首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of the removal of extracellular Ca2+ on the response of cytosolic concentrations of Ca2+ ([Ca2+]i) to ouabain, an Na+/K+ exchanger antagonist, was examined in clusters of cultured carotid body glomus cells of adult rabbits using fura-2AM and microfluorometry. Application of ouabain (10 mM) induced a sustained increase in [Ca2+]i (mean±S.E.M.; 38±5% increase, n=16) in 55% of tested cells (n=29). The ouabain-induced [Ca2+]i increase was abolished by the removal of extracellular Na+. D600 (50 μM), an L-type voltage-gated Ca2+ channel antagonist, inhibited the [Ca2+]i increase by 57±7% (n=4). Removal of extracellular Ca2+ eliminated the [Ca2+]i increase, but subsequent washing out of ouabain in Ca2+-free solution produced a rise in [Ca2+]i (62±8% increase, n=6, P<0.05), referred to as a [Ca2+]i rise after Ca2+-free/ouabain. The magnitude of the [Ca2+]i rise was larger than that of ouabain-induced [Ca2+]i increase. D600 (5 μM) inhibited the [Ca2+]i rise after Ca2+-free/ouabain by 83±10% (n=4). These results suggest that ouabain-induced [Ca2+]i increase was due to Ca2+ entry involving L-type Ca2+ channels which could be activated by cytosolic Na+ accumulation. Ca2+ removal might modify the [Ca2+]i response, resulting in the occurrence of a rise in [Ca2+]i after Ca2+-free/ouabain which mostly involved L-type Ca2+ channels.  相似文献   

2.
Lactate production (Jlac), oxygen consumption rate (QO2), plasma membrane potentials (Em) and cytosolic free calcium levels [Ca2+]i were studied on symaptosomes isolated from rat brains, incubated in presence of high doses of nicardipine (90 μM), diltiazem (0.5 mM) and verapamil (0.25 mM), and submitted to depolarizing stimulation or inhibition of mitochondrial respiration. Nicardipine was able to completely prevent the veratridine-induced stimulation ofJlac, QO2andEm depolarization, whereas diltiazem and verapamil were less effective, although the concentrations used were 5 and 3 times higher, respectively, than nicardipine. Diltiazem, verapamil and nicardipine (9 μM) also prevented the veratridine-induced increase in [Ca2+]i, this effect being much less pronounced if the drugs were added after veratridine. Monensin (20 μM) was also able to increase [Ca2+]i but this effect was not affected by verapamil. Synaptosomes were also submitted to an inhibition of respiration of intrasynaptic mitochondria by incubation with rotenone (5 μM); in this condition of mimicked hypoxiaEm was more positive of about 11 mV; none of the drugs utilized modified this situation. The rotenone-induced 3-fold increase inJlac was barely modified by diltiazem and verapamil but it was completely abolished by nicardipine. The possible mechanism of the counteracting action of the drugs towards veratridine stimulation and rotenone inhibition and the involvement of Na+/Ca2+ exchanger in affecting [Ca2+]i are discussed.  相似文献   

3.
Cytosolic calcium concentrations ([Ca2+]i) in cultured hippocampal neurons from rat embryos were measured using fura-2. Neurons with higher resting [Ca2+]i showed greater [Ca2+]i responses toN-methyl-d-aspartate (NMDA) and K+ depolarization. There was a strong relationship between resting [Ca2+]i and the maximal changes in [Ca2+]i (Δ[Ca2+]i), which fit the our proposed equation to describe this relationship.  相似文献   

4.
Astrocytes exhibit three transmembrane Ca2+ influx pathways: voltage-gated Ca2+ channels (VGCCs), the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) class of glutamate receptors, and Na+/Ca2+ exchangers. Each of these pathways is thought to be capable of mediating a significant increase in Ca2+ concentration ([Ca2+]i); however, the relative importance of each and their interdependence in the regulation astrocyte [Ca2+]i is not known. We demonstrate here that 100 μM AMPA in the presence of 100 μM cyclothiazide (CTZ) causes an increase in [Ca2+]i in cultured cerebral astrocytes that requires transmembrane Ca2+ influx. This increase of [Ca2+]i is blocked by 100 μM benzamil or 0.5 μM U-73122, which inhibit reverse-mode operation of the Na+/Ca2+ exchanger by independent mechanisms. This response does not require Ca2+ influx through VGCCs, nor does it depend upon a significant Ca2+ influx through AMPA receptors (AMPARs). Additionally, AMPA in the presence of CTZ causes a depletion of thapsigargin-sensitive intracellular Ca2+ stores, although depletion of these Ca2+ stores does not decrease the peak [Ca2+]i response to AMPA. We propose that activation of AMPARs in astrocytes can cause [Ca2+]i to increase through the reverse mode operation of the Na+/Ca2+ exchanger with an associated release of Ca2+ from intracellular stores. This proposed mechanism requires neither Ca2+-permeant AMPARs nor the activation of VGCCs to be effective.  相似文献   

