首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. High potassium produced a concentration-dependent contraction in rat isolated spleen.
  2. The high potassium-induced contraction of rat spleen was abolished in Ca2+-free Krebs solution containing 1 mM EGTA, and the subsequent addition of 3 mM Ca2+ restored the high potassium-induced contraction to the control level.
  3. Nifedipine, verapamil, diltiazem, Cd2+, Ni2+, Co2+, R-(+)-Bay K 8644 and pimozide inhibited and relaxed high potassium-induced contraction of rat spleen with IC50 and EC50 values much higher than those values in rat aorta.
  4. In addition, high potassium-stimulated contraction of rat spleen was insensitive to ω-conotoxin GVIA, ω-conotoxin MVIIC and ω-agatoxin IVA.
  5. The high potassium-induced contraction of rat spleen was also unaffected by tetrodotoxin (TTX), prazosin, chloroethylclonidine (CEC), yohimbine, propranolol, atropine, diphenhydramine, cimetidine, ketanserin, 3-tropanyl-indole-3-carboxylate, saralasin, indomethacin, nordihydroguaiaretic acid, GR32191B, domperidone, naloxone, chlorpromazine, suramin, (±)-2-amino-5-phosphonopentanoic acid, 6,7-dinitroquinoxaline-2,3-dione (DNQX), L-659,877, L-703,606, lorglumide, PD 135,158 N-methyl-D-glucamine, benextramine, amiloride, dantrolene, TMB-8, econazole, staurosporine and neomycin.
  6. Forskolin and sodium nitroprusside relaxed high potassium-induced contraction of rat spleen with EC50 values of 0.55±0.04 and 20.0±2.7 μM, respectively.
  7. It is concluded that high potassium may activate a novel, pharmacologically uncharacterized voltage-operated Ca2+ channel in rat spleen.
  相似文献   

2.

Aim:

To investigate the effects of docosahexaenoic acid (DHA) on large-conductance Ca2+-activated K+(BKCa) channels and voltage-dependent K+ (KV) channels in rat coronary artery smooth muscle cells (CASMCs).

Methods:

Rat CASMCs were isolated by an enzyme digestion method. BKCa and KV currents in individual CASMCs were recorded by the patch-clamp technique in a whole-cell configuration at room temperature. Effects of DHA on BKCa and KV channels were observed when it was applied at 10, 20, 30, 40, 50, 60, 70, and 80 μmol/L.

Results:

When DHA concentrations were greater than 10 μmol/L, BKCa currents increased in a dose-dependent manner. At a testing potential of +80 mV, 6.1%±0.3%, 76.5%±3.8%, 120.6%±5.5%, 248.0%±12.3%, 348.7%±17.3%, 374.2%±18.7%, 432.2%±21.6%, and 443.1%±22.1% of BKCa currents were increased at the above concentrations, respectively. The half-effective concentration (EC50) of DHA on BKCa currents was 37.53±1.65 μmol/L. When DHA concentrations were greater than 20 μmol/L, KV currents were gradually blocked by increasing concentrations of DHA. At a testing potential of +50 mV, 0.40%±0.02%, 1.37%±0.06%, 11.80%±0.59%, 26.50%±1.75%, 56.50%±2.89%, 73.30%±3.66%, 79.70%±3.94%, and 78.1%±3.91% of KV currents were blocked at the different concentrations listed above, respectively. The EC50 of DHA on KV currents was 44.20±0.63 μmol/L.

Conclusion:

DHA can activate BKCa channels and block KV channels in rat CASMCs, and the EC50 of DHA for BKCa channels is lower than that for KV channels; these findings indicate that the vasorelaxation effects of DHA on vascular smooth muscle cells are mainly due to its activation of BKCa channels.  相似文献   

3.
  1. The effects of the lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) on the ionic currents of rat carotid body type I cells were investigated by use of whole-cell and outside-out patch clamp techniques.
  2. NDGA (5–50 μM) produced a concentration-dependent inhibition of whole-cell K+ currents at all activating test potentials (holding potential −70 mV). The time-course of the inhibition was also concentration-dependent and the effects of NDGA were only reversible following brief periods of exposure (<2 min). Another lipoxygenase inhibitor, phenidone (5 μM), was without effect on whole-cell K+ currents in carotid body type I cells.
  3. NDGA (5–50 μM) also inhibited whole-cell Ca2+ channel currents (recorded with Ba2+ as charge carrier) in a concentration-dependent manner.
  4. Isolation of voltage-gated K+ channels by use of high [Mg2+] (6 mM), low [Ca2+] (0.1 mM) solutions revealed a direct inhibition of the voltage-sensitive component of the whole-cell K+ current by NDGA (50 μM).
  5. In excised, outside-out patches NDGA (20–50 μM) increased large conductance, Ca2+ activated K+ channel activity approximately 10 fold, an effect which could be reversed by either tetraethylammonium (10 mM) or charybdotoxin (30 nM).
  6. It is concluded that NDGA activates maxi-K+ channels in carotid body type I cells and over the same concentration range inhibits voltage-sensitive K+ and Ca2+ channels. The inhibition of whole cell K+ currents seen is most likely due to a combination of direct inhibition of the voltage-sensitive K+ current and indirect inhibition of maxi-K+ channel activity through blockade of Ca2+ channels.
  相似文献   

