首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  1. The aim of the study was to determine whether a nerve-derived hyperpolarizing factor (NDHF) might contribute to non-adrenergic, non-cholinergic (NANC) relaxations of the mouse anococcygeus when low concentrations of contractile agent are used to raise tone and low frequencies of field stimulation applied; such a non-nitrergic NDHF has been proposed to contribute to NANC relaxations of the rat anococcygeus and guinea-pig taenia coli.
  2. Phenylephrine (0.1–100 μM) produced concentration-related contractions of the mouse isolated anococcygeus muscle; 0.2 μM phenylephrine (EC26) was used to raise tone in subsequent experiments.
  3. Field stimulation (0.5, 1.0 and 5.0 Hz) produced frequency-dependent relaxations of phenylephrine-induced tone. In the presence of the nitric oxide synthase inhibitor L-NG-nitro-arginine (L-NOARG; 100 μM), the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxodiazolo[4,3-a]quinoxalin-1-one (ODQ; 5 μM), or a combination of these two drugs, relaxations to field stimulation were abolished at all frequencies studied. Relaxations to sodium nitroprusside (0.01–5 μM) were unaffected by L-NOARG but strongly inhibited by ODQ; neither enzyme inhibitor affected relaxations to 8-Br-cyclic GMP (10 μM).
  4. Nifedipine (1 μM) reduced the contractile response to 0.2 μM phenylephrine by 38%; however, it had no effect on NANC relaxations.
  5. It is concluded that NANC relaxations of the mouse anococcygeus are purely nitrergic and that there is no significant contribution from a putative NDHF.
  相似文献   

2.
  1. The effects of the nitric oxide (NO) synthase inhibitor, NG-nitro-L-arginine (L-NOARG), the NO scavenger, oxyhaemoglobin (HbO) and high extracellular K+ upon endothelium-dependent relaxation to bradykinin were investigated in human isolated small coronary arteries.
  2. Endothelium-dependent relaxations to bradykinin were compared in vessels contracted to ∼50% of their maximum contraction to 124 mM KCl Krebs solution, regardless of treatments, with the thromboxane A2 mimetic, U46619 and acetylcholine. All relaxations were expressed as percentage reversal of the initial level of active force.
  3. L-NOARG (100 μM) caused a small but significant, 12% (P<0.01), decrease in the maximum relaxation (Rmax: 91.5±5.4%) to bradykinin but did not significantly affect the sensitivity (pEC50: 8.08±0.17). Increasing the concentration of L-NOARG to 300 μM had no further effect on the pEC50 or Rmax to bradykinin. HbO (20 μM) and a combination of HbO (20 μM) and L-NOARG (100 μM) reduced Rmax to bradykinin by 58% (P<0.05) and 54% (P<0.05), respectively. HbO (20 μM) and L-NOARG (100 μM, combined but not HbO (20 μM) alone, caused a significant 11 fold (P<0.05) decrease in sensitivitiy to bradykinin. HbO (20 μM) decreased the sensitivity to the endothelium-independent NO donor, S-nitroso-N-acetylpenicillamine (SNAP), approximately 17 fold (P<0.05).
  4. Raising the extracellular concentration of K+ isotonically to 30 mM, reduced the Rmax to bradykinin from 96.6±3.1% to 43.9±10.1% (P<0.01) with no significant change in sensitivity. A combination of HbO, L-NOARG and high K+ (30 mM) abolished the response to bradykinin. High K+ did not change either the sensitivity or maximum relaxation to SNAP.
  5. In conclusion, L-NOARG does not completely inhibit endothelial cell NO synthesis in human isolated small coronary arteries. By comparison, HbO appeared to block all the effects of NO in this tissue and revealed that most of the relaxation to bradykinin was due to NO. The non-NO -dependent relaxation to bradykinin in the human isolated small coronary arteries appeared to be mediated by a K+-sensitive vasodilator mechanism, possibly endothelium-derived hyperpolarizing factor (EDHF).
  相似文献   

3.
  1. The effect of Tityus serrulatus scorpion venom and its toxin components on the rabbit isolated corpus cavernosum was investigated by use of a bioassay cascade.
  2. Tityus serrulatus venom (3–100 μg), acetylcholine (ACh; 0.3–30 nmol) and glyceryl trinitrate (GTN; 0.5–10 nmol) dose-dependently relaxed rabbit isolated corpus cavernosum preparations precontracted with noradrenaline (3 μM). The selective soluble guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3,-alquinoxalin-1-one] (ODQ; 30 μM) increased the basal tone of the rabbit isolated corpus cavernosum and abolished the relaxations induced by the agents mentioned above. Methylene blue (30 μM) also inhibited the relaxations induced by Tityus serrulatus venom but, in contrast to ODQ, the inhibition was irreversible.
  3. The non-selective NO synthase (NOS) inhibitors NΩ-nitro-L-arginine methyl ester (L-NAME; 10 μM) and NG-iminoethyl-L-ornithine (L-NIO; 30 μM) also increased the tone of the rabbit isolated corpus cavernosum and markedly reduced both ACh- and Tityus serrulatus venom-induced relaxations without affecting those evoked by GTN. The inhibitory effect was reversed by infusion of L-arginine (300 μM), but not D-arginine (300 μM). The neuronal NOS inhibitor 1-(2-trifluoromethylphenyl) imidazole (TRIM, 100 μM) did not affect either the tone of the rabbit isolated corpus cavernosum or the relaxations induced by ACh, bradykinin (Bk), Tityus serrulatus venom and GTN. TRIM was approximately 1,000 times less potent than L-NAME in inhibiting rabbit cerebellar NOS in vitro, as measured by the conversion of [3H]-L-arginine to [3H]-L-citrulline.
  4. The protease inhibitor aprotinin (Trasylol; 10 μg ml−1) and the bradykinin B2 receptor antagonist Hoe 140 (D-Arg-[Hyp3,Thi5,D-Tic7, Oic8]-BK; 50 nM) did not affect the rabbit isolated corpus cavernosum relaxations induced by Tityus serrulatus venom. The ATP-dependent K+ channel antagonist glibenclamide (10 μM) and the Ca2+-activated K+  channel antagonists apamin (0.1 μM) and charybdotoxin (0.1 μM) also failed to affect the venom-induced relaxations. Similarly, the K+ channel blocker tetraethylammonium (TEA; 10 μM) had no effect on the venom-induced relaxations.
  5. Capsaicin (3 and 10 nmol) relaxed the rabbit isolated corpus cavernosum in a dose-dependent and non-tachyphylactic manner. Ruthenium red (30 μM), an inhibitor of capsaicin-induced responses, markedly reduced the relaxations caused by capsaicin, but failed to affect those induced by Tityus serrulatus venom. L-NAME (10 μM) had no effect on the capsaicin-induced relaxations of the rabbit isolated corpus cavernosum.
  6. The sodium channel blocker tetrodotoxin (TTX; 1 μM) abolished the relaxations of the rabbit isolated corpus cavernosum induced by Tityus serrulatus venom without affecting those evoked by capsaicin, ACh and GTN. Tetrodotoxin (1 μM) also promptly reversed the response to the venom when infused during the relaxation phase.
  7. The bioassay cascade of the toxin components purified from Tityus serrulatus venom revealed that only fractions X, XI and XII caused dose-dependent relaxations of the rabbit isolated corpus cavernosum and these were markedly reduced by either TTX (1 μM) or L-NAME (10 μM).
  8. Our results indicate that Tityus serrulatus scorpion venom (and the active fractions X, XI and XII) relaxes rabbit corpus cavernosum via the release of NO. This release is specifically triggered by the activation of capsaicin-insensitive cavernosal non-adrenergic non-cholinergic (NANC) fibres, that may possibly be nitrergic neurones. Tityus serrulatus venom may therefore provide an important tool for understanding further the mechanism of NANC nitrergic nerve activation.
  相似文献   

