutations in SH2D1A, which encodes the intracellular adaptor molecule SAP. SAP is predominantly expressed in T cells and NK cells, and functions to regulate signal transduction pathways downstream of the SLAM family of surface receptors to control CD4+ T cell (and by extension B cells), CD8+ T cell and NK cell function, as well as the development of NKT cells. The study of XLP had shed substantial light on the requirements for lymphocyte differentiation and immune regulation, which in turn have the potential to be translated into novel treatments for not only XLP patients but individuals affected by EBV-induced disease, impaired humoral immunity and malignancy.  相似文献   

5.
Primary immunodeficiencies comprise a broad group of disorders due to germline mutations in genes regulating lymphocyte development and function. One of these genes, DSHP (also known as SH2D1A, SAP), is mutated in X-linked lymphoproliferative syndrome (XLP), an inherited immunodeficiency characterized by increased susceptibility to primary Epstein-Barr virus (EBV) infection, hypogammaglobulinenia, and lymphoma. Expressed primarily in T and NK cells, DSHP consists of a single SH2 domain and short carboxyl-terminal tail. The presence of a single SH2 domain, without other functional motifs, suggests that DSHP may be a physiologic competitor of other SH2 domain-containing proteins whose binding to phosphotyrosine controls lymphocyte activation and/or function. DSHP binds to the cytoplasmic domains of CDw150 (Signaling Lymphocyte Activation Molecule, SLAM) and 2B4, and may regulate signals transmitted by these receptors in T and NK cells, respectively. Unlike other SH2 domain-containing proteins, DSHP associates with both phosphorylated and non-phosphorylated tyrosine residues, and crystallography studies have revealed novel properties of the DSHP SH2 domain. Future studies exploring the function of DSHP during lymphocyte proliferation and activation should improve our ability to diagnose and treat XLP and possibly other human diseases associated with EBV.  相似文献   

6.
We infected umbilical cord blood lymphocytes (CBL) with EBV in vitro. Analysis of the cell population in 3- and 6-day-old cultures showed a relative increase of B cells and outgrowth of B cells after prolonged culture period. The immunomodulator PSK was added to parallel cultures. In these cultures, B cell growth was inhibited and the activation of T and NK cells was potentiated. This was detected by assessment of SH2D1A (also named SAP or DSHP) expression (a molecule which participates in signal transduction and is mutated in X-linked lymphoproliferative disease, XLP). Upon further cultivation, irradiated autologous EBV infected B cells and IL-2 were added to the cultures. After 17 days, the B lymphocytes were removed from the PSK containing cultures. The remaining populations, containing mainly T and NK cells, exerted cytotoxic function which could act on EBV infected autologous B cells, allogeneic LCL and on K562. Since cellular immunity to EBV is not transmitted to the newborn, EBV specific memory is not involved in the activation of effector cells. Our finding of an in vitro response of T and NK cells to EBV infected B lymphocytes in the absence of EBV specific immunological memory is of particular interest, because it may also operate in vivo and participate in the scenario of primary infection. Its potentiation by immunomodulators may have practical significance.  相似文献   

7.
X‐linked lymphoproliferative disease 1 (XLP1) is an inherited immunodeficiency, caused by mutations in SH2D1A encoding Signaling Lymphocyte Activation Molecule (SLAM)‐associated protein (SAP). In XLP1, 2B4, upon engagement with CD48, has inhibitory instead of activating function. This causes a selective inability of cytotoxic effectors to kill EBV‐infected cells, with dramatic clinical sequelae. Here, we investigated the NK cell education in XLP1, upon characterization of killer Ig‐like receptor (KIR)/KIR‐L genotype and phenotypic repertoire of self‐HLA class I specific inhibitory NK receptors (self‐iNKRs). We also analyzed NK‐cell cytotoxicity against CD48+ or CD48? KIR‐ligand matched or autologous hematopoietic cells in XLP1 patients and healthy controls. XLP1 NK cells may show a defective phenotypic repertoire with substantial proportion of cells lacking self‐iNKR. These NK cells are cytotoxic and the inhibitory 2B4/CD48 pathway plays a major role to prevent killing of CD48+ EBV‐transformed B cells and M1 macrophages. Importantly, self‐iNKR defective NK cells kill CD48? targets, such as mature DCs. Self‐iNKR? NK cells in XLP1 patients are functional even in resting conditions, suggesting a role of the inhibitory 2B4/CD48 pathway in the education process during NK‐cell maturation. Killing of autologous mature DC by self‐iNKR defective XLP1 NK cells may impair adaptive responses, further exacerbating the patients’ immune defect.  相似文献   

