首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 400 毫秒
1.
  1. We have previously demonstrated that adenosine-5′-O-(2-thiodiphosphate) (ADPβS), a potent P2Y-purinoceptor agonist, relaxed pancreatic vasculature not only through prostacyclin (PGI2) and nitric oxide (NO) release from the endothelium but also through other mechanism(s). In this study, we investigated the effects of an inhibitor of the Na+/K+ pump, of ATP-sensitive K+ (KATP) channels and of small (SKCa) or large (BKCa) conductance Ca2+-activated K+ channels. Experiments were performed at basal tone and during the inhibition of NO synthase and cyclo-oxygenase.
  2. In control conditions, ADPβS (15 μM) induced an initial transient vasoconstriction followed by a progressive and sustained vasodilatation. In the presence of Nω-nitro-L-arginine methyl ester (L-NAME, 200 μM) the transient vasoconstriction was reversed into a one minute vasodilator effect, which was then followed by a progressive and sustained vasodilatation similar to that observed with ADPβS alone. The addition of indomethacin (10 μM) did not significantly modify the profile of ADPβS-induced vasodilatation.
  3. Ouabain (100 μM) decreased basal pancreatic flow rate and did not modify ADPβS-induced relaxation. This inhibitor of the Na+/K+ pump increased the pancreatic vasoconstriction induced by L-NAME or by the co-administration of L-NAME and indomethacin. Ouabain did not modify either the L-NAME or the L-NAME/indomethacin resistant part of the ADPβS vasodilatation.
  4. The KATP inhibitor tolbutamide (185 μM) did not significantly modify basal pancreatic flow rate and ADPβS-induced relaxation. This inhibitor which did not change L-NAME-induced vasoconstriction, significantly diminished the L-NAME resistant part of ADPβS-induced vasodilatation. Tolbutamide intensified the vasoconstriction induced by the co-administration of L-NAME and indomethacin. In contrast, the L-NAME/indomethacin resistant part of ADPβS vasodilatation was not changed by the closure of KATP.
  5. The SKCa inhibitor apamin (0.1 μM) did not significantly change pancreatic vascular resistance whatever the experimental conditions (in the absence or in presence of L-NAME or L-NAME/indomethacin). In the presence of L-NAME, the closure of SKCa channels changed the one minute vasodilator effect of ADPβS into a potent vasoconstriction and thereafter modified only the beginning of the second part of the L-NAME-resistant part of the ADPβS-induced vasodilatation. In contrast, the L-NAME/indomethacin resistant part of ADPβS-induced relaxation remained unchanged in the presence of apamin.
  6. Charybdotoxin (0.2 μM), an inhibitor of BKCa, increased pancreatic vascular resistance in the presence of L-NAME/indomethacin. In the presence of L-NAME, the closure of BKCa channels reversed the one minute vasodilator effect of ADβPS into a potent vasoconstriction and drastically diminished the sustained vasodilatation. In contrast the L-NAME/indomethacin resistant part of ADPβS-induced relaxation was not modified by the presence of charybdotoxin. Under L-NAME/indomethacin/charybdotoxin/apamin infusions, ADPβS evoked a drastic and transient vasoconstriction reaching a maximum at the second minute, which was followed by a sustained increase in the flow rate throughout the ADPβS infusion. The maximal vasodilator effect of ADPβS observed was not modified by the addition of apamin.
  7. The results suggest that the L-NAME-resistant relaxation induced by ADPβS in the pancreatic vascular bed involves activation of BKCa, KATP and to a lesser extent of SKCa channels, but the L-NAME/indomethacin resistant part of ADPβS-induced relaxation is insensitive to the closure of KATP, SKCa and BKCa channels.
  相似文献   

2.
  1. The aim of the present study was to determine the cellular mechanims and potential mediators involved in hypoxic dilatation of porcine small coronary arteries.
  2. Small coronary arteries were isolated from a branch of the left anterior descending artery of porcine hearts, cannulated with glass micropipettes and studied in a perfusion myograph system. At a transmural pressure of 40 mmHg, the arteries had an internal diameter of 167.8±6.6 μm (n=37).
  3. In arteries contracted with acetylcholine (ACh), hypoxia (0% O2, 30 min) caused dilatation (86.9±6.7% relaxation, n=6) in vessels with endothelium but constriction in endothelium-denuded vessels.
  4. Hypoxic vasodilatation occurring in arteries with endothelium was abolished by the KATP channel inhibitor, glibenclamide (0.44 μM), but was not affected by inhibition of nitric oxide synthase (L-NAME, 44 μM) or cyclo-oxygenase (indomethacin, 4.4 μM).
  5. Bradykinin evoked endothelium-dependent relaxation that was inhibited by L-NAME (44 μM) but not glibenclamide 0.44 μM). Cromakalim (0.1–0.3 μM), a KATP channel opener, caused relaxation that was inhibited by glibenclamide, but was not affected by L-NAME (44 μM) and/or indomethacin (4.4 μM).
  6. Endothelium-removal inhibited vasodilatation evoked by cromakalim, but increased vasodilator responses to the NO donor, SIN-1 (10−8 to 10−5M).
  7. These results indicate that hypoxia acted directly on vascular smooth muscle of small coronary arteries to cause contraction. However, this effect was overwhelmed by endothelium-dependent relaxation in response to hypoxia. This relaxation was most likely mediated by release of an endothelium-derived factor, distinct from nitric oxide or prostacyclin, that activated smooth muscle KATP-channels.
  相似文献   

