首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Acute canine polyradiculoneuritis (ACP) is considered to be the canine equivalent of the human peripheral nerve disorder Guillain‐Barré syndrome (GBS); an aetiological relationship, however, remains to be demonstrated. In GBS, anti‐glycolipid antibodies (Abs) are considered as important disease mediators. To address the possibility of common Ab biomarkers, the sera of 25 ACP dogs, 19 non‐neurological, and 15 epileptic control dogs were screened for IgG Abs to 10 glycolipids and their 1 : 1 heteromeric complexes using combinatorial glycoarrays. Anti‐GM2 ganglioside Abs were detected in 14/25 ACP dogs, and anti‐GA1 Abs in one further dog. All controls except for one were negative for anti‐glycolipid Abs. In this cohort of cases and controls, the glycoarray screen reached a diagnostic sensitivity of 60% and a specificity of 97%; a lower sensitivity (32%) was reported using a conventional glycolipid ELISA. To address the possible pathogenic role for anti‐GM2 Abs in ACP, we identified GM2 in canine sciatic nerve by both mass spectrometry and thin layer chromatography overlay. In immunohistological studies, GM2 was localized predominantly to the abaxonal Schwann cell membrane. The presence of anti‐GM2 Abs in ACP suggests that it may share a similar pathophysiology with GBS, for which it could thus be considered a naturally occurring animal model.  相似文献   

2.
Active immunization with myelin basic protein (MBP) induces experimental allergic encephalomyelitis (EAE) in a variety of animal species, including rats and mice. We have previously described the ability of the newly described mouse lambda (λ) variable (V) region, Vλx, to confer MBP reactivity to an Ab. In this report, we have evaluated the heavy (H) chain isotype distribution of Vλx-bearing Abs in normal mouse serum. We demonstrate a biased H chain isotype association with Vλx light (L) chains with a skewing towards γ2a and 2b isotypes. The IgG2a restriction in normal mouse Igs is even more evident in Vλx-containing Abs that bind MBP. This was confirmed by the ability of purified polyclonal IgG2a Abs to bind MBP and the finding that most or all of the IgG2a Abs that bind MBP seem to harbor a Vλx L chain. The specificity of naturally-occurring Vλx-bearing Abs with MBP can be localized to a particular epitope encompassing residues 25–34 of the MBP molecule. Furthermore, virtually all of the reactivity of Vλx-containing Abs with MBP peptide 25–34 is associated with the γ2a isotype. Collectively, these results suggest that the interaction of Vλx with MBP seems to be facilitated by an association with γ2a which may reflect preferred VH usage by this isotype. Such unique pairing of particular H chains with Vλx L chains in Abs that bind MBP may be indicative of a new B-cell component involved in the pathogenesis of EAE.  相似文献   

3.
Anti-GM1 antibodies have been implicated in the pathogenesis of several neurological diseases, but the role of these antibodies is still controversial. An animal model could provide insight into the mechanisms of these human disorders, but obtaining specific anti-GM1 monoclonal antibodies (mAbs) has been extremely difficult because of the weak immunogenicity of GM1 ganglioside. Four murine mAbs against GM1 were elecited by immunization of mice with lyso GM1 coupled to BSA and GM1 glycolipid. All four IgM,k mAbs bound strongly to GM1, three antibodies (125, 360 and 494) also bound very weakly to asialo GM1 (GA1) and one (156) bound weakly to GD1b. Three antibodies (125, 360 and 494) were encoded by the same VH and VK genes. The VH gene exhibited 97% homology to VHOX1, a member of the VHQ52N gene family, the D segment was probably derived from DQ52 and JH was identical to JH2. The VK gene was approximately 99% homologous to VKRF and JK was germline JK2. The VH gene of mAb 156 exhibited 98% homology to VH205.12, of the VHJ558 gene family, the D segement was derived from DFL16.1, and JH was germline JH2. The VK and JK genes of mAb 156 were identical to VK8 and JK1, respectively. The genes encoding these anti-GM1 antibodies were close to germline sequences and have been used to encode other antibodies. This suggests that the unresponsiveness of mice to immunization is probably due to inactivation of self-reactive B cells. These rare anti-GM1 mAbs will be valuable reagents for studies of the pathogenesis of autoimmune neuropathy in animals, and also for analyzing the tissue distribution and functions of GM1.  相似文献   