4.
  1. The influence of L-NG-nitro-arginine (L-NOARG, 30 μM) on contractile responses to exogenous noradrenaline was studied in the rat anococcygeus muscle.
  2. Noradrenaline (0.1–100 μM) contracted the muscle in a concentration-dependent manner. L-NOARG (30 μM) had no effect on noradrenaline responses.
  3. Phenoxybenzamine (Pbz 0.1 μM) depressed by 46% (P<0.001) the maximum response and shifted to the right (P<0.001) the E/[A] curve to noradrenaline (pEC50 control: 6.92±0.09; pEC50 Pbz: 5.30±0.10; n=20).
  4. The nested hyperbolic null method of analysing noradrenaline responses after phenoxybenzamine showed that only 0.61% of the receptors need to be occupied to elicit 50% of the maximum response, indicating a very high functional receptor reserve.
  5. Contractile responses to noradrenaline after partial α1-adrenoceptor alkylation with phenoxybenzamine (0.1 μM) were clearly enhanced by L-NOARG.
  6. The potentiating effect of L-NOARG on noradrenaline responses after phenoxybenzamine was reversed by (100 μM) L-arginine but not by (100 μM) D-arginine.
  7. These results indicate that spontaneous release of NO by nitrergic nerves can influence the α1-adrenoceptor-mediated response to exogenous noradrenaline.
  相似文献   

5.
  1. Nicotine-induced relaxation and release of vasoactive intestinal polypeptide (VIP)- and peptide histidine isoleucine (PHI)-like immunoreactivity (LI) were measured in longitudinal muscle strips from the rat gastric fundus.
  2. Under non-cholinergic conditions (0.3 μM atropine), nicotine (3–300 μM) produced concentration-dependent relaxations of the 5-hydroxytryptamine (3 μM)-precontracted strips. Under non-adrenergic non-cholinergic (NANC) conditions (0.3 μM atropine+1 μM phentolamine+1 μM nadolol), relaxations induced by sub-maximal nicotine concentrations (10 and 30 μM) were significantly smaller, while that produced by the highest concentration used (300 μM) was similar to that seen under non-cholinergic conditions.
  3. Re-exposure to the same nicotine concentration 1 h later induced smaller relaxations, indicating desensitization. The reductions seen in the second responses were proportional to the concentration used.
  4. Under non-cholinergic conditions, the relaxant response to 30 μM nicotine was abolished by hexamethonium (100 μM) and significantly reduced by tetrodotoxin (TTX, 3 μM). The TTX-resistant component was not observed under NANC conditions.
  5. NANC relaxation induced by 30 μM nicotine was significantly reduced by a specific anti-VIP serum (approximately 35% less than that seen with normal rabbit serum).
  6. Nicotine (30–300 μM) caused significant, concentration-dependent increases in the outflow of VIP- and PHI-LI from the strips; these effects were also diminished with re-exposure. The increases in both types of immunoreactivity evoked by nicotine (300 μM) were abolished by hexamethonium (300 μM), TTX (3 μM) and a calcium-free medium.
  7. These findings indicate that VIP and possibly PHI are involved in NANC relaxation of the rat gastric fundus induced by nicotine.
  相似文献   

6.
  1. In the presence of NG-nitro-L-arginine (L-NOARG, 0.3 mM) and indomethacin (10 μM), the relaxations induced by acetylcholine and the calcium (Ca) ionophore A23187 are considered to be mediated by endothelium-derived hyperpolarizing factor (EDHF) in the guinea-pig basilar artery.
  2. Inhibitors of adenosine 5′-triphosphate (ATP)-sensitive potassium (K)-channels (KATP; glibenclamide, 10 μM), voltage-sensitive K-channels (KV; dendrotoxin-I, 0.1 μM or 4-aminopyridine, 1 mM), small (SKCa; apamin, 0.1 μM) and large (BKCa; iberiotoxin, 0.1 μM) conductance Ca-sensitive K-channels did not affect the L-NOARG/indomethacin-resistant relaxation induced by acetylcholine.
  3. Synthetic charybdotoxin (0.1 μM), an inhibitor of BKCa and KV, caused a rightward shift of the concentration-response curve for acetylcholine and reduced the maximal relaxation in the presence of L-NOARG and indomethacin, whereas the relaxation induced by A23187 was not significantly inhibited.
  4. A combination of charybdotoxin (0.1 μM) and apamin (0.1 μM) abolished the L-NOARG/indomethacin-resistant relaxations induced by acetylcholine and A23187. However, the acetylcholine-induced relaxation was not affected by a combination of iberiotoxin (0.1 μM) and apamin (0.1 μM).
  5. Ciclazindol (10 μM), an inhibitor of KV in rat portal vein smooth muscle, inhibited the L-NOARG/indomethacin-resistant relaxations induced by acetylcholine and A23187, and the relaxations were abolished when ciclazindol (10 μM) was combined with apamin (0.1 μM).
  6. Human pial arteries from two out of four patients displayed an L-NOARG/indomethacin-resistant relaxation in response to substance P. This relaxation was abolished in both cases by pretreatment with the combination of charybdotoxin (0.1 μM) and apamin (0.1 μM), whereas each toxin had little effect alone.
  7. The results suggest that KV, but not KATP and BKCa, is involved in the EDHF-mediated relaxation in the guinea-pig basilar artery. The synergistic action of apamin and charybdotoxin (or ciclazindol) could indicate that both KV and SKCa are activated by EDHF. However, a single type of K-channel, which may be structurally related to KV and allosterically regulated by apamin, could also be the target for EDHF.
  相似文献   