3.
  1. Non-adrenergic non-cholinergic (NANC) vasodilator nerves regulate tone in certain vascular beds. We have investigated the mechanisms of the NANC dilator response in the isolated small mesenteric artery of the rabbit by use of the tension myograph.
  2. Small second or third order (150–300 μm in diameter) arteries of the rabbit mesenteric bed were mounted in a Mulvany tension myograph. Responses to electrical field stimulation (EFS) and exogenous vasodilators were investigated.
  3. EFS (0.5–16 Hz, 10 V, 0.3 ms for 5 s), in the presence of guanethidine (5 μM) and atropine (1 μM) produced frequency-dependent relaxation of small arteries. Pretreatment with tetrodotoxin (1 μM) abolished the relaxation and desensitization with capsaicin (10 μM) strongly inhibited the relaxation.
  4. Pretreatment with a P2Y-purinoceptor antagonist, basilen blue (3 μM) or a human calcitonin gene-related peptide (hCGRP) receptor antagonist, hCGRP8–37 (1 μM) suppressed the NANC relaxation by approximately 40–60 % in each case and combined pretreatment almost abolished the relaxation.
  5. The EFS-induced relaxation was suppressed by endothelium-removal, pretreatment with the soluble guanylyl cyclase inhibitor ODQ (1 μM) and the NO scavenger oxyhaemoglobin (OxyHb; 20 μM) but not by NO synthase inhibitors NG-nitro-L-arginine methyl ester (L-NAME; 300 μM) or NG-nitro-L-arginine (L-NOARG; 300 μM). Combined pretreatment with ODQ and CGRP8–37 almost abolished the relaxation.
  6. A P2Y-purinoceptor agonist, 2-methylthio ATP, produced endothelium-dependent relaxation which was inhibited by L-NAME and ODQ (1 μM), whilst hCGRP produced endothelium-independent and ODQ-insensitive relaxation.
  7. Ultraviolet light (320 nm, 5 shots over 20 s) produced relaxation that was blocked by both OxyHb and ODQ but not by NG-monomethyl-L-arginine (L-NMMA, 300 μM).
  8. The present study suggests that EFS-induced NANC relaxation of the mesenteric small artery of the rabbit is mediated mainly by capsaicin-sensitive sensory C-fibres and that both ATP and CGRP are involved. The action of ATP released by EFS appears to be endothelium-dependent and involve activation of soluble guanylyl cyclase, but is resistant to inhibitors of NO synthase. The response to CGRP is endothelium-independent. These results show that ATP and CGRP account fully for the NANC relaxation of this vessel type and that the endothelium is involved in NANC-induced relaxation. The endothelium-dependent part of the response is consistent with the release of NO, either from NO synthase, incompletely inhibited by the NO synthase inhibitors, or by some preformed stores.
  相似文献   

4.
  1. Using an X-ray microangiographic technique in rabbit isolated perfused ears preconstricted with 5-HT (300 nM) and histamine (300 nM), we investigated the combined actions of Nω-nitro-L-arginine methyl ester (L-NAME) and indomethacin on acetylcholine-induced depressor responses.
  2. Under control conditions, acetylcholine (10 nM–30 μM) induced a concentration-dependent reversal of the pressor response, reaching a maximum of 66.0±13.6% (n=6). In the presence of L-NAME (300 μM) and indomethacin (10 μM), this depressor action was reduced, reaching a maximum of 38.6±5.9% (n=6).
  3. The control response was associated with substantial vasodilatation in the central ear artery (G0), a smaller dilatory action on first generation branch arteries (G1) and no effect on second generation branch arteries (G2). In the presence of L-NAME and indomethacin, vasodilatation occurred in G2 with no effect in G0 or G1.
  4. Two calcium-activated K+ channels blockers, charybdotoxin (ChTX; 10 nM) and penitrem A (100 nM), further inhibited, but did not abolish, the L-NAME- and indomethacin-resistant response to acetylcholine (10 nM–300 μM). Both agents abolished the vasodilatory action of acetylcholine in G2.
  5. In conclusion, L-NAME and indomethacin induced a shift in acetylcholine-induced vasodilatation from G0 and G1 to G2. This is consistent with the suggestion that nitric oxide dominates in larger vessels whilst other mechanisms dominate in smaller vessels. The L-NAME- and indomethacin-resistant component was inhibited by ChTX and penitrem A, suggesting it is mediated, at least in part, by activation of KCa channels and could therefore involve a hyperpolarising mediator such as endothelium-derived hyperpolarising factor.
  相似文献   

5.
  1. By use of rabbit isolated perfused intact ears and isolated perfused segments of central and first generation daughter branch ear arteries, we investigated the actions of charybdotoxin (ChTX), a blocker of calcium-activated K+ channels (KCa channels), and Nω-nitro-L-arginine methyl ester (L-NAME) on pressure-flow and diameter-flow relationships.
  2. ChTX (1 nM) induced an upwards shift in the pressure-flow curve in the rabbit intact isolated ear preconstricted with 5-hydroxytryptamine (5-HT; 100 nM) with subsequent administration of L-NAME (100 μM) inducing a further upwards shift. L-NAME itself induced an upwards shift in the pressure-flow curve, but subsequent administration of ChTX was without significant effect.
  3. Microangiographic analysis revealed a tendency of ChTX (1 nM) to decrease vessel diameter in the central ear artery (G0) with little effect on the first two generations of daughter branch arteries (G1 and G2) in the intact ear. Subsequent addition of L-NAME (100 μM) did not significantly further decrease vessel diameter in G0, but did decrease vessel diameter in G1 and G2. L-NAME itself showed a tendency to decrease vessel diameter in G0, G1 and G2 vessels with subsequent addition of ChTX being without significant effect.
  4. In an isolated G0 preparation which was preconstricted with 5-HT (100 nM), ChTX (1 nM) caused an upwards shift in the pressure-flow curve which was augmented by subsequent addition of L-NAME (100 μM). L-NAME (100 μM) itself caused an upwards shift in the pressure-flow curve but subsequent addition of ChTX (1 nM) had no significant effect.
  5. In comparison, in an isolated G1 preparation which was preconstricted with 5-HT (100 nM), ChTX (1 nM) had no significant effect on the pressure-flow curve relative to control, but subsequent addition of L-NAME (100 μM) caused an upwards shift. L-NAME (100 μM) itself induced an upwards shift in the pressure-flow curve with subsequent addition of ChTX (1 nM) being without significant effect.
  6. ChTX (10 pM–10 nM) caused a concentration-dependent increase in perfusion pressure in isolated G0 and G1 preparations at fixed flow rates of 2 ml min−1 and 0.5 ml min−1, respectively. These responses were enhanced in the presence of L-NAME (100 μM) in G1 but not G0 preparations.
  7. We conclude that at 1 nM, ChTX exhibits differential actions on central and daughter branch arteries of the intact ear of the rabbit, which are also apparent in the corresponding arteries when studied in isolation. The action of 1 nM ChTX in G0 vessels may reflect inhibition of either the release or action of nitric oxide as it was blocked in the presence of L-NAME. At higher concentrations of ChTX, there would appear to be a direct constrictor effect on vascular smooth muscle which is apparent in both G0 and G1 vessels. This observed heterogeneity could reflect different distributions of KCa channels between central and daughter branch arteries at either the endothelial or smooth muscle levels, or both.
  相似文献   