5.
A preparation of acutely dissociated brain cells derived from adult (3-month-old) rat has been developed under conditions preserving the metabolic integrity of the cells and the function of N-methyl-d-aspartate (NMDA) receptors. The effects of glutamate and NMDA on [Ca2+]i measured with fluo3 and45Ca2+ uptake have been studied on preparations derived from hippocampus and cerebral cortex. Glutamate (100 μM) and N-methyl-dl-aspartate (200 μM) increased [Ca2+]i by 26-12 nM and 23-9 nM after 90 s in cerebral cortex and hippocampus, and stimulated45Ca2+ uptake about 16–10% in the same regions. The increases in [Ca2+]i and45Ca2+ uptake were inhibited by 40% in the presence of 1 mM MgCl2 and by 90–50% in the presence of MK-801. The results indicate (a) that a large fraction of the [Ca2+]i response to glutamate in freshly dissociated brain cells from the adult rat involves NMDA receptors, (b) when compared with results in newborn rats, there is a substantial blunting of the [Ca2+]i increase in adult age.  相似文献   

6.

Introduction

Downregulation of calsequestrin (CSQ), a major Ca2 + storage protein, may contribute significantly to the hyperactivity of internal Ca2 + ([Ca2 +]i) in diabetic platelets. Here, we investigated changes in CSQ-1 abundance, Ca2 + signaling and aggregation responses to stimulation with the progression of diabetes, especially the mechanism(s) underlying the exaggerated Ca2 + influx in diabetic platelets.

Materials and methods

Type 1 diabetes was induced by streptozotocin in rats. Platelet [Ca2 +]i and aggregation responses upon ADP stimulation were assessed by fluorescence spectrophotometry and aggregometry, respectively. CSQ-1 expression was evaluated using western blotting.

Results

During the 12-week course of diabetes, the abundance of CSQ-1, basal [Ca2 +]i and ADP-induced Ca2 + release were progressively altered in diabetic platelets, while the elevated Ca2 + influx and platelet aggregation were not correlated with diabetes development. 2-Aminoethoxydiphenyl borate, the store-operated Ca2 + channel blocker, almost completely abolished ADP-induced Ca2 + influx in normal and diabetic platelets, whereas nifedipine, an inhibitor of the nicotinic acid adenine dinucleotide phosphate receptor, showed no effect. Additionally, inhibition of Na+/Ca2 + exchange induced much slower Ca2 + extrusion and more Ca2 + influx in normal platelets than in diabetic platelets. Furthermore, under the condition of Ca2 +-ATPase inhibition, ionomycin caused greater Ca2 + mobilization and Ca2 + influx in diabetic platelets than in normal platelets.

Conclusions

These data demonstrate that platelet hyperactivity in diabetes is caused by several integrated factors. Besides the downregulation of CSQ-1 that mainly disrupts basal Ca2 + homeostasis, insufficient Na+/Ca2 + exchange also contributes, at least in part, to the hyperactive Ca2 + response to stimulation in diabetic platelets.  相似文献   