8.
X‐linked lymphoproliferative disease 1 (XLP1) is a rare congenital immunodeficiency caused by SH2D1A (Xq25) mutations resulting in lack or dysfunction of SLAM‐associated protein adaptor molecule. In XLP1 patients, upon ligand (CD48) engagement, 2B4 delivers inhibitory signals that impair the cytolytic activity of NK (and T) cells. This causes the selective inability to control EBV infections and the occurrence of B‐cell lymphomas. Here, we show that in the absence of SLAM‐associated protein, co‐engagement of 2B4 with different activating receptors, either by antibodies or specific ligands on target cells, inhibits different ITAM‐dependent signaling pathways including activating killer Ig‐like receptors. In XLP1 NK cells, 2B4 affected both the cytolytic and IFN‐γ production capabilities, functions that were restored upon disruption of the 2B4/CD48 interactions. Notably, we provide evidence that 2B4 dysfunction does not affect the activity of DNAM‐1 and NKG2D triggering receptors. Thus, while CD48+ B‐EBV and lymphoma B cells devoid of NKG2D and DNAM‐1 ligands were resistant to lysis, the preferential usage of these receptors allowed XLP1 NK cells to kill lymphomas that expressed sufficient amounts of the specific ligands. The study sheds new light on the XLP1 immunological defect and on the cross‐talk of inhibitory 2B4 with triggering NK (and T) receptors.  相似文献   

9.
Molecular and cellular pathogenesis of X-linked lymphoproliferative disease   总被引:12,自引:0,他引:12  
Summary: X‐linked lymphoproliferative disease (XLP) is an inherited immune defect caused by mutations in the Src homology 2 domain‐containing gene 1A, which encodes the adapter protein, signaling lymphocytic activation molecule (SLAM)‐associated protein (SAP). SAP is expressed in T cells, natural killer (NK) cells, and NKT cells, where it binds to the cytoplasmic domain of the surface receptor SLAM (CD150) and the related receptors, 2B4 (CD244), CD84, Ly9 (CD229), NK‐T‐B‐antigen, and CD2‐like receptor‐activating cytotoxic T cells. SAP also binds to the Src family tyrosine kinase Fyn and recruits it to SLAM, which leads to the generation of downstream phosphotyrosine signals. While the roles of the SLAM family receptors are only beginning to be understood, experiments suggest that these molecules regulate important aspects of lymphocyte function, such as proliferation, cytokine secretion, cytotoxicity, and antibody production. Thus, in XLP patients who lack functional SAP, the SLAM family receptors may not signal properly. This property likely contributes to the phenotypes of XLP, including fulminant infectious mononucleosis, lymphoma, and hypogammaglobulinemia. Further studies of SAP and the SLAM family receptors will provide insights into XLP and elucidate the signaling events regulating lymphocyte ontogeny and function.  相似文献   