6.
  1. The pulmonary vasculature is normally in a low resting state of tone. It has been hypothesized that this basal tone is actively maintained by the continuous release of a vasodilator in the resting state. However, evidence for basal release of nitric oxide (NO) is inconclusive.
  2. We studied the release of NO in arteries from the pulmonary circulation of male Wistar-Kyoto rats by examining the effects of the L-arginine analogue NG-nitro-L-arginine methyl ester (L-NAME) on resting pulmonary arteries and on vessels pre-contracted with prostaglandin F (PGF).
  3. Rats (n=21) were killed by an overdose with pentobarbitone. Pulmonary arteries were dissected (mean internal diameter 459±11 μm) and mounted in a small vessel wire myograph. Resting tensions were set to simulate transmural pressures of 17.5 mmHg.
  4. L-NAME (100 μM) was found to produce a contraction of 0.64±0.09 mN mm−1 in resting pulmonary arteries when added alone to the myograph bath. This contraction was not produced following removal of the endothelium. Vessel contraction to PGF (100 μM) was found to be significantly greater when carried out in the presence of L-NAME (100 μM)–1.37±0.15 mN mm−1 compared with 1.96±0.17 mN mm−1. Dilatation following acetylcholine (ACh) (1 μM) was abolished in the presence of L-NAME (100 μM).
  5. Rat pulmonary artery contraction in response to the addition of L-NAME and the absence of contraction upon removal of the endothelium provides supportive evidence of the active release of nitric oxide for the maintenance of resting tone.
  相似文献   

7.
  1. The nature and cellular mechanisms that are responsible for endothelium-dependent relaxations resistant to indomethacin and NG-nitro-L-arginine methyl ester (L-NAME) were investigated in phenylephrine (PE) precontracted isolated carotid arteries from the rabbit.
  2. In the presence of the cyclo-oxygenase inhibitor, indomethacin (10 μM), acetylcholine (ACh) induced a concentration- and endothelium-dependent relaxation of PE-induced tone which was more potent than the calcium ionophore A23187 with pD2 values of 7.03±0.12 (n=8) and 6.37±0.12 (n=6), respectively. The ACh-induced response was abolished by removal of the endothelium, but was not altered when indomethacin was omitted (pD2 value 7.00±0.10 and maximal relaxation 99±3%, n=6). Bradykinin and histamine (0.01–100 μM) had no effect either upon resting or PE-induced tone (n=5).
  3. In the presence of indomethacin plus the NO synthase inhibitor, L-NAME (30 μM), the response to A23187 was abolished. However, the response to ACh was not abolished, although it was significantly inhibited with the pD2 value and the maximal relaxation decreasing to 6.48±0.10 and 67±3%, respectively (for both P<0.01, n=8). The L-NAME/indomethacin insensitive vasorelaxation to ACh was completely abolished by preconstriction of the tissues with potassium chloride (40 mM, n=8).
  4. The Ca2+-activated K+ (KCa) channel blockers, tetrabutylammonium (TBA, 1 mM, n=5) and charybdotoxin (CTX, 0.1 μM, n=5), completely inhibited the nitric oxide (NO) and prostacyclin (PGI2)-independent relaxation response to ACh. However, iberiotoxin (ITX, 0.1 M, n=8) or apamin (1–3 μM, n=6) only partially inhibited the relaxation.
  5. Inhibitors of the cytochrome P450 mono-oxygenase, SKF-525A (1–10 μM, n=6), clotrimazole (1 μM, n=5) and 17-octadecynoic acid (17-ODYA, 3 μM, n=7) also reduced the NO/PGI2-independent relaxation response to ACh.
  6. In endothelium-denuded rings of rabbit carotid arteries, the relaxation response to exogenous NO was not altered by either KCa channel blockade with apamin (1 μM, n=5) or CTX (0.1 μM, n=5), or by the cytochrome P450 mono-oxygenase blockers SKF-525A (10 μM, n=4) and clotrimazole (10 μM, n=5). However, the NO-induced response was shifted to the right by LY83583 (10 μM, n=4), a guanylyl cyclase inhibitor, with the pD2 value decreasing from 6.95±0.14 to 6.04±0.09 (P<0.01).
  7. ACh (0.01–100 μM) induced a concentration-dependent relaxation of PE-induced tone in endothelium-denuded arterial segments sandwiched with endothelium-intact donor segments. This relaxation to ACh was largely unaffected by indomathacin (10 μM) plus L-NAME (30 μM), but abolished by the combination of indomethacin, L-NAME and TBA (1 mM, n=5).
  8. These data suggest that in the rabbit carotid artery: (a) ACh can induce the release of both NO and EDHF, whereas A23187 only evokes the release of NO from the endothelium, (b) the diffusible EDHF released by ACh may be a cytochrome P450-derived arachidonic acid metabolite, and (c) EDHF-induced relaxation involves the opening of at least two types of KCa channels, whereas NO mediates vasorelaxation via a guanosine 3′: 5′-cyclic monophosphate (cyclic GMP)-mediated pathway, in which a cytochrome P450 pathway and KCa channels do not seem to be involved.
  相似文献   