7.
Summary Dantrolene has been known to affect intracellular Ca2+ concentration ([Ca2+]i) by inhibiting Ca2+ release from intracellular stores in cultured neurons. We were interested in examining this property of dantrolene in influencing the [Ca2+]i affected by the NMDA receptor ligands, KCl, L-type Ca2+ channel blocker nifedipine, and two other intracellular Ca2+-mobilizing agents caffeine and bradykinin. Effect of dantrolene on the spontaneous oscillation of [Ca2+]i was also examined. Dantrolene in M concentrations dose-dependently inhibited the increase in [Ca2+]i elicited by NMDA and KCl. AP-5, MK-801 (NMDA antagonists), and nifedipine respectively reduced the NMDA and KCl-induced increase in [Ca2+]i. Dantrolene, added to the buffer solution together with the antagonists or nifedipine, caused a further reduction in [Ca2+]i to a degree similar to that seen with dantrolene alone inhibiting the increase in [Ca2+]i caused by NMDA or KCl. At 30 M, dantrolene partially inhibited caffeine-induced increase in [Ca2+]i whereas it has no effect on the bradykinin-induced change in [Ca2+]i. The spontaneous oscillation of [Ca2+]i in frontal cortical neurons was reduced both in amplitude and in base line concentration in the presence of 10 M dantrolene. Our results indicate that dantrolene's mobilizing effects on intracellular Ca2+ stores operate independently from the influxed Ca2+ and that a component of the apparent increase in [Ca2+]i elicited by NMDA or KCl represents a dantrolene-sensitive Ca2+ release from intracellular stores. Results also suggest that dantrolene does not affect the IP3-gated release of intracellular Ca2+ and that the spontaneous Ca2+ oscillation is, at least partially, under the control of Ca2+ mobilization from internal stores.Abbreviations AP-5 (±)-2-amino-5-phosphonopentanoic acid - AMPA amino-3-hydroxy-5-methyl-isoxazole-4-propionate - BSS balanced salt solution - CNS central nervous system - CICR Ca2+-induced Ca2+ release - DCKA 5,7-dichlorokynurenate - DNasel deoxyribonuclease I - DMEM Dulbecco's Modified Eagle's Medium - EGTA ethylene glycol-bis(-aminoethyl ether)N,N,N,N,-tetraacetic acid - FCS fetal calf serum - fura-2-AM 1-(2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy-2-ethane-N,N,N,N-te-traacetic acid, pentaacetoxymethyl ester - HEPES N-[2-hydroxyethyl] piperazine-N-[2-ethanesulfonic acid] - [Ca 2+] i intracellular free Ca2+ concentration - LTP long-term potantiation - MK-801 (5R, 10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,b]-cyclohepten-5,10-imine hydrogen maleate - NMDA N-methyl-D-aspartate  相似文献   

8.
In leech Retzius neurones the inhibition of the Na+–K+ pump by ouabain causes an increase in the cytosolic free calcium concentration ([Ca2+]i). To elucidate the mechanism of this increase we investigated the changes in [Ca2+]i (measured by Fura-2) and in membrane potential that were induced by inhibiting the Na+–K+ pump in bathing solutions of different ionic composition. The results show that Na+–K+ pump inhibition induced a [Ca2+]i increase only if the cells depolarized sufficiently in the presence of extracellular Ca2+. Specifically, the relationship between [Ca2+]i and the membrane potential upon Na+–K+ pump inhibition closely matched the corresponding relationship upon activation of the voltage-dependent Ca2+ channels by raising the extracellular K+ concentration. It is concluded that the [Ca2+]i increase caused by inhibiting the Na+–K+ pump in leech Retzius neurones is exclusively due to Ca2+ influx through voltage-dependent Ca2+ channels.  相似文献   

9.
Ethanol exposure affects cellular mechanisms involved in the regulation of calcium (Ca2+) homeostasis. Neurotrophins, such as nerve growth factor (NGF), stabilize intracellular Ca2+([Ca2+]i) during a variety of neurotoxic insults. In this study, changes in [Ca2+]i during treatment with ethanol and NGF were measured at the cell body of neurons using the Ca2+ indicator indo-1. Cultured postnatal day-of-birth (P0) septohippocampal (SH) neurons that were labeled with 1,1′-dioctadecyl-3,3,3′,3′-tetramethyl-indocarbocyanine perchlorate (DiI), increased [Ca2+]i in response to ethanol. This response was dose-related. P0 SH neurons treated with NGF had lower [Ca2+]i than neurons withdrawn from NGF, implying that NGF may modulate Ca2+ homeostasis in these neurons. NGF also prevented the dose-related increase in [Ca2+]i in ethanol-treated SH neurons. The SH neurons increased [Ca2+]i when they were stimulated with 30 mM potassium chloride (KCl). Ethanol inhibited the potassium-stimulated change in [Ca2+]i but the combination of ethanol and NGF caused [Ca2+]i to increase with 100 mg% and 400 mg% ethanol and to decrease to a lower level with 200 mg% ethanol. These data were compared to data from previously published similar aged medial septal (MS) neurons (B. Webb, S.S. Suarez, M.B. Heaton, D.W. Walker, Clin. Exp. Res. 20 (1996) 1385–1394) and with embryonic gestational day 21 (E21) SH neurons (B. Webb, S.S. Suarez, M.B. Heaton, D.W. Walker, Brain Res. 729 (1996) 176–189). Differences in [Ca2+]i responses were observed in ethanol and NGF-treated postnatal SH neurons compared with P0 MS neurons and E21 SH neurons. Of these differences, most occurred during the combined treatment with ethanol and NGF compared with either treatment alone.  相似文献   