7.
  1. Non-adrenergic non-cholinergic (NANC) vasodilator nerves regulate tone in certain vascular beds. We have investigated the mechanisms of the NANC dilator response in the isolated small mesenteric artery of the rabbit by use of the tension myograph.
  2. Small second or third order (150–300 μm in diameter) arteries of the rabbit mesenteric bed were mounted in a Mulvany tension myograph. Responses to electrical field stimulation (EFS) and exogenous vasodilators were investigated.
  3. EFS (0.5–16 Hz, 10 V, 0.3 ms for 5 s), in the presence of guanethidine (5 μM) and atropine (1 μM) produced frequency-dependent relaxation of small arteries. Pretreatment with tetrodotoxin (1 μM) abolished the relaxation and desensitization with capsaicin (10 μM) strongly inhibited the relaxation.
  4. Pretreatment with a P2Y-purinoceptor antagonist, basilen blue (3 μM) or a human calcitonin gene-related peptide (hCGRP) receptor antagonist, hCGRP8–37 (1 μM) suppressed the NANC relaxation by approximately 40–60 % in each case and combined pretreatment almost abolished the relaxation.
  5. The EFS-induced relaxation was suppressed by endothelium-removal, pretreatment with the soluble guanylyl cyclase inhibitor ODQ (1 μM) and the NO scavenger oxyhaemoglobin (OxyHb; 20 μM) but not by NO synthase inhibitors NG-nitro-L-arginine methyl ester (L-NAME; 300 μM) or NG-nitro-L-arginine (L-NOARG; 300 μM). Combined pretreatment with ODQ and CGRP8–37 almost abolished the relaxation.
  6. A P2Y-purinoceptor agonist, 2-methylthio ATP, produced endothelium-dependent relaxation which was inhibited by L-NAME and ODQ (1 μM), whilst hCGRP produced endothelium-independent and ODQ-insensitive relaxation.
  7. Ultraviolet light (320 nm, 5 shots over 20 s) produced relaxation that was blocked by both OxyHb and ODQ but not by NG-monomethyl-L-arginine (L-NMMA, 300 μM).
  8. The present study suggests that EFS-induced NANC relaxation of the mesenteric small artery of the rabbit is mediated mainly by capsaicin-sensitive sensory C-fibres and that both ATP and CGRP are involved. The action of ATP released by EFS appears to be endothelium-dependent and involve activation of soluble guanylyl cyclase, but is resistant to inhibitors of NO synthase. The response to CGRP is endothelium-independent. These results show that ATP and CGRP account fully for the NANC relaxation of this vessel type and that the endothelium is involved in NANC-induced relaxation. The endothelium-dependent part of the response is consistent with the release of NO, either from NO synthase, incompletely inhibited by the NO synthase inhibitors, or by some preformed stores.
  相似文献   

8.
  1. Electrical field stimulation (EFS) (1–10 Hz, 30 V, 2 ms) of frog oesophageal body strips resulted in frequency-dependent non-adrenergic, non-cholinergic (NANC) relaxations.
  2. Tetrodotoxin (TTX) (10−6–10−5M) had no effect on EFS evoked relaxations with a 2 ms pulse width. At a pulse width of 0.5 ms only the responses to the highest frequency (10 Hz) were significantly inhibited by TTX at 10−5M. Relaxations at the 2 ms pulse width were unaffected by ω-conotoxin (10−6M), nifedipine (10−6M) or cobalt (5×10−4M).
  3. NG-nitro-L-arginine (L-NOARG) (10−6–10−4M), a nitric oxide synthase (NOS) inhibitor, caused a concentration-dependent inhibition of the EFS-induced NANC relaxant responses. The inhibitory effect of L-NOARG was both prevented and reversed by L-arginine but not D-arginine (5×10−3M).
  4. The phosphodiesterase type V inhibitor (PDE V), SK&F 96231 (10−7–10−4M), caused a concentration-dependent potentiation of both the percentage relaxation and the duration of the relaxant responses to EFS.
  5. ODQ (10−7–10−5M), a guanylate cyclase inhibitor, produced a concentration-dependent inhibition of EFS-evoked NANC relaxations.
  6. Oxyhaemoglobin (10−6M), which binds nitric oxide (NO), inhibited NANC relaxations to EFS.
  7. The NO donor sodium nitroprusside (SNP) (10−8–10−4M) produced a concentration-dependent inhibition of evoked tone. L-NOARG (10−4M) had no effect on the SNP evoked relaxations. Preincubation with oxyhaemoglobin (10−6M) caused a reduction in the SNP (10−6–10−5M) induced relaxations.
  8. These results suggest NO is the relaxant transmitter of the frog oesophageal body and the source of NO may be non-neuronal.
  相似文献   