8.
  1. The aim of the present study was to investigate the effects of bradykinin and [des-Arg9]-bradykinin and their relaxant mechanisms in the mouse isolated trachea.
  2. In the resting tracheal preparations with intact epithelium, bradykinin and [des-Arg9]-bradykinin (each drug, 0.01–10 μM) induced neither contraction nor relaxation. In contrast, bradykinin (0.01–10 μM) induced concentration-dependent relaxation when the tracheal preparations were precontracted with methacholine (1 μM). The relaxation induced by bradykinin was inhibited by the B2 receptor antagonist, D-Arg0-[Hyp3,Thi5,D-Tic7,Oic8]-bradykinin (Hoe 140, 0.01–1 μM) in a concentration-dependent manner whereas the B1 receptor antagonist, [des-Arg9,Leu8]-bradykinin (0.01–1 μM), had no inhibitory effect on bradykinin-induced relaxation. [des-Arg9]-bradykinin (0.01–10 μM) also caused concentration-dependent relaxation after precontraction with methacholine. The relaxation induced by [des-Arg9]-bradykinin was concentration-dependently inhibited by the B1 receptor antagonist, [des-Arg9,Leu8]-bradykinin (0.01–1 μM), whereas the B2 receptor antagonist, Hoe 140 (0.01–1 μM) was without effect.
  3. In the presence of the cyclo-oxygenase inhibitor, indomethacin (0.01–1 μM), the relaxations induced by bradykinin and [des-Arg9]-bradykinin were inhibited concentration-dependently.
  4. Two nitric oxide (NO) biosynthesis inhibitors NG-nitro-L-arginine methyl ester (L-NAME, 100 μM) and NG-nitro-L-arginine (L-NOARG, 100 μM) had no inhibitory effects on the relaxations induced by bradykinin and [des-Arg9]-bradykinin. Neither did the selective inhibitor of the soluble guanylate cyclase, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 μM) inhibit the relaxations induced by bradykinin and [des-Arg9]-bradykinin.
  5. Prostaglandin E2 (PGE2, 0.01–33 μM) caused concentration-dependent relaxation of the tracheal preparations precontracted with methacholine. Indomethacin (1 μM) and ODQ (10 μM) exerted no inhibitory effects on the relaxation induced by PGE2.
  6. The NO-donor, sodium nitroprusside (SNP; 0.01–100 μM) also caused concentration-dependent relaxation of the tracheal preparations precontracted with methacholine. ODQ (0.1–1 μM) concentration-dependently inhibited the relaxation induced by SNP.
  7. These data demonstrate that bradykinin and [des-Arg9]-bradykinin relax the mouse trachea precontracted with methacholine by the activation of bradykinin B2-receptors and B1-receptors, respectively. The stimulation of bradykinin receptors induces activation of the cyclo-oxygenase pathway, leading to the production of relaxing prostaglandins. The NO pathway is not involved in the bradykinin-induced relaxation. The relaxation caused by NO-donors in the mouse trachea is likely to be mediated via activation of soluble guanylate cyclase.
  相似文献   

9.
  1. The effect of Tityus serrulatus scorpion venom and its toxin components on the rabbit isolated corpus cavernosum was investigated by use of a bioassay cascade.
  2. Tityus serrulatus venom (3–100 μg), acetylcholine (ACh; 0.3–30 nmol) and glyceryl trinitrate (GTN; 0.5–10 nmol) dose-dependently relaxed rabbit isolated corpus cavernosum preparations precontracted with noradrenaline (3 μM). The selective soluble guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3,-alquinoxalin-1-one] (ODQ; 30 μM) increased the basal tone of the rabbit isolated corpus cavernosum and abolished the relaxations induced by the agents mentioned above. Methylene blue (30 μM) also inhibited the relaxations induced by Tityus serrulatus venom but, in contrast to ODQ, the inhibition was irreversible.
  3. The non-selective NO synthase (NOS) inhibitors NΩ-nitro-L-arginine methyl ester (L-NAME; 10 μM) and NG-iminoethyl-L-ornithine (L-NIO; 30 μM) also increased the tone of the rabbit isolated corpus cavernosum and markedly reduced both ACh- and Tityus serrulatus venom-induced relaxations without affecting those evoked by GTN. The inhibitory effect was reversed by infusion of L-arginine (300 μM), but not D-arginine (300 μM). The neuronal NOS inhibitor 1-(2-trifluoromethylphenyl) imidazole (TRIM, 100 μM) did not affect either the tone of the rabbit isolated corpus cavernosum or the relaxations induced by ACh, bradykinin (Bk), Tityus serrulatus venom and GTN. TRIM was approximately 1,000 times less potent than L-NAME in inhibiting rabbit cerebellar NOS in vitro, as measured by the conversion of [3H]-L-arginine to [3H]-L-citrulline.
  4. The protease inhibitor aprotinin (Trasylol; 10 μg ml−1) and the bradykinin B2 receptor antagonist Hoe 140 (D-Arg-[Hyp3,Thi5,D-Tic7, Oic8]-BK; 50 nM) did not affect the rabbit isolated corpus cavernosum relaxations induced by Tityus serrulatus venom. The ATP-dependent K+ channel antagonist glibenclamide (10 μM) and the Ca2+-activated K+  channel antagonists apamin (0.1 μM) and charybdotoxin (0.1 μM) also failed to affect the venom-induced relaxations. Similarly, the K+ channel blocker tetraethylammonium (TEA; 10 μM) had no effect on the venom-induced relaxations.
  5. Capsaicin (3 and 10 nmol) relaxed the rabbit isolated corpus cavernosum in a dose-dependent and non-tachyphylactic manner. Ruthenium red (30 μM), an inhibitor of capsaicin-induced responses, markedly reduced the relaxations caused by capsaicin, but failed to affect those induced by Tityus serrulatus venom. L-NAME (10 μM) had no effect on the capsaicin-induced relaxations of the rabbit isolated corpus cavernosum.
  6. The sodium channel blocker tetrodotoxin (TTX; 1 μM) abolished the relaxations of the rabbit isolated corpus cavernosum induced by Tityus serrulatus venom without affecting those evoked by capsaicin, ACh and GTN. Tetrodotoxin (1 μM) also promptly reversed the response to the venom when infused during the relaxation phase.
  7. The bioassay cascade of the toxin components purified from Tityus serrulatus venom revealed that only fractions X, XI and XII caused dose-dependent relaxations of the rabbit isolated corpus cavernosum and these were markedly reduced by either TTX (1 μM) or L-NAME (10 μM).
  8. Our results indicate that Tityus serrulatus scorpion venom (and the active fractions X, XI and XII) relaxes rabbit corpus cavernosum via the release of NO. This release is specifically triggered by the activation of capsaicin-insensitive cavernosal non-adrenergic non-cholinergic (NANC) fibres, that may possibly be nitrergic neurones. Tityus serrulatus venom may therefore provide an important tool for understanding further the mechanism of NANC nitrergic nerve activation.
  相似文献   