10.
Two X-linked lymphoproliferative syndrome (XLP) patients with the hypogammaglobulinemia phenotype were investigated at a time remote from their primary infection with the Epstein-Barr virus (EBV). The lymphoblastoid cell lines derived from these patients expressed the phenotypic markers characteristic of normal mature B lymphocytes and produced normal levels of immunoglobulins (Ig). These observations imply that at least some of their B cells are phenotypically normal. The natural killer (NK) activity of the two patients was low. In one patient, activated lymphocyte killer (ALK) activity was inefficient. These two XLP patients expressed a normal EBV-specific, HLA-restricted cytotoxic activity. It thus appears, from the present findings and those in cases published previously (6/11 patients expressing normal EBV-specific cytotoxic activity), that the notion of poor specific T cell memory for EBV may not be as pivotal ass suggested or, alternatively, that this defect may not be common in hypogammaglobulinemic survivors.  相似文献   

11.
X-linked lymphoproliferative disease (XLP) is an immunodeficiency resulting from mutations in SH2D1A, which encodes signalling lymphocytic activation molecule (SLAM)-associated protein (SAP). In addition to SLAM, SAP associates with several other cell-surface receptors including 2B4 (CD244), Ly9 (CD229), CD84 and NTB-A. SAP contains a single src-homology-2 domain and acts as an intracellular adaptor protein by recruiting the protein tyrosine kinase FynT to the cytoplasmic domains of some of these receptors, which results in the initiation of specific downstream signal transduction pathways. XLP is likely to result from perturbed signalling through one or more of these SAP-associating receptors. In this study, we identified missense (Y54C, I84T and F87S) and insertion (fs82 --> X103) mutations in four different kindreds affected by XLP. Each mutation dramatically reduced the half-life of SAP, thus diminishing its expression in primary lymphocytes as well as in transfected cell lines. Interestingly, although the Y54C and F87S mutations compromised the ability of SAP to associate with different receptors, the I84T mutation had no effect on the ability of SAP to bind SLAM, CD84 or 2B4. However, signalling downstream of SLAM was reduced in the presence of SAP bearing the I84T mutation. These findings indicate that, irrespective of the type of mutation, signalling through SAP-associating receptors in XLP can be impaired by reducing the expression of SAP, the ability of SAP to bind surface receptors and/or its ability to activate signal transduction downstream of the SLAM-SAP complex.  相似文献   

12.
Patients with X-linked lymphoproliferative syndrome (XLP) experience excessive T cell proliferation after primary Epstein-Barr virus (EBV) infection, due to mutations in the signalling lymphocyte activation molecule (SLAM) associated protein (SAP) molecule. We examined the impact of dysfunctional proliferative control on the extent of CD8+ T cell differentiation in XLP patients who recovered from primary EBV infection. Although these young patients have normal numbers of lytic and latent EBV-epitope-specific CD8+ T cells, they were extremely differentiated as defined by loss of CCR7 and CD27, low telomerase activity and very short telomeres. This was not a direct effect arising from the loss of SAP, but was due to excessive T cell stimulation due to this defect. Thus, transduction of XLP CD8+ T cells with the catalytic component of telomerase (hTERT), but not SAP, prevented telomere loss and considerably extended proliferative lifespan in vitro. These results indicate that excessive proliferation in CD8+ T cells in XLP patients may lead to end-stage differentiation and loss of functional EBV-specific CD8+ T cells through replicative senescence. This may contribute to the defective immunity found in XLP patients who survive acute EBV infection who develop EBV-related B cell lymphomas before the fourth decade of life.  相似文献   

13.
SH2D1A, which encodes signaling lymphocyte activation molecule (SLAM)-associated protein (SAP), is altered in patients with X-linked lymphoproliferative disease (XLP), a primary immunodeficiency. SAP-deficient mice infected with lymphocytic choriomeningitis virus had greatly increased numbers of CD8+ and CD4+ interferon-gamma-producing spleen and liver cells compared to wild-type mice. The immune responses of SAP-deficient mice to infection with Leishmania major together with in vitro studies showed that activated SAP-deficient T cells had an impaired ability to differentiate into T helper 2 cells. The aberrant immune responses in SAP-deficient mice show that SAP controls several distinct key T cell signal transduction pathways, which explains in part the complexity of the XLP phenotypes.  相似文献   