4.
  1. To characterize increases in cytosolic free Ca2+ concentration ([Ca2+]i) associated with discharge of action potentials, membrane potential and [Ca2+]i were simultaneously recorded from single smooth muscle cells of guinea-pig ileum by use of a combination of nystatin-perforated patch clamp and fura-2 fluorimetry techniques.
  2. A single action potential in response to a depolarizing current pulse elicited a transient rise in [Ca2+]i. When the duration of the current pulse was prolonged, action potentials were repeatedly discharged during the early period of the pulse duration with a progressive decrease in overshoot potential, upstroke rate and repolarization rate. However, such action potentials could each trigger [Ca2+]i transients with an almost constant amplitude.
  3. Nicardipine (1 μM) and La3+ (10 μM), blockers of voltage-dependent Ca2+ channels (VDCCs), abolished both the action potential discharge and the [Ca2+]i transient.
  4. Charybdotoxin (ChTX, 300 nM) and tetraethylammonium (TEA, 2 mM), blockers of large conductance Ca2+-activated K+ channels, decreased the rate of repolarization of action potentials but increased the amplitude of [Ca2+]i transients.
  5. Thapsigargin (1 μM), an inhibitor of SR Ca2+-ATPase, slowed the falling phase and somewhat increased the amplitude, of action potential-triggered [Ca2+]i transients without affecting action potentials. In addition, in voltage-clamped cells, the drug had little effect on the voltage step-evoked Ca2+ current but exerted a similar effect on its concomitant rise in [Ca2+]i to that on the action potential-triggered [Ca2+]i transient.
  6. Similar action potential-triggered [Ca2+]i transients were induced by brief exposures to high-K+ solution. They were not decreased, but rather increased, after depletion of intracellular Ca2+ stores by a combination of ryanodine (30 μM) and caffeine (10 mM) through an open-lock of Ca2+-induced Ca2+ release (CICR)-related channels.
  7. The results show that action potentials, discharged repeatedly during the early period of a long membrane depolarization, undergo a progressive change in configuration but can each trigger a constant rise in [Ca2+]i. Intracellular Ca2+ stores have a role, especially in accelerating the falling phase of the action potential-triggered [Ca2+]i transients by replenishing cytosolic Ca2+. No evidence was provided for the involvement of CICR in the action potential-triggered [Ca2+]i transient.
  相似文献   

5.
  1. The effects of secreted forms of β-amyloid-precursor proteins (APPSs) on the intracellular Ca2+ concentration ([Ca2+]i) were investigated in rat cultured hippocampal neurones. APP695S, a secretory form of APP695, attenuated the increase in [Ca2+]i evoked by glutamate. In addition, APP695S itself evoked an increase in [Ca2+]i in 1 or 2 day-cultured hippocampal cells, but not in 7 to 13 day-cultured cells.
  2. Eighty-one percent of neurones which were immunocytochemically positive for microtubule-associated protein 2 responded to APP695S with an increase in [Ca2+]i.
  3. APP695S induced a transient rise in [Ca2+]i even in the absence of extracellular Ca2+ and produced an elevation in inositol-1,4,5-trisphosphate (IP3) in a concentration-dependent manner from 100 to 500 ng ml−1. In the presence of extracellular Ca2+, APP695S caused a transient rise in [Ca2+]i followed by a sustained phase at high [Ca2+]i, suggesting Ca2+ entry from the extracellular space.
  4. The [Ca2+]i elevation was mimicked by amino terminal peptides of APPS, but not by carboxy terminal peptides.
  5. These results taken together suggest that APP695S induces an increase in [Ca2+]i in hippocampal neurones through an IP3-dependent mechanism that changes according to the stage of development.
  相似文献   

6.
  1. ATP (10–100 μM), but not glutamate (100  μM), stimulated the release of plasminogen from microglia in a concentration-dependent manner during a 10 min stimulation. However, neither ATP (100 μM) nor glutamate (100 μM) stimulated the release of NO. A one hour pretreatment with BAPTA-AM (200 μM), which is metabolized in the cytosol to BAPTA (an intracellular Ca2+ chelator), completely inhibited the plasminogen release evoked by ATP (100 μM). The Ca2+ ionophore A23187 induced plasminogen release in a concentration-dependent manner (0.3 μM to 10 μM).
  2. ATP induced a transient increase in the intracellular calcium concentration ([Ca2+]i) in a concentration-dependent manner which was very similar to the ATP-evoked plasminogen release, whereas glutamate (100 μM) had no effect on [Ca2+]i (70 out of 70 cells) in microglial cells. A second application of ATP (100 μM) stimulated an increase in [Ca2+]i similar to that of the first application (21 out of 21 cells).
  3. The ATP-evoked increase in [Ca2+]i was totally dependent on extracellular Ca2+, 2-Methylthio ATP was active (7 out of 7 cells), but α,β-methylene ATP was inactive (7 out of 7 cells) at inducing an increase in [Ca2+]i. Suramin (100 μM) was shown not to inhibit the ATP-evoked increase in [Ca2+]i (20 out of 20 cells). 2′- and 3′-O-(4-Benzoylbenzoyl)-adenosine 5′-triphosphate (BzATP), a selective agonist of P2X7 receptors, evoked a long-lasting increase in [Ca2+]i even at 1 μM, a concentration at which ATP did not evoke the increase. One hour pretreatment with adenosine 5′-triphosphate-2′, 3′-dialdehyde (oxidized ATP, 100 μM), a selective antagonist of P2X7 receptors, blocked the increase in [Ca2+]i induced by ATP (10 and 100 μM).
  4. These data suggest that ATP may transit information from neurones to microglia, resulting in an increase in [Ca2+]i via the ionotropic P2X7 receptor which stimulates the release of plasminogen from the microglia.
  相似文献   