10.
  1. We investigated the contribution of nitric oxide (NO) to inhibitory neuromuscular transmission in murine proximal colon and the possibility that citrulline is recycled to arginine to maintain the supply of substrate for NO synthesis.
  2. Intracellular microelectrode recordings were made from circular smooth muscle cells in the presence of nifedipine and atropine (both 1 μM). Electrical field stimulation (EFS, 0.3–20 Hz) produced inhibitory junction potentials (i.j.ps) composed of an initial transient hyperpolarization (fast component) followed by a slow recovery to resting potential (slow component).
  3. L-Nitro-arginine-methyl ester (L-NAME, 100 μM) selectively abolished the slow component of i.j.ps. The effects of L-NAME were reversed by L-arginine (0.2–2 mM) but not by D-arginine (2 mM). Sodium nitroprusside (an NO donor, 1 μM) reversibly hyperpolarized muscle cells. This suggests that NO mediates the slow component of i.j.ps.
  4. L-Citrulline (0.2 mM) also reversed the effects of L-NAME, and this action was maintained during sustained exposures to L-citrulline (0.2 mM). This may reflect intraneuronal recycling of L-citrulline to L-arginine.
  5. Higher concentrations of L-citrulline (e.g. 2 mM) had time-dependent effects. Brief exposure (15 min) reversed the effects of L-NAME, but during longer exposures (30 min) the effects of L-NAME gradually returned. In the continued presence of L-citrulline, L-arginine (2 mM) readily restored nitrergic transmission, suggesting that during long exposures to high concentrations of L-citrulline, the ability to generate arginine from citrulline was reduced.
  6. Aspartate (2 mM) had no effect on i.j.ps, the effects of L-NAME, or the actions of L-citrulline in the presence of L-NAME. L-Citrulline (0.2–2 mM) alone had no effect on i.j.ps under control conditions.
  7. S-methyl-L-thiocitrulline (10 μM), a novel NOS inhibitor, blocked the slow component of i.j.ps. The effects of this inhibitor were reversed by L-arginine (2 mM), but not by L-citrulline (2 mM).
  8. These results suggest that i.j.ps in the murine colon result from release of multiple inhibitory neurotransmitters. NO mediates a slow component of enteric inhibitory neurotransmission. Recycling of L-citrulline to L-arginine may sustain substrate concentrations in support of NO synthesis and this pathway may be inhibited when concentrations of L-citrulline are elevated.
  相似文献   

11.
  1. We investigated the response to pressure (myogenic tone) and flow of rat mesenteric resistance arteries cannulated in an arteriograph which allowed the measurement of intraluminal diameter for controlled pressures and flows. Rats were treated for 3 weeks with NG-nitro-L-arginine methyl ester (L-NAME, 50 mg kg−1 day−1) or L-NAME plus the angiotensin I converting enzyme inhibitor (ACEI) quinapril (10 mg kg−1 day−1).
  2. Mean blood pressure increased significantly in chronic L-NAME-treated rats (155±4 mmHg, n=8, vs control 121±6 mmHg, n=10; P<0.05). L-NAME-treated rats excreted significantly more dinor-6-keto prostaglandin F (dinor-6-keto PGF), the stable urinary metabolite of prostacyclin, than control rats. The ACEI prevented the rise in blood pressure and the rise in urinary dinor-6-keto PGF due to L-NAME.
  3. Isolated mesenteric resistance arteries, developed myogenic tone in response to stepwise increases in pressure (42±6 to 847±10 mN mm−1, from 25 to 150 mmHg, n=9). Myogenic tone was not significantly affected by the chronic treatment with L-NAME or L-NAME+ACEI.
  4. Flow (100 μl min−1) significantly attenuated myogenic tone by 50±6% at 150 mmHg (n=10). Flow-induced dilatation was significantly attenuated by chronic L-NAME to 22±6% at 150 mmHg (n=10, P=0.0001) and was not affected in the L-NAME+ACEI group.
  5. Acute in vitro NG-nitro-L-arginine (L-NOARG, 10 μM) significantly decreased flow-induced dilatation in control but not in L-NAME or L-NAME+ACEI rats. Both acute indomethacin (10 μM) and acute NS 398 (cyclo-oxygenase-2 (COX-2) inhibitor, 1 μM) did not change significantly flow-induced dilatation in controls but they both decreased flow-induced dilatation in the L-NAME and L-NAME+ACEI groups. Acute Hoe 140 (bradykinin receptor inhibitor, 1 μM) induced a significant contraction of the isolated mesenteric arteries which was the same in the 3 groups.
  6. Immunofluorescence analysis of COX-2 showed that the enzyme was expressed in resistance mesenteric arteries in L-NAME and L-NAME+ACEI groups but not in control. COX-1 expression was identical in all 3 groups.
  7. We conclude that chronic inhibition of nitric oxide synthesis is associated with a decreased flow-induced dilatation in resistance mesenteric arteries which was compensated by an overproduction of vasodilator prostaglandins resulting in part from COX-2 expression. The decrease in flow-induced dilatation was prevented by the ACEI, quinapril.
  相似文献   

12.
  1. We have recently demonstrated the formation of protein-bound dinitrosyl-iron complexes (DNIC) in rat aortic rings exposed to lipopolysaccharide (LPS) and shown that N-acetylcysteine (NAC) can promote vasorelaxation in these arteries, possibly via the release of nitric oxide (NO) as low molecular weight DNIC from these storage sites. The aim of the present study was to investigate further the mechanism of the relaxation induced by NAC in LPS-treated vessels.
  2. In rings incubated with LPS (10 μg ml−1 for 18 h) and precontracted with noradrenaline (NA, 3 μM) plus Nω-nitro-L-arginine methylester (L-NAME, 3 mM), the relaxation evoked by NAC (0.1 to 10 mM) was abolished by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 1 μM, a selective inhibitor of soluble guanylyl cyclase) but not affected by Rp-8-bromoguanosine 3′5′-cyclic monophosphorothioate (Rp-8BrcGMPS, 60 μM a selective inhibitor of cyclic GMP-dependent protein kinase). Tetrabutylammonium (TBA, 3 mM, as a non selective K+ channels blocker) or elevated concentration of external KCl (25 or 50 mM) significantly attenuated the NAC-induced relaxation. Selective K+ channels blockers (10 μM glibenclamide, 0.1 μM charybdotoxin, 0.5 μM apamin or 3 mM 4-aminopyridine) did not affect the NAC-induced relaxation. The relaxing effect of NAC (10 mM) was not associated with an elevation of guanosine 3′ : 5′ cyclic monophosphate (cyclic GMP) in LPS-treated rings.
  3. In aortic rings precontracted with NA (0.1 μM), low molecular weight DNIC (with thiosulphate as ligand, 1 nM to 10 μM) evoked a concentration-dependent relaxation which was antagonized by ODQ (1 μM) and Rp-8BrcGMPS (150 μM) but not significantly affected by TBA (3 mM) or by the use of KCl (50 mM) as preconstricting agent. The relaxation produced by DNIC (0.1 μM) was associated with an 11 fold increase in aortic cyclic GMP content, which was completely abolished by ODQ (1 μM).
  4. Taken together with our previous data, the main finding of the present study is that the vascular relaxation induced by NAC in LPS-treated aorta, although probably related to NO through an interaction via preformed NO stores, was not mediated by activation of the cyclic GMP pathway. It may involve the activation of TBA-sensitive K+ channels. The differences in the mechanism of relaxation induced by NAC and by exogenous DNIC suggest that the generation of low molecular weight DNIC from protein-bound species does not play a major role in the NAC-induced relaxation observed in LPS-treated rat aorta. In addition, it is suggested that ODQ may display other properties than the inhibition of soluble guanylyl cyclase.
  相似文献   