4.
Neurological deficit in experimental allergic encephalomyelitis (EAE) and multiple sclerosis (MS) is probably a consequence of synergy between T and B cell responses to CNS antigens. During the demyelinating phase of chronic relapsing EAE in ABH mice, anti-myelin oligodendrocyte glycoprotein (MOG) responses were increased compared to the inflammatory acute phase, but such levels did not correlate with the severity of clinical disease. The pathogenicity of antibodies (Ab) to MOG, myelin basic protein (MBP), proteolipid protein (PLP) and galactocerebroside (GalC) was investigated in vivo following injection at the onset of EAE. An IgG2a monoclonal Ab (mAb), clone Z12, directed to MOG augmented clinical disease and demyelination in ABH and C57BL/6 mice, but not MOG knock-out mice. No effect was observed with F(ab(2))' fragments of Z12 or with the anti-MOG IgG1 mAbs, clones Y10 or 8-18C5. Cobra venom factor partially reduced the augmenting effect of mAb Z12 suggesting a role for complement. The pathogenic effect of anti-myelin Abs was not restricted to MOG since an anti-GalC mAb exacerbated inflammation in the CNS while an MBP mAb (clone 22) reduced clinical disease. Taken together, these data provide further evidence that myelin-reactive Abs generated during autoimmune neurological disease may play an important role not only in the pathogenesis of disease but also the regulation of myelin-targeted autoimmune disease.  相似文献   

5.
Guillain–Barré syndrome, which is a variant of acute inflammatory neuropathy, is associated with anti-GM1 antibodies and causes ataxia. We investigated the effects of IgG anti-GM1 monoclonal antibody (IgG anti-GM1 mAb) on spontaneous muscle action potentials in a rat spinal cord–muscle co-culture system and the localization of IgG anti-GM1 mAb binding in the rat hemi-diaphragm. The frequency of spontaneous muscle action potentials in innervated muscle cells was acutely inhibited by IgG anti-GM1 mAb. When cultures were pretreated with GM2 synthase antisense oligodeoxynucleotide, IgG anti-GM1 mAb failed to inhibit spontaneous muscle action potentials, demonstrating the importance of the GM1 epitope in the action of IgG anti-GM1 mAb. Immunohistochemistry of rat hemi-diaphragm showed that IgG anti-GM1 mAb binding overlapped with neurofilament 200 (NF200) antibodies staining, but not α-bungarotoxin (α-BuTx) staining, demonstrating that IgG anti-GM1 mAb was localized at the presynaptic nerve terminal. IgG anti-GM1 mAb binding overlapped with syntaxin antibody and S-100 antibody in the nerve terminal. After collagenase treatment, IgG anti-GM1 mAb and NF200 antibodies did not show staining, but α-BuTx selectively stained the hemi-diaphragm. IgG anti-GM1 mAb binds to the presynaptic nerve terminal of neuromuscular junctions. Therefore, we suggest that the inhibitory effect of IgG anti-GM1 mAb on spontaneous muscle action potentials is related to the GM1 epitope in presynaptic motor nerve terminals at the NMJs.  相似文献   

6.
7.
This work examines whether administering the F(ab' )2 fragment of an IgG1 monoclonal antibody (mAb) targeting the N-terminal 1-13 amino acids of the beta-amyloid peptide (Abeta mAb) reduces amyloid deposition in Alzheimer's disease (AD). The F(ab')2 fragment was injected intraperitoneally or intracranially into Tg2576 mice, a murine model of human AD. Both routes of administration significantly reduced Abeta plaque formation in the brain, as determined immunohistochemically and by monitoring levels of Abeta1-40 and Abeta1-42 peptide. Use of the F(ab')2 fragment significantly reduced phagocytic infiltration in the CNS when compared to intact mAb. Since IgG1 Abs do not fix complement, these findings suggest that effective in vivo clearance of amyloid deposits can be achieved without stimulation of FcR-reactive phagocytes or activation of the complement cascade.  相似文献   