9.
  1. In rat isolated hepatic arteries contracted with phenylephrine, acetylcholine and the calcium ionophore A23187 each elicit endothelium-dependent relaxations, which involve both nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF). However, the contribution of prostanoids to these responses, and the potential interaction between EDHF and other endothelium-derived relaxing factors have not been examined.
  2. In the presence of the NO synthase inhibitor NG-nitro-L-arginine (L-NOARG, 0.3 mM) and a mixture of charybdotoxin (0.3 μM) and apamin (0.3 μM), inhibitors of the target potassium (K) channel(s) for EDHF, acetylcholine and A23187 each induced a concentration-dependent and almost complete relaxation, which was abolished in the additional presence of indomethacin (10 μM). Thus, in addition to EDHF and NO, a relaxing factor(s) generated by cyclo-oxygenase (COX) contributes to endothelium-dependent relaxation in the rat hepatic artery.
  3. The resting membrane potentials of endothelium-intact and endothelium-denuded vascular segments were −57 mV and −52 mV, respectively (P>0.05). In intact arteries, the resting membrane potential was not affected by L-NOARG plus indomethacin, but reduced to −47 mV in the presence of charybdotoxin plus apamin. Acetylcholine and A23187 (10 μM each) elicited a hyperpolarization of 13 mV and 15 mV, respectively. The hyperpolarization induced by these agents was not affected by L-NOARG plus indomethacin (12 mV and 14 mV, respectively), but reduced in the presence of charybdotoxin plus apamin (7 mV and 10 mV, respectively), and abolished in the combined presence of charybdotoxin, apamin and indomethacin.
  4. The NO donor 3-morpholino-sydnonimine (SIN-1) induced a concentration-dependent relaxation, which was unaffected by charybdotoxin plus apamin, but abolished by the selective soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ, 10 μM). SIN-1 (10 μM) did not alter the resting membrane potential in endothelium-denuded vascular segments.
  5. The COX-dependent relaxation induced by acetylcholine was abolished following exposure to 30 mM KCl, but unaffected by glibenclamide (10 μM). The prostacyclin analogue iloprost induced a concentration-dependent relaxation, which was also abolished in 30 mM KCl and unaffected by the combined treatment with glibenclamide, charybdotoxin and apamin. Iloprost (10 μM) induced a glibenclamide-resistant hyperpolarization (8 mV with and 9 mV without glibenclamide) in endothelium-denuded vascular segments.
  6. Exposure to SIN-1 or iloprost did not affect the EDHF-mediated relaxation induced by acetylcholine (i.e. in the presence of L-NOARG and indomethacin). Replacement of L-NOARG with the NO scavenger oxyhaemoglobin (10 μM) or the soluble guanylate cyclase inhibitor ODQ (10 μM) or methylene blue (10 μM), which all significantly inhibited responses to endothelium-derived NO, did not affect the acetylcholine-induced relaxation in the presence of indomethacin, indicating that endogenous NO also does not suppress EDHF-mediated responses.
  7. These results show that, in addition to EDHF and NO, an endothelium-derived hyperpolarizing factor(s) generated by COX contributes significantly to endothelium-dependent relaxation in the rat heptic artery. Neither this factor nor NO seems to regulate EDHF-mediated responses. Thus, EDHF does not serve simply as a `back-up'' system for NO and prostacyclin in this artery. However, whether EDHF modulates the NO and COX pathways remains to be determined.
  相似文献   

10.
  1. This study examined the effects of sodium rhein (0.03–30 μM) on the contractions of the isolated circular muscle of guinea-pig ileum induced by acetylcholine (100 nM), substance P (3 nM) and electrical stimulation (10 Hz for 0.3 s, 100 mA, 0.5 ms pulse duration). The effect of sodium rhein was also evaluated on the ascending excitatory reflex using a partitioned bath (oral and anal compartments). Ascending excitatory enteric nerve pathways were activated by electrical field stimulation (10 Hz for 2 s, 20 mA, 0.5 pulse duration) in the anal compartment and the resulting contraction of the guinea-pig intestinal circular muscle in the oral compartment was recorded.
  2. Sodium rhein (0.3, 3 and 30 μM) significantly potentiated (52±11% at 30 μM) acetylcholine-induced contractions. In the presence of tetrodotoxin (0.6 μM) or ω-conotoxin GVIA (10 nM) sodium rhein (3 and 30 μM) did not enhance, but significantly reduced (49±10% and 44±8%, respectively, at 30 μM) acetylcholine-induced contractions.
  3. Sodium rhein (0.3, 3 and 30 μM) significantly increased (65±11% at 30 μM) substance P-induced contractions. In the presence of tetrodotoxin (0.6 μM), ω-conotoxin GVIA (10 nM) or atropine (0.1 μM), sodium rhein (3 and 30 μM) significantly reduced (50±10%, 55±8% and 46±10%, respectively, at 30 μM) substance P-induced contractions.
  4. NG-nitro-L-arginine methyl ester (L-NAME, 100 μM) abolished the potentiating effect of sodium rhein on acetylcholine and substance P-induced contractions. At the highest concentration (30 μM), sodium rhein, in presence of L-NAME, reduced the acetylcholine (30±6%)- or substance P (36±6%)-induced contractions.
  5. Sodium rhein (30 μM) significantly potentiated (29±9%) the electrically-evoked contractions. L-NAME (100 μM), but not phentolamine, enhanced the effect of sodium rhein. Sodium rhein (30 μM) significantly increased (32±9%) the ascending excitatory reflex when applied in the oral, but not in the anal compartment.
  6. These results indicate that sodium rhein (i) activates excitatory cholinergic nerves on circular smooth muscle presumably through a facilitation of Ca2+ entry through the N-type Ca2+ channel, (ii) has a direct inhibitory effect on circular smooth muscle and (iii) does not affect enteric ascending neuroneural transmission. Nitric oxide could have a modulatory excitatory role on sodium rhein-induced changes of agonist-induced contractions and an inhibitory modulator role on sodium rhein-induced changes of electrically-induced contractions.
  相似文献   