13.
  1. This study examined the effects of sodium rhein (0.03–30 μM) on the contractions of the isolated circular muscle of guinea-pig ileum induced by acetylcholine (100 nM), substance P (3 nM) and electrical stimulation (10 Hz for 0.3 s, 100 mA, 0.5 ms pulse duration). The effect of sodium rhein was also evaluated on the ascending excitatory reflex using a partitioned bath (oral and anal compartments). Ascending excitatory enteric nerve pathways were activated by electrical field stimulation (10 Hz for 2 s, 20 mA, 0.5 pulse duration) in the anal compartment and the resulting contraction of the guinea-pig intestinal circular muscle in the oral compartment was recorded.
  2. Sodium rhein (0.3, 3 and 30 μM) significantly potentiated (52±11% at 30 μM) acetylcholine-induced contractions. In the presence of tetrodotoxin (0.6 μM) or ω-conotoxin GVIA (10 nM) sodium rhein (3 and 30 μM) did not enhance, but significantly reduced (49±10% and 44±8%, respectively, at 30 μM) acetylcholine-induced contractions.
  3. Sodium rhein (0.3, 3 and 30 μM) significantly increased (65±11% at 30 μM) substance P-induced contractions. In the presence of tetrodotoxin (0.6 μM), ω-conotoxin GVIA (10 nM) or atropine (0.1 μM), sodium rhein (3 and 30 μM) significantly reduced (50±10%, 55±8% and 46±10%, respectively, at 30 μM) substance P-induced contractions.
  4. NG-nitro-L-arginine methyl ester (L-NAME, 100 μM) abolished the potentiating effect of sodium rhein on acetylcholine and substance P-induced contractions. At the highest concentration (30 μM), sodium rhein, in presence of L-NAME, reduced the acetylcholine (30±6%)- or substance P (36±6%)-induced contractions.
  5. Sodium rhein (30 μM) significantly potentiated (29±9%) the electrically-evoked contractions. L-NAME (100 μM), but not phentolamine, enhanced the effect of sodium rhein. Sodium rhein (30 μM) significantly increased (32±9%) the ascending excitatory reflex when applied in the oral, but not in the anal compartment.
  6. These results indicate that sodium rhein (i) activates excitatory cholinergic nerves on circular smooth muscle presumably through a facilitation of Ca2+ entry through the N-type Ca2+ channel, (ii) has a direct inhibitory effect on circular smooth muscle and (iii) does not affect enteric ascending neuroneural transmission. Nitric oxide could have a modulatory excitatory role on sodium rhein-induced changes of agonist-induced contractions and an inhibitory modulator role on sodium rhein-induced changes of electrically-induced contractions.
  相似文献   

14.
  1. Nitric oxide (NO)-mediated, endothelium-dependent vasodilator function in rat aortic smooth muscle was investigated in an in vitro model of endogenous vascular superoxide anion stress, generated by pretreatment with the Cu/Zn superoxide dismutase (SOD, EC 1.15.1.1) inhibitor, diethyldithiocarbamate (DETCA).
  2. Contraction to noradrenaline (NA, 1 nM–1 μM) in endothelium-intact vessels was augmented after a 30 min pretreatment with DETCA (10 mM) followed by 30 min washout. This effect was abolished by NG-nitro-L-arginine methyl ester (L-NAME, 0.3 mM) and removal of the endothelium and partially reversed by exogenous Cu/Zn SOD (200 u ml−1).
  3. Endothelium- and basal NO-dependent vasorelaxation to the phosphodiesterase (PDE) type V inhibitor ONO-1505 (4-[2-(2-hydroxyethoxy)ethylamino]-2-(1H-imidazol-1-yl)-6-methoxyquinazoline methanesulphonate) (0.1–10 μM) was inhibited after DETCA (10 mM) pretreatment. In addition, the ability of L-NAME (0.3 mM) to enhance established contractile tone was effectively absent.
  4. In contrast, DETCA pretreatment did not significantly affect vasorelaxation to acetylcholine (ACh, 1 nM–3 μM) or S-nitroso-N-acetyl penicillamine (SNAP, 0.03–30 μM). However, L-NAME (0.3 mM) unmasked an inhibitory effect of DETCA pretreatment on vasorelaxation to SNAP in endothelium-intact vessels while markedly potentiating vasorelaxation to SNAP in control tissue.
  5. L-NAME (0.3 mM)- and exogenous catalase (200 u ml−1)-sensitive vasorelaxation to exogenous Cu/Zn SOD (200 u ml−1) was greater after DETCA (10 mM) pretreatment in endothelium-intact aortic rings. This difference was abolished by catalase (200 u ml−1).
  6. In conclusion, tissue Cu/Zn SOD inhibition elicited a selective lesion in basal endothelial function in rat isolated aortic smooth muscle, consistent with the inactivation of basal NO by superoxide anion. The resulting leftward shift in nitrovasodilator reactivity, due to the loss of the tonic depression by basal NO, is likely to mask the inhibitory effect of superoxide anion on agonist-stimulated endothelial function and nitrovasodilator-derived NO, thereby accounting for the differential pattern of endothelial dysfunction after DETCA pretreatment.
  相似文献   