8.
目的从噬菌体随机肽库中初步筛选表达于SiSo细胞系的受体结合癌抗原(receptorbindingcancerantigenexpressedonSiSocells,RCAS1)的模拟表位。方法用抗RCAS1单克隆抗体2211对噬菌体随机肽库进行多级亲和筛选,建立与2211具有亲和力的肽库,随机挑选阳性克隆,用双抗体夹心ELISA和斑点ELISA检测其特异性。结果经过3轮免疫筛选,阳性噬菌体克隆富集了100倍,在随机挑取的10个阳性克隆斑中,有7个克隆可与2211单克隆抗体特异性结合。结论这7个阳性克隆中可能包含了肿瘤相关抗原RCAS1的模拟表位。  相似文献   

9.
Monoclonal antibodies raised against the N-terminal of Alzheimer's beta-amyloid peptide (betaAP) were found to modulate its fibrillar aggregation. While mAbs 6C6 and 10D5 inhibit the formation of beta-amyloid fibrils, trigger disaggregation and reversal to its non-toxic form, mAb 2H3 is devoid of these properties. MAb 2H3 binds the sequence DAEFRHD, corresponding to position 1-7 of the betaAP with high affinity (2 x 10(-9) M) similar to its binding with the whole betaAP. The EFRH peptide strongly inhibits binding of mAbs 6C6 and 10D5 to betaAP, whereas it inhibits weakly the interaction of 2H3 with betaAP. Low affinity binding of mAb 2H3 to EFRH might explain its failure in prevention of beta-amyloid formation.  相似文献   

10.
Astrocytes exhibit a diverse morphology and numerous functions in the central nervous system as well as in the retina. In order to obtain markers for the analysis of astrocytes, we prepared monoclonal antibodies that recognized antigens specific to astrocytes. Monoclonal antibody (mAb), designated KK1, reacted with the processes of astrocytes in the nerve fiber layer and the ganglion cell layer in the human retina as detected by indirect immunofluorescence. Normal Müller cells, whose processes are localized vertically in retina, were not labeled by KK1 mAb. In mouse brain, KK1 mAb reacted specifically with astrocytes in the white matter, but not with those in the gray matter. Studies employing a high-resolution confocal laser scanning microscope and double-labeling with KK1 mAb and commercially available anti-glial fibrillary acidic protein (GFAP) mAb (GA5) revealed that KK1 mAb visualized the processes that were not recognized by anti-GFAP rnAb (GA5) in both human retina and mouse brain. In cultured mouse astrocytes. KKI mAb reacted only with anti-GFAP mAb (GA5)-positive cells, but a small percentage of anti-GFAP mAb (GA5)-positive cells were labeled with KK1 mAb. In addition, the subcellular distribution of the KK1 antigen in cultured astrocytes apparently differed from that of GFAP labeled by anti-GFAP mAb (GA5). The antigen that was purified from the normal mouse brain by KK1 mAb-conjugated beads reacted with anti-GFAP mAb(GA5) in immunoblotting. No reactivity of KK1 mAb was observed in immunohistochemical analysis in GFAP − / − mutant mouse brain. These results demonstrate that KK1 mAb specifically recognized an epitope of GFAP that did not react with other anti-GFAP mAb (GA5). Retinal astrocytes and a subtype of astrocytes in the white matter of mouse brain shared the epitope that was recognized by KKI mAb. KKI mAb might be a powerful tool to investigate a subtype of astrocytes.  相似文献   