11.
  1. The effects of circumferentially-applied stretch on the spontaneous contractility of a whole mount preparation of the guinea-pig upper urinary tract (UUT) (renal pelvis and ureter) were investigated by use of standard isometric tension recording techniques.
  2. Simultaneous tension recordings of the proximal and distal portions of the renal pelvis (RP) and ureter revealed that spontaneous contractions, in 79% (n=66) of preparations, originated in the proximal RP (at a frequency of 4.5 min−1) and propagated to the distal RP and ureter at a velocity of 1–3 cm s−1. Pretreatment with tetrodotoxin (TTX) (3–10 μM) or NG-nitro-L-arginine (100 μM) had little effect on the spontaneous contractility of the UUT, motility indexes (MIs) (contraction amplitude×contraction frequency) calculated after 20 min exposure were little affected by TTX or NG-nitro-L-arginine (L-NOARG). ω-Conotoxin GVIA (100 nM) significantly reduced MI values in both the proximal RP and ureter.
  3. Exposure of the spontaneously-active UUT to capsaicin (10 μM for 15 min) induced a transient increase in UUT contractility, followed by a prolonged negative inotropic effect. The MI values, calculated 60 min after the washout of capsaicin, for the proximal and distal RP and ureter were reduced to 56%, 53% (n=18) and 61% (n=16), respectively, of their control values. This capsaicin pretreatment blocked the positive inotropic effects of transmural electrical nerve stimulation on UUT contractility to reveal a small inhibitory effect which was readily blocked by tetrodotoxin (3 μM) (n=3). The excitatory and inhibitory actions of nerve stimulation were both blocked by TTX (3 μM)
  4. A second exposure to capsaicin (10 μM for 15 min), further reduced the MI values (calculated 60 min after washout) in the proximal and distal RP to 41% and 31%, respectively (n=6; P<0.05), of the initial control values.
  5. In 61% (n=99) of preparations, the application of stretch to the proximal RP (0.5 to 2 mm) evoked a decrease in the amplitude of the contractions recorded in the distal RP, but not in the ureter. Stretch applied to the distal RP or ureter had no effect on the contractions recorded in the other regions of the UUT.
  6. In 5 out of 6 preparations, a single application of capsaicin (10 μM for 15 min) had little effect on the change in contractile force of the distal RP evoked upon stretch of the proximal RP.
  7. The inhibition of the distal RP upon stretch of the proximal RP was partially reduced (P<0.05) when the UUT was pretreated with the calcitonin gene-related peptide (CGRP) receptor antagonist, hCGRP (8–37) (1 μM).
  8. The application of the CGRP receptor agonist, hCGRP (100 nM) inhibited contractility in the UUT in a region dependent manner. The MI of the proximal RP was decreased 32% after 6 min; while the MIs of the distal RP and ureter were reduced 83% and 63%, respectively, within 5 min of the application of hCGRP.
  9. Glibenclamide (1 μM) had little effect on the spontaneous contractility of the UUT, but significantly reduced the inhibition of the distal RP evoked upon stretch (0.5 to 2 mm) of the proximal RP. TTX (3–10 μM), L-NOARG (100 μM) or ω-conotoxin GVIA (100 nM) had little effect on the stretch-evoked inhibition of the distal RP.
  10. It was concluded that circumferential stretch of the proximal RP inhibits the contractility of the distal RP and that a component of this inhibition involves the activation of a glibenclamide-sensitive mechanism via the release of endogenous CGRP, possibly from the varicosities of intramural sensory nerves.
  相似文献   

12.
  1. The aim of the present study was to investigate the effects of bradykinin and [des-Arg9]-bradykinin and their relaxant mechanisms in the mouse isolated trachea.
  2. In the resting tracheal preparations with intact epithelium, bradykinin and [des-Arg9]-bradykinin (each drug, 0.01–10 μM) induced neither contraction nor relaxation. In contrast, bradykinin (0.01–10 μM) induced concentration-dependent relaxation when the tracheal preparations were precontracted with methacholine (1 μM). The relaxation induced by bradykinin was inhibited by the B2 receptor antagonist, D-Arg0-[Hyp3,Thi5,D-Tic7,Oic8]-bradykinin (Hoe 140, 0.01–1 μM) in a concentration-dependent manner whereas the B1 receptor antagonist, [des-Arg9,Leu8]-bradykinin (0.01–1 μM), had no inhibitory effect on bradykinin-induced relaxation. [des-Arg9]-bradykinin (0.01–10 μM) also caused concentration-dependent relaxation after precontraction with methacholine. The relaxation induced by [des-Arg9]-bradykinin was concentration-dependently inhibited by the B1 receptor antagonist, [des-Arg9,Leu8]-bradykinin (0.01–1 μM), whereas the B2 receptor antagonist, Hoe 140 (0.01–1 μM) was without effect.
  3. In the presence of the cyclo-oxygenase inhibitor, indomethacin (0.01–1 μM), the relaxations induced by bradykinin and [des-Arg9]-bradykinin were inhibited concentration-dependently.
  4. Two nitric oxide (NO) biosynthesis inhibitors NG-nitro-L-arginine methyl ester (L-NAME, 100 μM) and NG-nitro-L-arginine (L-NOARG, 100 μM) had no inhibitory effects on the relaxations induced by bradykinin and [des-Arg9]-bradykinin. Neither did the selective inhibitor of the soluble guanylate cyclase, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 μM) inhibit the relaxations induced by bradykinin and [des-Arg9]-bradykinin.
  5. Prostaglandin E2 (PGE2, 0.01–33 μM) caused concentration-dependent relaxation of the tracheal preparations precontracted with methacholine. Indomethacin (1 μM) and ODQ (10 μM) exerted no inhibitory effects on the relaxation induced by PGE2.
  6. The NO-donor, sodium nitroprusside (SNP; 0.01–100 μM) also caused concentration-dependent relaxation of the tracheal preparations precontracted with methacholine. ODQ (0.1–1 μM) concentration-dependently inhibited the relaxation induced by SNP.
  7. These data demonstrate that bradykinin and [des-Arg9]-bradykinin relax the mouse trachea precontracted with methacholine by the activation of bradykinin B2-receptors and B1-receptors, respectively. The stimulation of bradykinin receptors induces activation of the cyclo-oxygenase pathway, leading to the production of relaxing prostaglandins. The NO pathway is not involved in the bradykinin-induced relaxation. The relaxation caused by NO-donors in the mouse trachea is likely to be mediated via activation of soluble guanylate cyclase.
  相似文献   