10.
Secretion of pituitary gonadotropins is regulated centrally by the hypothalamic decapeptide gonadotropin releasing hormone (GnRH). Using the immortalized hypothalamic GT1-7 neuron, we characterized pharmacologically the dynamics of cytosolic Ca2+ and GnRH release in response to K+-induced depolarization of GT1-7 neurons. Our results showed that K+ concentrations from 7.5 to 60 mM increased [Ca2+]cyt in a concentration-dependent manner. Resting [Ca2+]cyt in GT1-7 cells was determined to be 69.7 ± 4.0 nM (mean ± S.E.M.; N = 69). K+-induced increases in [Ca2+]cyt ranged from 58.2 nM at 7.5 mM [K+] to 347 nM at 60 mM [K+]. K+-induced GnRH release ranged from about 10 pg/ml at 7.5 mM [K+] to about 60 pg/ml at 45 mM [K+]. K+-induced increases in [Ca2+]cyt and GnRH release were enhanced by 1 μM BayK 8644, an L-type Ca2+ channel agonist. The BayK enhancement was completely inhibited by 1 μM nimodipine, an L-type Ca2+ channel antagonist. Nimodipine (1 μM) alone partially inhibited K+-induced increases in [Ca2+]cyt and GnRH release. Conotoxin (1 μM) alone had no effect on K+-induced GnRH release or [Ca2+]cyt, but the combination of conotoxin (1 μM) and nimodipine (1 μM) inhibited K+-induced increase in [Ca2+]cyt significantly more (p < 0.02) than nimodipine alone, suggesting that N-type Ca2+ channels exist in GT1-7 neurons and may be part of the response to K+. The response of [Ca2+]cyt to K+ was linear with increasing [K+] whereas the response of GnRH release to increasing [K+] appeared to be saturable. K+-induced increase in [Ca2+]cyt and GnRH release required extracellular [Ca2+]. These experiments suggest that voltage dependent N- and L-type Ca2+ channels are present in immortalized GT1-7 neurons and that GnRH release is, at least in part, dependent on these channels for release of GnRH.  相似文献   

11.
The intracellular free calcium ion concentration ([Ca2+]i) of the neuroblastoma × glioma hybrid cell line, NG108-15, was measured using the 19F-nuclear magnetic resonance divalent cation indicator, 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N′,N′-tetra-acetic acid (5F-BAPTA). The basal [Ca2+]i was measured to be 106 ± 14 nM. Treatment with 5 μM lead (Pb) for 2 h produced a 2-fold increase in [Ca2+]i to 200 ± 24 nM and a measurable intracellular free Pb2+ concentration ([Pb2+]i) of 30 ± 10 pM. Intracellular free Zn2+ concentrations ([Zn2+]i) were also observed in the presence of Pb. This represents the first direct demonstration that Pb elevates the [Ca2+]i in neurons, thus providing evidence for a role of [Ca2+]i in mediating the neurotoxicity of Pb.  相似文献   

12.
Using optical recordings, we studied the effects of asphyxia on intracellular Cl and Ca2+ concentrations ([Cl]i; [Ca2+]i) in the superior colliculus of fetal rats, which were connected via the umbilical cord to the dam. Acute asphyxia was induced by umbilical cord occlusion. The number of fetal superior colliculus neurons showing GABA-mediated increases in [Cl]i (leading to hyperpolarization) following local synaptic electrical stimulation had decreased by 3 h post-asphyxiation, while the number showing GABA-mediated decreases in [Cl]i (leading to depolarization) increased. [Ca2+]i rise, which occurred after acute asphyxiation, was antagonized by both non-NMDA and NMDA receptor antagonists. The increase in [Ca2+]i following focal superior colliculus stimulation was markedly attenuated at 3 h post-asphyxiation.  相似文献   