11.
A. Wieraszko  W. Seifert   《Brain research》1986,371(2):305-313
The hippocampal slices were incubated with compounds which hydrolyze, modify or bind with sialic acid containing molecules. The efficiency of synaptic transmission was tested in the presence of these compounds. The size of the evoked extracellularly recorded potential following Schaffer collateral stimulation was used as an indicator of synaptic transmission efficiency. Sodium periodate (10 mM) and sodium perchlorate (59.2 mM) evoked a reversible (after washout) decrease in the size of the population spike. Higher concentration of sodium periodate (60 mM) abolished the size of the population spike, which was only poorly reversible after washout. Tetanus toxin, which binds to polysialogangliosides, and neuraminidase from Vibrio cholerae (an enzyme which splits off sialic acid from polysialogangliosides, leaving GM1 intact, and splits off sialic acid from sialoglycoproteins) had no influence on the size of the population spike. Cholera toxin, which binds to GM1, slightly reduced the size of the population spike. Incubation of the slices with neuraminidase from Arthrobacter ureafaciens (an enzyme which splits off sialic acid from all gangliosides, including GM1, and from sialoglycoproteins) abolished the population spike after 5 h. GM1 antiserum abolished the potential after approximately 100 min. The conclusion is drawn that of all gangliosides only GM1 is necessary to support synaptic transmission in Schaffer collateral-pyramidal cell synapses.  相似文献   

12.
13.
A repeated selection of phages from a cyclic heptapeptide phage display library resulted in the enrichment of phages that bind to human -thrombin. One clone of the binding phages that competed with PPACK for binding to thrombin and that had the best binding characteristics was chosen. The amino acid sequence of the peptide displayed on this phage was determined and a peptide with the sequence, Cys-Asn-Arg-Pro-Phe-Ile-Pro-Thr-Cys was synthesised. This peptide, thrombin-inhibiting peptide (TIP), is a full competitive inhibitor of thrombin with an inhibition constant (Ki) of 0.4974 mM. It lengthened the thrombin time and inhibited thrombin-induced platelet activation and the platelet release reaction, both in a dose-dependent manner. It also reduced platelet adhesion onto a human microvascular endothelial matrix in the parallel plate flow chamber under both arterial and venous shear conditions. Thus, we have selected and synthesised a cyclic heptapeptide that competes with PPACK to bind to thrombin and that can be developed as a direct antithrombin.  相似文献   

14.
The single chain Fv fragment of mAb198 (scFv198) directed against the main immunogenic region (MIR) of the nicotinic acetylcholine receptor (AChR), can efficiently protect the AChR in muscle cell cultures against the destructive activity of human myasthenic autoantibodies. Humanization of the scFv198 antibody fragment should prove useful for therapeutic application by reducing its immunogenicity. Framework sequences from human immunoglobulins homologous to the rat scFv198 sequences were selected and a totally synthetic humanized scFv198 antibody fragment was constructed in vitro. Humanized VH and VL domains were synthesized using two overlapping sets of 225 bases long oligonucleotides overlap extension and polymerase chain reaction (PCR), then assembled into a full-length gene by overlap extension of single-stranded DNA (ssDNA) fragments and PCR. The initial humanized antibody fragment had a very low affinity for the AChR. Molecular modeling was then performed and four residues from the framework regions (FR) of the humanized VH domain were selected to be replaced by the corresponding amino acid from the rat sequence. Three mutants were constructed by overlap extension, using PCR. The humanized variant containing replacements at VH residues 27, 29, 30 and 71 showed very good recovery of AChR binding activity; its binding affinities for Torpedo or human AChR (K(D): 8.5 or 323 nM, respectively) being only four times lower than those of the parental scFv198 (K(D): 2 or 80 nM, respectively). This variant was able to protect the human AChR against the binding of anti-MIR mAb and anti-alpha autoantibodies from a myasthenic patient. It was also able to protect AChR against antigenic modulation induced by the anti-MIR mAb198.  相似文献   