13.
  1. The effects of the antioxidants ascorbic acid and α-tocopherol and of the metal chelator ethylenediaminetetraacetic acid (EDTA) were studied on relaxations in response to S-nitrosothiols, authentic nitric oxide (NO) and nitrergic non-adrenergic non-cholinergic stimulation of the rat gastric fundus.
  2. The S-nitrosothiols S-nitrosocysteine (1–100 nM), S-nitrosoglutathione (0.01–3 μM) and S-nitroso-N-acetylpenicillamine (0.01–3 μM) induced concentration-dependent relaxations of the rat gastric fundus muscle strips, which were precontracted with prostaglandin F. The relaxations to all S-nitrosothiols were concentration-dependently enhanced by the antioxidants ascorbic acid (0.1–3 μM) and α-tocopherol (3–30 μM) and inhibited by the metal chelator EDTA (26 μM).
  3. Ascorbic acid and α-tocopherol alone did not induce a relaxation of the precontracted rat gastric fundus muscle strip. However, when ascorbic acid (1 μM) or α-tocopherol (1 μM) were injected in the organ bath 1 minute after S-nitrosoglutathione (0.1 μM) or after S-nitroso-N-acetylpenicillamine (0.1 μM), they induced an immediate, sharp and transient relaxation. This relaxation was inhibited by the superoxide generator pyrogallol (2 μM). Such a relaxation to ascorbic acid or α-tocopherol was not observed in the presence of S-nitrosocysteine (10 nM).
  4. Electrical field stimulation (0.5–4 Hz) of the precontracted rat gastric fundus strips induced frequency-dependent nitrergic relaxations which were mimicked by authentic NO (3–300 nM) and by acidified sodium nitrite NaNO2 (0.3–10 μM). Ascorbic acid (0.3–3 μM), α-tocopherol (3–30 μM) or EDTA (26 μM) did not affect the relaxations to nitrergic stimulation, NO or NaNO2.
  5. In summary, relaxations to S-nitrosothiols in the rat gastric fundus are enhanced by the antioxidants ascorbic acid and α-tocopherol and inhibited by the metal chelator EDTA. However, relaxations to nitrergic stimulation of the rat gastric fundus or those to authentic NO were not affected by the antioxidants or by the metal chelator. These results indicate that antioxidants and metal chelators have a different effect on the biological activity of S-nitrosothiols and on that of the nitrergic neurotransmitter. Therefore, our results suggest that S-nitrosothiols do not act as intermediate compounds in nitrergic neurotransmission in the rat gastric fundus.
  相似文献   

14.
  1. The actions of the cannabinoid receptor antagonist, SR 141716A, were examined in rat isolated mesenteric arteries. At concentrations greater than 3 μM, it caused concentration-dependent, but endothelium-independent, relaxations of both methoxamine- and 60 mM KCl-precontracted vessels.
  2. SR 141716A (at 10 μM, but not at 1 μM) inhibited contractions to Ca2+ in methoxamine-stimulated mesenteric arteries previously depleted of intracellular Ca2+ stores. Neither concentration affected the phasic contractions induced by methoxamine in the absence of extracellular Ca2+.
  3. SR 141716A (10 μM) caused a 130 fold rightward shift in the concentration-response curve to levcromakalim, a K+ channel activator, but had no effect at 1 μM.
  4. SR 141716A (10 μM) attenuated relaxations to NS 1619 (which activates large conductance, Ca2+-activated K+ channels; BKCa). The inhibitory effect of SR 141716A on NS 1619 was not significantly different from, and was not additive with, that caused by a selective BKCa inhibitor, iberiotoxin (100 nM). SR 141716A (1 μM) did not effect NS 1619 relaxation.
  5. SR 141716A (10 μM) had no effect on relaxations to the nitric oxide donor S-nitroso-N-acetylpenicillamine, or relaxations to carbachol in the presence of 25 mM KCl.
  6. The results show that, at concentrations of 10 μM and above, SR 141716A causes endothelium-independent vasorelaxation by inhibition of Ca2+ entry. It also inhibits relaxations mediated by K+ channel activation. This suggests that such concentrations of SR 141716A are not appropriate for investigation of cannabinoid receptor-dependent processes.
  相似文献   

15.
  1. The characteristic features of the endothelium-mediated regulation of the electrical and mechanical activity of the smooth muscle cells of cerebral arteries were studied by measuring membrane potential and isometric force in endothelium-intact and -denuded strips taken from the rabbit middle cerebral artery (MCA).
  2. In endothelium-intact strips, histamine (His, 3–10 μM) and high K+ (20–80 mM) concentration-dependently produced a transient contraction followed by a sustained contraction. Noradrenaline (10 μM), 5-hydroxytryptamine (10 μM) and 9,11-epithio-11, 12-methano-thromboxane A2 (10 nM) each produced only a small contraction (less than 5% of the maximum K+-induced contraction).
  3. NG-nitro-L-arginine (L-NOARG, 100 μM), but not indomethacin (10 μM), greatly enhanced the phasic and the tonic contractions induced by His (1–10 μM) in endothelium-intact, but not in endothelium-denuded strips, suggesting that spontaneous or basal release of nitric oxide (NO) from endothelial cells potently attenuates the His-induced contractions. Acetylcholine (ACh, 0.3–3 μM) caused concentration-dependent relaxation (maximum relaxation by 89.7±7.5%, n=4, P<0.05) when applied to endothelium-intact strips precontracted with His. L-NOARG had little effect on this ACh-induced relaxation (n=4; P<0.05). Apamin (0.1 μM), but not glibenclamide (3 μM), abolished the relaxation induced by ACh (0.3–3 μM) in L-NOARG-treated strips (n=4, P<0.05).
  4. In endothelium-intact tissues, His (3 μM) depolarized the smooth muscle membrane potential (by 4.4±1.8 mV, n=12, P<0.05) whereas ACh (3 μM) caused membrane hyperpolarization (−20.9±3.0 mV, n=25, P<0.05). The ACh-induced membrane hypepolarization persisted after application of L-NOARG (−23.5±5.9 mV, n=8, P<0.05) or glibenclamide (−20.6±5.4 mV, n=5, P<0.05) but was greatly diminished by apamin (reduced to −5.8±3.2 mV, n=3, P<0.05).
  5. Sodium nitroprusside (0.1–10 μM) did not hyperpolarize the smooth muscle cell membrane potential (0.2±0.3 mV, n=4, P>0.05) but it greatly attenuated the His-induced contraction in endothelium-denuded strips (n=4, P<0.05).
  6. These results suggest that, under the present experimental conditions: (i) spontaneous or basal release of NO from endothelial cells exerts a significant negative effect on agonist-induced contractions in rabbit MCA, and (ii) ACh primarily activates the release of endothelium-derived hyperpolarizing factor (EDHF) in rabbit MCA.
  相似文献   

16.
  1. The aim of study was to characterize endothelin (ET)-induced vasodilatation in isolated extrapulmonary rat arteries (EPA) and in intrapulmonary arteries (IPA) preconstricted with 1 μM phenylephrine.
  2. The ET-3 (1 nM–100 nM)- and ET-1 (10 nM–100 nM)-induced transient vasodilatations in EPA were more potent than those in IPA. The vasodilatation induced by ET-3 (100 nM) was larger than that induced by ET-1 (100 nM).
  3. Both the ETB antagonist, BQ788 (3 μM) and or endothelium denudation, but not the ETA antagonist, BQ123 (3 μM), abolished the vasodilatation induced by ET-1 or ET-3 (100 nM each) in EPA and in IPA. The ATP-sensitive K+channel blocker, glibenclamide (20 μM) and the nitric oxide synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA, 1 mM) suppressed the ET-induced vasodilatation in EPA and in IPA.
  4. We conclude that the vasodilatation induced by endothelins is markedly reduced in rat isolated IPA, and suggest that the endothelial ETB-mediated vasodilatation varies depending on rat pulmonary arterial regions. Furthermore, ETB-mediated vasodilatation involves activation of ATP-sensitive K+ channels and of nitric oxide synthase in rat isolated EPA and IPA.
  相似文献   