14.
2B4 is a member of the CD2 subset of the immunoglobulin superfamily of cell surface receptors. Other members of this family include CD2, CD48, CD58, CD84, signaling lymphocytic activation molecule and Ly-9. Some of these molecules are activating structures expressed by natural killer cells and T cells. We have recently cloned and characterised the human homologue of 2B4 and found that the cytoplasmic domain of 2B4 can interact with SAP, a signaling adaptor protein that is mutated in the immunodeficiency X-linked lymphoproliferative disease (XLP). Additionally, the natural ligand of 2B4 has been identified as CD48. These findings have facilitated the investigation of the functional role of this receptor-ligand pair, and associated signal transduction pathways, on immune cells. In this study, it was found that the interaction between 2B4 on effector cells and CD48 on target cells induced NK-cell activation, as evidenced by increased cytotoxicity and secretion of IFN-gamma. The responses induced by ligation of 2B4 could be reduced by the co-ligation of inhibitory receptors expressed by NK cells, demonstrating that activation signals delivered via 2B4 can be regulated by the action of certain inhibitory receptors. Because the signalling pathway of 2B4 involves SAP, it is possible that 2B4-mediated NK-cell activation may be compromised in patients with XLP due to mutations in SAP. This may contribute to the phenotype and progression of this disease.  相似文献   

15.
Primary immunodeficiencies (PIDs) provide researchers with unique models to understand in vivo immune responses in general and immunity to infections in particular. In humans, impaired immune control of Epstein‐Barr virus (EBV) infection is associated with the occurrence of several different immunopathologic conditions; these include non‐malignant and malignant B‐cell lymphoproliferative disorders, hemophagocytic lymphohistiocytosis (HLH), a severe inflammatory condition, and a chronic acute EBV infection of T cells. Studies of PIDs associated with a predisposition to develop severe, chronic EBV infections have led to the identification of key components of immunity to EBV – notably the central role of T‐cell expansion and its regulation in the pathophysiology of EBV‐associated diseases. On one hand, the defective expansion of EBV‐specific CD8 T cells results from mutations in genes involved in T‐cell activation (such as RASGRP1, MAGT1, and ITK), DNA metabolism (CTPS1) or co‐stimulatory pathways (CD70, CD27, and TNFSFR9 (also known as CD137/4‐1BB)) leads to impaired elimination of proliferating EBV‐infected B cells and the occurrence of lymphoma. On the other hand, protracted T‐cell expansion and activation after the defective killing of EBV‐infected B cells is caused by genetic defects in the components of the lytic granule exocytosis pathway or in the small adapter protein SH2D1A (also known as SAP), a key activator of T‐ and NK cell‐cytotoxicity. In this setting, the persistence of EBV‐infected cells results in HLH, a condition characterized by unleashed T‐cell and macrophage activation. Moreover, genetic defects causing selective vulnerability to EBV infection have highlighted the role of co‐receptor molecules (CD27, CD137, and SLAM‐R) selectively involved in immune responses against infected B cells via specific T‐B cell interactions.  相似文献   

16.
2B4 (CD244), a member of the SLAM‐related receptor family, has important immuno‐regulatory functions including coactivating the cytotoxicity and cytokine secretion of NK cells. Immune modulation by 2B4 is dependent on the small intracellular signaling molecule SAP. In patients suffering from X‐linked lymphoproliferative disease (XLP1), SAP is nonfunctional, not only abolishing the activating function of 2B4, but rendering this receptor inhibitory. In this issue of European Journal of Immunology, Meazza et al. [Eur. J. Immunol. 2014. 44: 1526–1534.] demonstrate that 2B4‐mediated inhibition in NK cells from XLP1 patients is selective. While the activation of NK cells via ITAM‐based receptors is blocked by inhibitory 2B4, DNAM‐1, and NKG2D‐dependent NK‐cell activation is not affected by SAP deficiency. These findings provide an important insight into the different defective NK‐cell functions in XLP1 patients and demonstrate the differential integration of redundant receptor signaling pathways in NK cells.  相似文献   