15.
A library of phage-displayed human single-chain Fv (scFv) antibodies was selected against the human amyloid-beta peptide (Abeta42). Two new anti-Abeta42 phage-displayed scFvs antibodies were obtained, and the sequences of their V(H) and Vkappa genes were analyzed. A synthetic peptide based on the sequence of Ig heavy chain (V(H)) complementarity-determining region (HCDR3) of the clone with the highest recognition signal was generated and determined to bind to Abeta42 in ELISA. Furthermore, we showed for the first time that an HCDR3-based peptide had neuroprotective potential against Abeta42 neurotoxicity in rat cultured hippocampal neurons. Our results suggest that not only scFvs recognizing Abeta42 but also synthetic peptides based on the V(H) CDR3 sequences of these antibodies may be novel potential candidates for small molecule-based Alzheimer's disease (AD) therapy.  相似文献   

16.
The conserved residues Y239 and L240 of human VPAC1 receptor are predicted to be at the same location as the asparagine and arginine in the “DRY” motif in the Rhodopsin family of G protein-coupled receptors. By comparing vasoactive intestinal peptide (VIP) binding with or without the presence of GTP-γ-S, it was found that the ΔΔGo for the endogenous G-protein coupling was 1.5kJ/mol, 0.95kJ/mol, and 3.4kJ/mol for the Y239A, L240A, and wild-type receptor, respectively. VIP-induced cAMP production in whole cells support the results of the binding studies, as Y239A had a moderate and L240A a pronounced impaired ability to produce cAMP. The mutants had a minor influence on the intrinsic “low affinity to high affinity equilibrium,” suggesting that the dominating effect of these mutants is a perturbation of the G protein-binding site. Thus, the highly diverged chemical properties of the hydrophobic “YL” motif and charged “DR(Y)” motif could be a crucial difference between the Secretin Receptor Family and the Rhodopsin Family with respect to receptor activation and G-protein coupling.  相似文献   

17.
Tissue factor (TF) has been implicated in the pathogenesis of various thrombotic disorders. Monoclonal antibodies (mAb) that specifically target TF may have potential as antithrombotic therapy. We designed a unique TF peptide (TFP) that was specific for the binding site to factor X (FX). This peptide was used to develop TF mAb that block the coagulation cascade by interfering with the combination of FX with the TF/FVIIa complex. Chemically synthesized TFP coupled to polylysine matrix was used as multiple antigenic peptide (TF-MAP) and this was used to immunize Balb/c mice for the preparation of hybridomas. One hybridoma cell line released an antibody, named TF4A12, which had high anticoagulant potency (by dilute prothrombin time assay). Western blotting showed that TF4A12 could bind TF-MAP and the soluble TF extracellular domain (sTF(1-219)). Results of FX activation assay and amidolytic activity assay showed that the anticoagulant ability of TF4A12 is due to blocking FX, but not FVII, binding to TF. Our study identified an efficient method of developing TF mAb that could block the coagulation cascade.  相似文献   

18.
In an autopsy case of galactosialidosis, GM3, GM2, GM1, and GD1a were accumulated in sympathetic and spinal ganglia and grey matter of the spinal cord. Especially, the accumulations of GM3 and GM2 amounted to 41- and 86-fold increases in sympathetic ganglia, respectively, as compared to normal controls. In addition LacCer, GA2 and GA1 were accumulated in sympathetic and spinal ganglia. The accumulations of GM3 and GD1a are considered to be the result of defective lysosomal sialidase activity and the accumulation of GM1, LacCer and GA1 is also considered to be due to decreased beta-galactosidase activity in this disorder. To better understand the possible mechanism of GM2 accumulation, we determined the activity of GM2 synthesizing enzyme (GM3:UDP-GalNAc transferase), as well as hexosaminidase activity, in sympathetic ganglia, but they did not change. Abnormal ganglioside and neutral glycosphingolipid metabolism, as well as sialyloligosaccharide and sialylglycoprotein metabolism, may be involved in the pathogenesis of this disorder.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号