15.
  1. The effects of nitric oxide (NO) on vascular reactivity and platelet function in the obese (cp/cp) and lean (+/?) JCR:LA-cp rats were investigated.
  2. Phenylephrine (PE; 0.1 nM–10 μM) induced contraction of isolated aortic rings in both genotypes (cp/cp and +/?) of JCR:LA-cp rats. The sensitivity to contraction with PE was enhanced in cp/cp compared with +/? rings. Rings from both genotypes showed an increased contraction upon removal of the endothelium.
  3. Acetylcholine (ACh; 0.1 nM–10 μM)-induced endothelium-dependent relaxation of rings was not significantly different in the two genotypes. Both were inhibited to a similar extent by NG-nitro-L-arginine methyl ester (L-NAME; 0.01–1 mM) when administered in vitro.
  4. The nitric oxide synthase (NOS) inhibitor (L-NAME; 0.3, 1 or 3 mg ml−1, p.o.) when administered in vivo increased blood pressure in cp/cp rats but not in +/? rats.
  5. L-NAME resulted in greater inhibition of ACh-induced relaxation in cp/cp rings compared with +/? rings.
  6. L-NAME treatment in vivo caused a decrease in cyclic GMP and NOS activity in rings from cp/cp but not +/? rats.
  7. The NO donor, S-nitroso-N-acetyl-DL-penicillamine (SNAP; 0.1 nM–10 μM)-induced relaxation of rings from +/? rats, an effect enhanced by the treatment with L-NAME in vivo.
  8. Oral administration of L-NAME did not enhance the vasorelaxant effect of SNAP on rings of aorta from cp/cp animals.
  9. Platelet aggregation and NOS activity were similar in both genotypes and were not modified by oral administration of L-NAME.
  10. These results show that unimpaired generation of NO is crucial for maintenance of vascular tone particularly under conditions of vascular insult exemplified by insulin resistance, obesity and dyslipidemia detected in cp/cp rats.
  相似文献   

16.
  1. In this study we investigated the ability of ascorbate to protect nitric oxide from destruction by superoxide anion.
  2. Ascorbate produced concentration-dependent relaxation of rings of rat aorta, comprising two components: the first, seen at 1–300 μM, reached a maximum of 45.3±2.8%, and was abolished by endothelial removal or treatment with L-NAME (100 μM), demonstrating involvement of nitric oxide. The second occurred at concentrations of 1 mM and above and was associated with falls in the pH of the bathing fluid.
  3. Pretreatment with ascorbate at concentrations up to 3 mM had no effect on the relaxation to acetylcholine (10 nM–10 μM) on endothelium-containing rings or adenosine (0.1 μM–3 mM) on endothelium-denuded rings.
  4. An oxidant stress was applied to aortic rings, comprising inhibition of endogenous Cu/Zn superoxide dismutase by diethyldithiocarbamate (0.1 mM) followed by generation of superoxide anion by hypoxanthine (0.1 mM/xanthine oxidase (16 u ml−1). This reduced maximal acetylcholine-induced relaxation from 96.7±1.3% to 42.4±3.5% (P<0.001). Treatment with ascorbate (30 μM–3 mM) reversed this blockade in a concentration-dependent manner.
  5. Our findings show that ascorbate has the ability to protect nitric oxide from destruction by superoxide anion. This action is seen with ascorbate at levels normally present in plasma, suggesting that this antioxidant may exert a tonic protective effect on nitric oxide within the vasculature.
  相似文献   

17.
  1. In rat isolated hepatic arteries contracted with phenylephrine, acetylcholine and the calcium ionophore A23187 each elicit endothelium-dependent relaxations, which involve both nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF). However, the contribution of prostanoids to these responses, and the potential interaction between EDHF and other endothelium-derived relaxing factors have not been examined.
  2. In the presence of the NO synthase inhibitor NG-nitro-L-arginine (L-NOARG, 0.3 mM) and a mixture of charybdotoxin (0.3 μM) and apamin (0.3 μM), inhibitors of the target potassium (K) channel(s) for EDHF, acetylcholine and A23187 each induced a concentration-dependent and almost complete relaxation, which was abolished in the additional presence of indomethacin (10 μM). Thus, in addition to EDHF and NO, a relaxing factor(s) generated by cyclo-oxygenase (COX) contributes to endothelium-dependent relaxation in the rat hepatic artery.
  3. The resting membrane potentials of endothelium-intact and endothelium-denuded vascular segments were −57 mV and −52 mV, respectively (P>0.05). In intact arteries, the resting membrane potential was not affected by L-NOARG plus indomethacin, but reduced to −47 mV in the presence of charybdotoxin plus apamin. Acetylcholine and A23187 (10 μM each) elicited a hyperpolarization of 13 mV and 15 mV, respectively. The hyperpolarization induced by these agents was not affected by L-NOARG plus indomethacin (12 mV and 14 mV, respectively), but reduced in the presence of charybdotoxin plus apamin (7 mV and 10 mV, respectively), and abolished in the combined presence of charybdotoxin, apamin and indomethacin.
  4. The NO donor 3-morpholino-sydnonimine (SIN-1) induced a concentration-dependent relaxation, which was unaffected by charybdotoxin plus apamin, but abolished by the selective soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ, 10 μM). SIN-1 (10 μM) did not alter the resting membrane potential in endothelium-denuded vascular segments.
  5. The COX-dependent relaxation induced by acetylcholine was abolished following exposure to 30 mM KCl, but unaffected by glibenclamide (10 μM). The prostacyclin analogue iloprost induced a concentration-dependent relaxation, which was also abolished in 30 mM KCl and unaffected by the combined treatment with glibenclamide, charybdotoxin and apamin. Iloprost (10 μM) induced a glibenclamide-resistant hyperpolarization (8 mV with and 9 mV without glibenclamide) in endothelium-denuded vascular segments.
  6. Exposure to SIN-1 or iloprost did not affect the EDHF-mediated relaxation induced by acetylcholine (i.e. in the presence of L-NOARG and indomethacin). Replacement of L-NOARG with the NO scavenger oxyhaemoglobin (10 μM) or the soluble guanylate cyclase inhibitor ODQ (10 μM) or methylene blue (10 μM), which all significantly inhibited responses to endothelium-derived NO, did not affect the acetylcholine-induced relaxation in the presence of indomethacin, indicating that endogenous NO also does not suppress EDHF-mediated responses.
  7. These results show that, in addition to EDHF and NO, an endothelium-derived hyperpolarizing factor(s) generated by COX contributes significantly to endothelium-dependent relaxation in the rat heptic artery. Neither this factor nor NO seems to regulate EDHF-mediated responses. Thus, EDHF does not serve simply as a `back-up'' system for NO and prostacyclin in this artery. However, whether EDHF modulates the NO and COX pathways remains to be determined.
  相似文献   