17.
  1. In vitro studies were performed to examine the mechanisms underlying substance P-induced enhancement of constriction rate in guinea-pig mesenteric lymphatic vessels.
  2. Substance P caused an endothelium-dependent increase in lymphatic constriction frequency which was first significant at a concentration of 1 nM (115±3% of control, n=11) with 1 μM, the highest concentration tested, increasing the rate to 153±4% of control (n=9).
  3. Repetitive 5 min applications of substance P (1 μM) caused tachyphylaxis with tissue responsiveness tending to decrease (by an average of 23%) and significantly decreasing (by 72%) for application at intervals of 30 and 10 min, respectively.
  4. The competitive antagonist of tachykinin receptors, spantide (5 μM) and the specific NK1 receptor antagonist, WIN51708 (10 μM) both prevented the enhancement of constriction rate induced by 1 μM substance P.
  5. Endothelial cells loaded with the Ca2+ sensing fluophore, fluo 3/AM did not display a detectable change in [Ca2+]i upon application of 1 μM substance P.
  6. Inhibition of nitric oxide synthase by NG nitro-L-arginine (L-NOARG; 100 μM) had no significant effect on the response induced by 1 μM substance P.
  7. The enhancement of constriction rate induced by 1 μM substance P was prevented by the cyclo-oxygenase inhibitor, indomethacin (3 μM), the thromboxane A2 synthase inhibitor, imidazole (50 μM), and the thromboxane A2 receptor antagonist, SQ29548 (0.3 μM).
  8. The stable analogue of thromboxane A2, U46619 (0.1 μM) significantly increased the constriction rate of lymphangions with or without endothelium, an effect which was prevented by SQ29548 (0.3 μM).
  9. Treatment with pertussis toxin (PTx; 100 ng ml−1) completely abolished the response to 1 μM substance P without inhibiting either the perfusion-induced constriction or the U46619-induced enhancement of constriction rate.
  10. Application of the phospholipase A2 inhibitor, antiflammin-1 (1 nM) prevented the enhancement of lymphatic pumping induced by substance P (1 μM), without inhibiting the response to either U46619 (0.1 μM) or acetylcholine (10 μM).
  11. The data support the hypothesis that the substance P-induced increase in pumping rate is mediated via the endothelium through NK1 receptors coupled by a PTx sensitive G-protein to phospholipase A2 and resulting in generation of the arachidonic acid metabolite, thromboxane A2, this serving as the diffusible activator.
  相似文献   

18.
  1. The functional role of the nitric oxide (NO)/guanosine 3′:5′-cyclic monophosphate (cyclic GMP) pathway in experimental myocardial ischaemia and reperfusion was studied in rat isolated hearts.
  2. Rat isolated hearts were perfused at constant pressure with Krebs-Henseleit buffer for 25 min (baseline), then made ischaemic by reducing coronary flow to 0.2 ml min−1 for 25 or 40 min, and reperfused at constant pressure for 25 min. Drugs inhibiting or stimulating the NO/cyclic GMP pathway were infused during the ischaemic phase only. Ischaemic contracture, myocardial cyclic GMP and cyclic AMP levels during ischaemia, and recovery of reperfusion mechanical function were monitored.
  3. At baseline, heart rate was 287±12 beats min−1, coronary flow was 12.8±0.6 ml min−1, left ventricular developed pressure (LVDevP) was 105±4 mmHg and left ventricular end-diastolic pressure 4.6±0.2 mmHg in vehicle-treated hearts (control; n=12). Baseline values were similar in all treatment groups (P>0.05).
  4. In normoxic perfused hearts, 1 μM NG-nitro-L-arginine (L-NOARG) significantly reduced coronary flow from 13.5±0.2 to 12.1±0.1 ml min−1 (10%) and LVDevP from 97±1 to 92±1 mmHg (5%; P<0.05, n=5).
  5. Ischaemic contracture was 46±2 mmHg, i.e. 44% of LVDevP in control hearts (n=12), unaffected by low concentrations of nitroprusside (1 and 10 μM) but reduced to ∼30 mmHg (∼25%) at higher concentrations (100 or 1000 μM; P<0.05 vs control, n=6). Conversely, the NO synthase inhibitor L-NOARG reduced contracture at 1 μM to 26±3 mmHg (23%), but increased it to 63±4 mmHg (59%) at 1000 μM (n=6). Dobutamine (10 μM) exacerbated ischaemic contracture (81±3 mmHg; n=7) and the cyclic GMP analogue Sp-8-(4-p-chlorophenylthio)-3′,5′-monophosphorothioate (Sp-8-pCPT-cGMPS; 10 μM) blocked this effect (63±1 mmHg; P<0.05 vs dobutamine alone, n=5).
  6. At the end of reperfusion, LVDevP was 58±5 mmHg, i.e. 55% of pre-ischaemic value in control hearts, significantly increased to ∼80% by high concentrations of nitroprusside (100 or 1000 μM) or L-NOARG at 1 μM, while a high concentration of L-NOARG (1000 μM) reduced LVDevP to ∼35% (P<0.05 vs control; n=6).
  7. Ischaemia increased tissue cyclic GMP levels 1.8 fold in control hearts (P<0.05; n=12); nitroprusside at 1 μM had no sustained effect, but increased cyclic GMP ∼6 fold at 1000 μM; L-NOARG (1 or 1000 μM) was without effect (n=6). Nitroprusside (1 or 1000 μM) marginally increased cyclic AMP levels whereas NO synthase inhibitors had no effect (n=6).
  8. In conclusion, the cardioprotective effect of NO donors, but not of low concentrations of NO synthase inhibitors may be due to their ability to elevate cyclic GMP levels. Because myocardial cyclic GMP levels were not affected by low concentrations of NO synthase inhibitors, their beneficial effect on ischaemic and reperfusion function is probably not accompanied by reduced formation of NO and peroxynitrite in this model.
  相似文献   