17.
SAP and EAT-2 define a new class of adaptor proteins composed almost exclusively of a Src homology 2 (SH2) domain. By way of their SH2 domain, SAP-like adaptors interact with tyrosine-based motifs in the cytoplasmic region of SLAM-related receptors, a family of immune cell-specific molecules involved in immunoregulation. Recent findings indicate that SAP is required for the functions of SLAM family receptors, as a consequence of its ability to promote recruitment of Src-related protein tyrosine kinase FynT and allow SLAM-related receptors to transduce tyrosine phosphorylation signals. SAP is mutated in X-linked lymphoproliferative (XLP) syndrome, a rare inherited human disease characterized by an deregulated immune response to Epstein-Barr virus infection. Several lines of evidence indicate that defects in the activities of SLAM-related receptors caused by SAP deficiency account for the immune dysfunctions associated with XLP.  相似文献   

18.
We studied the cellular function and lymphokine production of T cells from patients with X-linked lymphoproliferative disease (XLP) when activated by the challenge with Epstein-Barr virus (EBV) infection. We used an assay system in which T cells were stimulated with membrane antigens of autologous EBV-infected B lymphoblastoid cell lines (B-LCL) and we examined cellular and humoral factors derived from the stimulated T cells which control the growth of EBV-infected B-LCL. Immunoglobulin secretion from the autologous B-LCL was suppressed with radiosensitive suppressor cells in the patients with XLP. The degree of suppression was correlated with the immunoglobulin levels in the serum of the patients with acquired hypogammaglobulinaemia (P less than 0.05). In addition, T cells from the patients with XLP failed to produce interferon-gamma (IFN-gamma) (P less than 0.001). Moreover, the T cell supernatants from the patients with XLP were less potent to inhibit the B-LCL growth. This diminished inhibition of the B-LCL growth was correlated well with the decreased concentration of IFN-gamma in the T cell supernatants. These findings suggest that suppressor cells may be activated in the patients with the hypogammaglobulinaemia phenotype of XLP, but the frequent development of B cell lymphoma in hypogammaglobulinaemia indicate that immunoglobulin suppression may not exert enough pressure on the in vivo growth of EBV-infected B cells. The defective secretion of IFN-gamma may be, at least partially, responsible for the abnormal cytotoxic T cell and natural killer activities found in the patients with XLP, and may indicate the clinical evaluation about the preventive injection of IFN-gamma against the development of malignant lymphoma.  相似文献   

19.
Signaling lymphocytic activation molecule (SLAM) is a CD2-related surface receptor expressed by activated T cells and B cells. SLAM is a self ligand and enhances T cellular proliferation and IFN-gamma production. A defective SLAM associated protein (SAP) causes X-linked lymphoproliferative syndrome (XLP), a frequently lethal mononucleosis based on the inability to control EBV. We report that SLAM augments TCR-mediated cytotoxicity. In normal CD4(+) and CD8(+) T cells, SLAM enhanced TCR-mediated cytotoxicity. In CD4(+) and CD8(+) Herpesvirus saimiri (H.saimiri) infected T cells, SLAM engagement alone triggered cytotoxicity. Using H.saimiri-transformed T cells as a model system we found that SLAM-engagement promotes the release of lytic granules and a CD95-independent killing that requires extracellular Ca(2+), cytoskeletal rearrangements, and signaling mediated by mitogen-activated protein kinase kinases MEK1/2. SLAM-enhanced cytotoxicity implies an immunoregulatory function by facilitating the elimination of APC and a role in overcoming infections with pathogens requiring a cytotoxic immune response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号