18.
  1. In the presence of NG-nitro-L-arginine (L-NOARG, 0.3 mM) and indomethacin (10 μM), the relaxations induced by acetylcholine and the calcium (Ca) ionophore A23187 are considered to be mediated by endothelium-derived hyperpolarizing factor (EDHF) in the guinea-pig basilar artery.
  2. Inhibitors of adenosine 5′-triphosphate (ATP)-sensitive potassium (K)-channels (KATP; glibenclamide, 10 μM), voltage-sensitive K-channels (KV; dendrotoxin-I, 0.1 μM or 4-aminopyridine, 1 mM), small (SKCa; apamin, 0.1 μM) and large (BKCa; iberiotoxin, 0.1 μM) conductance Ca-sensitive K-channels did not affect the L-NOARG/indomethacin-resistant relaxation induced by acetylcholine.
  3. Synthetic charybdotoxin (0.1 μM), an inhibitor of BKCa and KV, caused a rightward shift of the concentration-response curve for acetylcholine and reduced the maximal relaxation in the presence of L-NOARG and indomethacin, whereas the relaxation induced by A23187 was not significantly inhibited.
  4. A combination of charybdotoxin (0.1 μM) and apamin (0.1 μM) abolished the L-NOARG/indomethacin-resistant relaxations induced by acetylcholine and A23187. However, the acetylcholine-induced relaxation was not affected by a combination of iberiotoxin (0.1 μM) and apamin (0.1 μM).
  5. Ciclazindol (10 μM), an inhibitor of KV in rat portal vein smooth muscle, inhibited the L-NOARG/indomethacin-resistant relaxations induced by acetylcholine and A23187, and the relaxations were abolished when ciclazindol (10 μM) was combined with apamin (0.1 μM).
  6. Human pial arteries from two out of four patients displayed an L-NOARG/indomethacin-resistant relaxation in response to substance P. This relaxation was abolished in both cases by pretreatment with the combination of charybdotoxin (0.1 μM) and apamin (0.1 μM), whereas each toxin had little effect alone.
  7. The results suggest that KV, but not KATP and BKCa, is involved in the EDHF-mediated relaxation in the guinea-pig basilar artery. The synergistic action of apamin and charybdotoxin (or ciclazindol) could indicate that both KV and SKCa are activated by EDHF. However, a single type of K-channel, which may be structurally related to KV and allosterically regulated by apamin, could also be the target for EDHF.
  相似文献   

19.
  1. The interaction between the cholinergic and nitrergic innervation was investigated in circular muscle strips of the pig gastric fundus.
  2. In physiological salt solution containing 4×10−6M guanethidine, electrical field stimulation (EFS; 40 V, 0.5 ms, 0.5–32 Hz, 10 s at 4 min intervals) induced small transient relaxations at 0.5–4 Hz, and large frequency-dependent contractions, sometimes followed by off-relaxations, at 8–32 Hz.
  3. In the presence of L-NG-nitroarginine methyl ester (L-NAME; 3×10−4M) or physostigmine (10−6M), relaxations were reversed into contractions and contractions were enhanced. Physostigmine added to L-NAME further enhanced contractions, while addition of L-NAME to physostigmine had no additional effect. Off-relaxations were enhanced in the presence of L-NAME and physostigmine. L-NAME and physostigmine consistently increased basal tone.
  4. Tissues contracted by 5-hydroxytryptamine or by acetylcholine responded to EFS in a similar way as in basal conditions and L-NAME reversed the relaxations at the lower stimulation frequencies into contractions and enhanced the contractions at the higher stimulation frequencies.
  5. Off-relaxations in the presence of L-NAME were partially reduced by α-chymotrypsin (10 U ml−1).
  6. In the absence of physostigmine, the concentration-response curve to exogenous acetylcholine was not influenced by L-NAME.
  7. Contractions of the same amplitude induced by EFS at 4 Hz and by exogenous acetylcholine were either decreased or enhanced to the same extent by sodium nitroprusside (SNP; 10−5M), depending upon the degree of relaxation by SNP.
  8. These experiments suggest that endogenous nitric oxide interferes with cholinergic neurotransmission in the pig gastric fundus by functional antagonism at the postjunctional level. The interaction is independent of the degree of contraction.
  相似文献   

20.
  1. Acetylcholine (ACh) elicits an endothelium-dependent relaxation and hyperpolarization in the absence of nitric oxide (NO) and prostaglandin synthesis in the guinea-pig coronary artery (GPCA). This response has been attributed to a factor termed endothelial-derived hyperpolarizing factor (EDHF). Recently it has been suggested that EDHF may be a cytochrome P450 product of arachidonic acid (AA) i.e., an epoxyeicosatrienoic acid (EET). The present study investigated whether this pathway could account for the response to ACh observed in the GPCA in the presence of 100 μM Nω-nitro-L-arginine and 10 μM indomethacin.
  2. ACh, AA and 11,12-EET each produced concentration-dependent relaxations in arteries contracted with the H1-receptor agonist AEP (2,2-aminoethylpyridine). The AA-induced relaxation was significantly enhanced in the presence of the cyclo-oxygenase/lipoxygenase inhibitor, eicosatetranynoic acid (30 μM).
  3. The cytochrome P450 inhibitors proadifen (10 μM) and clotrimazole (10 μM) inhibited ACh, lemakalim (LEM) and AA-induced relaxation, whereas 17-octadecynoic acid (100 μM) and 7-ethoxyresorufin (10 μM) were without effect on all three vasodilators. Proadifen and clotrimazole also inhibited ACh (1 μM) and LEM (1 μM)-induced hyperpolarization.
  4. The ability of various potassium channel blockers to inhibit relaxation responses elicited with ACh, AA and 11,12-EET was also determined. Iberiotoxin (IBTX; 100 nM) was without effect on responses to ACh but significantly reduced responses to both AA and 11,12-EET. In contrast, 4-aminopyridine (4-AP; 5 mM) significantly reduced response to ACh but not responses to AA and 11,12-EET. Combined IBTX plus (4-AP) inhibited the ACh-induced relaxation to a greater extent than 4-AP alone. Apamin (1 μM), glibenclamide (10 μM) and BaCl2 (50 μM) had no significant effect on responses to ACh, AA and 11,12-EET.
  5. IBTX (100 nM) significantly reduced both 11,12-EET (33 μM) and AA (30 μM) hyperpolarization without affecting the ACh (1 μM)-induced hyperpolarization. In contrast, 4-AP significantly reduced the ACh-induced hyperpolarization without affecting either AA or 11,12-EET-induced hyperpolarizations.
  6. In summary, our results suggest that the coronary endothelium releases a factor upon application of AA which hyperpolarizes the smooth muscle. The similarity of pharmacology between AA and 11,12-EET suggests that this factor is an EET. However, the disparity of pharmacology between responses to ACh versus responses to 11,12-EET do not support the hypothesis that EETs represent the predominant factor which ACh releases from the endothelium that leads to NO- and prostaglandin-independent hyperpolarization and relaxation in the GPCA.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号