13.
The intracellular free ([Ca2+]i) of the bullfrog sympathetic ganglion cell was measured with fura-2 fluorescence under various conditions, and compared with changes in membrane potential recorded with an intracellular electrode. The [Ca2+]i was 109 nM on average under the resting condition and increased by raising the extracellular K+, stimulating repetitively the pre- or post-ganglionic nerve, or by applying acetylcholine or muscarine. Since all these procedures depolarized the cell membrane, most of the rise in [Ca2+]i could be the result of opening of voltage-dependent Ca2+ channels. However, Ca2+ entries through nicotinic acetylcholine receptor channels and the channel activated by the muscarinic acetylcholine receptor were also indicated by considering the threshold for the opening of voltage-dependent Ca2+ channels (for both entries) or a limited number of the cells showing the latter response.  相似文献   

14.
Previous investigators have reported that intracellular pH responds to hypoxia with a heterogenous pattern in individual glomus cells of the carotid body. The aim of the present study was to examine whether hypoxia had similar effects on cytosolic calcium ([Ca2+]i) in glomus cells, and if so, whether a heterogenous response pattern is also seen in other cell types. Experiments were performed on glomus cells from adult rat carotid bodies, rat pheochromocytoma (PC12) and vascular smooth muscle (A7r5) cells. Changes in [Ca2+]i in individual cells were determined by fluorescence imaging using Fura-2. Glomus cells were identified by catecholamine fluorescence. [Ca2+]i in glomus cells increased in response to hypoxia (pO2 = 35 ± 8mmHg; 5 min), whereas hypoxia induced decreases in [Ca2+]i were not seen. Increases in [Ca2+]i were observed in 20% of the isolated cells and strings of cells, but clustered glomus cells never responded. The magnitude of the calcium change in responding cells was proportional to the hypoxic stimulus. Under a given hypoxic challenge, there were marked variations in the response pattern between glomus cells. The response pattern characteristic of any given cell was reproducible. At comparable levels of hypoxia, PC12 cells also responded with an increase in [Ca2+]i with a heterogenous response pattern similar to that seen in glomus cells. In contrast, increases in [Ca2+]i in A7r5 cells could be seen only with sustained hypoxia ( ∼ 20 min), and little heterogeneity in the response patterns was evident. These results demonstrate that: (a) hypoxia increases cytosolic calcium in glomus cells; (b) response patterns were heterogeneous in individual cells; and (c) the pattern of the hypoxia-induced changes in [Ca2+]i is cell specific. These results suggest that hypoxia-induced increases in [Ca2+]i are faster in secretory than in non-secretory cells.  相似文献   

15.
The mechanism of Cd2+ neurotoxicity, which is considered to be secondary to changes in blood vessels, was re-evaluated in dissociated mesencephalic trigeminal (Me5) neurons of the adult rat. Cd2+ induced morphological changes in Me5 neurons at 0.1 and 1 mM but not at 0.01 mM. The changes appeared predominantly in the cytoplasm: destruction of the cytoplasmic organelles, swelling and vacuolization of the cell body, and finally resulted in cell lysis. These observations indicate necrosis rather than apoptosis, and no sign of degraded nuclear DNA, characteristic to apoptosis, was detected by the TUNEL technique. Using a Ca2+-sensitive dye Indo-1, Cd2+ was found to elevate the intracellular Ca2+ concentration [Ca2+]i (both in the cytoplasm and the nucleus). Both the elevation in [Ca2+]i and the morphological alteration were inhibited either by removing Ca2+ from the bathing medium or by the application of BAPTA/AM (10 μM), a membrane-permeable intracellular Ca2+ chelator. Furthermore, neither morphological changes nor elevation in [Ca2+]i by Cd2+ occurred in the presence of Zn2+. It is concluded that (1) Cd2+ can directly affect nerve cells, (2) toxicity of Cd2+ on Me5 neurons is mediated by continuous elevation in [Ca2+]i, (3) Cd2+ induces necrotic cell death, and (4) Cd2+ neurotoxicity can be antagonized by Zn2+.  相似文献   