19.
  1. Acetylcholine (ACh) elicits an endothelium-dependent relaxation and hyperpolarization in the absence of nitric oxide (NO) and prostaglandin synthesis in the guinea-pig coronary artery (GPCA). This response has been attributed to a factor termed endothelial-derived hyperpolarizing factor (EDHF). Recently it has been suggested that EDHF may be a cytochrome P450 product of arachidonic acid (AA) i.e., an epoxyeicosatrienoic acid (EET). The present study investigated whether this pathway could account for the response to ACh observed in the GPCA in the presence of 100 μM Nω-nitro-L-arginine and 10 μM indomethacin.
  2. ACh, AA and 11,12-EET each produced concentration-dependent relaxations in arteries contracted with the H1-receptor agonist AEP (2,2-aminoethylpyridine). The AA-induced relaxation was significantly enhanced in the presence of the cyclo-oxygenase/lipoxygenase inhibitor, eicosatetranynoic acid (30 μM).
  3. The cytochrome P450 inhibitors proadifen (10 μM) and clotrimazole (10 μM) inhibited ACh, lemakalim (LEM) and AA-induced relaxation, whereas 17-octadecynoic acid (100 μM) and 7-ethoxyresorufin (10 μM) were without effect on all three vasodilators. Proadifen and clotrimazole also inhibited ACh (1 μM) and LEM (1 μM)-induced hyperpolarization.
  4. The ability of various potassium channel blockers to inhibit relaxation responses elicited with ACh, AA and 11,12-EET was also determined. Iberiotoxin (IBTX; 100 nM) was without effect on responses to ACh but significantly reduced responses to both AA and 11,12-EET. In contrast, 4-aminopyridine (4-AP; 5 mM) significantly reduced response to ACh but not responses to AA and 11,12-EET. Combined IBTX plus (4-AP) inhibited the ACh-induced relaxation to a greater extent than 4-AP alone. Apamin (1 μM), glibenclamide (10 μM) and BaCl2 (50 μM) had no significant effect on responses to ACh, AA and 11,12-EET.
  5. IBTX (100 nM) significantly reduced both 11,12-EET (33 μM) and AA (30 μM) hyperpolarization without affecting the ACh (1 μM)-induced hyperpolarization. In contrast, 4-AP significantly reduced the ACh-induced hyperpolarization without affecting either AA or 11,12-EET-induced hyperpolarizations.
  6. In summary, our results suggest that the coronary endothelium releases a factor upon application of AA which hyperpolarizes the smooth muscle. The similarity of pharmacology between AA and 11,12-EET suggests that this factor is an EET. However, the disparity of pharmacology between responses to ACh versus responses to 11,12-EET do not support the hypothesis that EETs represent the predominant factor which ACh releases from the endothelium that leads to NO- and prostaglandin-independent hyperpolarization and relaxation in the GPCA.
  相似文献   

20.
  1. The pharmacological features of the pre- and postsynaptic metabotropic glutamate receptors (mGluRs) present in the guinea-pig olfactory cortex, were examined in brain slices in vitro by use of a conventional intracellular current clamp/voltage clamp recording technique.
  2. Bath-application of trans-aminocyclopentane-1,3-dicarboxylic acid (trans-ACPD) (50 μM) produced a sustained membrane depolarization, increase in cell excitability and induction of a post-stimulus inward (afterdepolarizing) tail current (IADP) (measured under ‘hybrid'' voltage clamp) similar to those evoked by the muscarinic receptor agonist oxotremorine-M (OXO-M, 2 μM).
  3. L-Glutamate (0.25–1 mM, in the presence of 20 μM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 100 μM DL-amino-5-phosphono valeric acid (DL-APV)) or the broad spectrum mGluR agonists 1S,3R-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD, 10 μM), 1S,3S-ACPD (50 μM), ibotenate (Ibo; 25 μM, in the presence of 100 μM DL-APV), the selective mGluR I agonists (S)-3,5-dihydroxyphenylglycine ((S)-3,5-DHPG, 10 μM), (S)-3-hydroxyphenylglycine ((S)-3HPG, 50 μM), or quisqualate (10 μM, in the presence of 20 μM CNQX), but not the mGluR II agonist 2S,1′S,2′S-2-(2′-carboxycyclopropyl)-glycine (L-CCGI, 1 μM) or mGluR III agonist L(+)-2-amino-4-phosphonobutyric acid (L-AP4, 1 mM), were all effective in producing membrane depolarization and inducing a post-stimulus IADP. Unexpectedly, the proposed mGluR II-selective agonist (2S,1′R,2′R,3′R)-2-(2′,3′-dicarboxycyclopropyl)-glycine (DCG-IV, 10 μM, in the presence of 100 μM DL-APV) was also active.
  4. The excitatory effects induced by 10 μM 1S,3R-ACPD were reversibly antagonized by the mGluR I/II antagonist (+)-α-methyl-4-carboxyphenylglycine ((+)-MCPG, 0.5–1 mM), as well as the selective mGluR I antagonists (S)-4-carboxyphenylglycine ((S)-4CPG) and (S)-4-carboxy-3-hydroxyphenyl glycine ((S)-4C3HPG) (both at 1 mM), but not the nonselective mGluR antagonist L(+)-2-amino-3-phosphonopropionic acid (L-AP3, 1 mM) or the selective mGluR III antagonist (S)-α-methyl-L-AP4 (MAP4, 1 mM).
  5. The excitatory postsynaptic potentials (e.p.s.ps), induced by single focal stimulation of cortical excitatory fibre tracts, were markedly reduced by 1S,3R-ACPD or L-AP4 (both at 10 μM), and by the selective mGluR II agonists (mGluR I antagonists) (S)-4CPG or (S)-4C3HPG (both at 1 mM) but not (S)-3,5-DHPG or (S)-3HPG (both at 100 μM).
  6. The inhibitory effects of 1S-3R-ACPD, but not L-AP4, were reversibly blocked by (+)-MCPG (1 mM), whereas those produced by L-AP4, but not 1S,3R-ACPD, were blocked by the selective mGluR III antagonist MAP4 (1 mM).
  7. It is concluded that a group I mGluR is most likely involved in mediating excitatory postsynaptic effects, whereas two distinct mGluRs (e.g. group II and III) might serve as presynaptic inhibitory autoreceptors in the guinea-pig olfactory cortex.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号