16.
According to the membrane channel hypothesis of carotid body O2 chemoreception, hypoxia suppresses K+ currents leading to cell depolarization, [Ca2+]i rise, neurosecretion, increased neural discharge from the carotid body. We show here that tetraethylammonium (TEA) plus 4-aminopyridine (4-AP) which suppressed the Ca2+ sensitive and other K+ currents in rat carotid body type I cells, with and without low [Ca2+]o plus high [Mg2+]o, did not essentially influence low

effects on [Ca2+]i and chemosensory discharge. Thus, hypoxia may suppress the K+ currents in glomus cells but K+ current suppression of itself does not lead to chemosensory excitation. Therefore, the hypothesis that K+–O2 current is linked to events in chemoreception is not substantiated. K+–O2 current is an epiphemenon which is not directly linked with O2 chemoreception.  相似文献   

17.
Hippocampal slices prepared from adult rats were loaded with fura-2 and the intracellular free Ca2+ concentration ([Ca2+]i) in the CA1 pyramidal cell layer was measured. Hypoxia (oxygen–glucose deprivation) elicited a gradual increase in [Ca2+]i in normal Krebs solution. At high extracellular sodium concentrations ([Na+]o), the hypoxia-induced response was attenuated. In contrast, hypoxia in low [Na+]o elicited a significantly enhanced response. This exaggerated response to hypoxia at a low [Na+]o was reversed by pre-incubation of the slice at a low [Na+]o prior to the hypoxic insult. The attenuation of the response to hypoxia by high [Na+]o was no longer observed in the presence of antagonist to glutamate transporter. However, antagonist to Na+–Ca2+ exchanger only slightly influenced the effects of high [Na+]o. These observations suggest that disturbance of the transmembrane gradient of Na+ concentrations is an important factor in hypoxia-induced neuronal damage and corroborates the participation of the glutamate transporter in hypoxia-induced neuronal injury. In addition, the excess release of glutamate during hypoxia is due to a reversal of Na+-dependent glutamate transporter rather than an exocytotic process.  相似文献   

18.
Present study revealed the stimulatory effects of δ opioid receptor on intracellular Ca2+ concentration ([Ca2+]i) in SH-SY5Y cells. Fura-2 based single cell fluorescence ratio (F345/F380) was used to monitor the fluctuation of [Ca2+]i. Application of the selective delta-opioid receptor agonist alone, [D-Pen2,5]-enkephalin (DPDPE), hardly had any effects on cells cultivated for 3–10 days. However, after the cells had been pre-stimulated with cholinoceptor agonist, carbachol, variable calcium elevation was found in 59% of the cultures. The response was naltridole-reversible and dose-dependent, and was abolished completely by thapsigargin (TG) treatment but not by administration of CdCl2 or 0-Ca2+ bath solutions. DPDPE-mediated [Ca2+]i elevation was abolished by pertussis toxin (PTX) pretreatment but not cholera toxin (CTX), indicating coupling via G proteins of Gi/Go subfamily. In 17.5% of the responding cells, biphase response was found which may be due to both the stimulatory and the inhibitory effects of opioid. On the other hand, in acutely dissociated cells, DPPDE alone induced [Ca2+]i increase in 50% of the cultures. The probability and the amplitude of the elevation were decreased considerably by application of nifedipine or 0-Ca2+ bath solution and was little affected by application of TG. DPDPE activated [Ca2+]i increase via a PTX-insensitive and CTX-sensitive pathway suggesting coupling through Gs subunit. All these indicated the opioid modulated the intracellular Ca2+ regulation system through different pathways. SH-SY5Y cell line might be a suitable model for the investigation of the complex mechanism which underlies opioid function.  相似文献   

19.
20.
Evoked field potentials and changes in [Ca2+]o were measured in the ‘in vitro’ hippocampal slice of the rat. When [Ca] in the perfusion medium was lowered to 0.2 mM synaptic transmission from Schaffer collateral/comissural fibers was blocked. Nevertheless, repetitive stimulation of afferent fibers still resulted in detectable decreases of [Ca2+]o. In contrast to findings in normal medium these decreases in [Ca2+]o could be larger in stratum radiatum than in stratum pyramidale, so mimicking the spatial distribution of activated afferent fibers. These findings suggest, that the loss of extracellular Ca2+ in low Ca2+ media is predominantly due to entry into presynaptic terminals. This permits to study effects of drugs on presynaptic endings. We found that iontophoretic application of GABA is capable to block this presumed presynaptic Ca2+ entry without affecting the electrical activity of the afferent fibers. This suggests, that presynaptic GABA receptors occur also in the Schaffer collateral/commissural fiber system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号