7.
  1. The effect of adenosine 5′-triphosphate (ATP) on glutamatergic synaptic transmission in hippocampus was examined by an indicator of intracellular Ca2+ oscillations. These oscillations were postsynaptic responses by glutamate released from presynaptic sites. ATP completely inhibited the oscillations in a concentration-dependent manner.
  2. The ATP-induced inhibition was mediated via P2-purinoceptors since ATP exhibited the inhibitory action even in the presence of P1-purinoceptor antagonists. Also non-hydrolysable ATP analogues and uridine 5′-triphosphate (UTP) inhibited the oscillation.
  3. The rank order of agonist potency of ATP analogues for inhibition of the Ca2+ oscillation was as follows: 2-methyl-thio-adenosine 5′-triphosphate⩾ATP>adenosine 5′-O-(3-thiotriphosphate)>UTP>α,β-methylene-adenosine 5′-triphosphate. These inhibitory effects were insensitive to suramin. Judging from this rank order of potency, the inhibitory P2-purinoceptor could be assigned to a subclass of GTP-binding protein coupled-type receptors.
  4. The site of action of ATP was thought to be presynaptic since ATP did not affect the postsynaptic Ca2+ responses by glutamate. These results suggest the existence of a presynaptic inhibitory P2-receptor that inhibits glutamate release in the hippocampus.
  相似文献   

8.
  1. Apical administration of an ionophore, nystatin, and basolateral depolarization by K+ were used to investigate the regulation of apical and basolateral electrogenic transport pathways for K+ in the rat proximal and distal colon.
  2. Administration of nystatin (100 μg ml−1 at the mucosal side), in the presence of Na+ and in the presence of a serosally directed K+ gradient, stimulate a large increase in short-circuit current (ISC) and tissue conductance in both colonic segments. This response was composed of a pump current generated by the Na+-K+-ATPase and of a current across a quinine-sensitive basolateral K+ conductance.
  3. The pump current, measured as Na+-dependent or scilliroside-sensitive current in the absence of a K+ gradient, was significantly greater in the distal than in the proximal colon. The pump current was unaltered by pretreatment of the tissue with forskolin (5×10−6 mol l−1).
  4. The current across the basolateral K+ conductance, measured as current in the presence of a serosally directed K+ gradient either in the absence of Na+ or in the presence of scilliroside, was increased by the cholinoreceptor agonist, carbachol (5×10−5 mol l−1), but inhibited by forskolin (5×10−6 mol l−1).
  5. Basolateral K+ depolarization induced a negative ISC in both colonic segments, which was inhibited by the K+ channel blocker quinine (10−3 mol l−1 at the mucosal side), but was resistant to tetraethylammonium (5×10−3 mol l−1 at the mucosal side). This K+ current across an apical K+ conductance was stimulated in both colonic segments by carbachol, whereas forskolin had no effect, although control experiments revealed that forskolin was still able to open an apical Cl conductance under these conditions.
  6. These results demonstrate that an increase in intracellular Ca2+ concentration induced by carbachol causes an increase in the basolateral and the apical K+ conductance, thereby inducing K+ secretion in parallel with an indirect support for Cl secretion due to the hyperpolarization of the cell membrane. In contrast, the dominating effect of an increase in the intracellular cyclic AMP concentration is inhibition of a basolateral K+ conductance; a mechanism which might contribute to the inhibition of K+ absorption.
  相似文献   

9.
  1. The effects on the voltage-gated (IK) and Ca2+ activated (IK,Ca) K+ currents in rat arterial myocytes of the 5-lipoxygenase activating protein (FLAP) inhibitor MK886, and its inactive analogue L583,916 were evaluated.
  2. In rat pulmonary arterial myocytes (RPAMs), MK886 caused a concentration-dependent reduction of the IK, with little obvious change in the kinetics of the current. Half maximal current block was observed at 75 nM MK886.
  3. MK886 application led to a concentration-dependent increase in the amplitude of the TEA-sensitive IK,Ca current and single channel activity in RPAMs in whole cell and inside-out configurations, respectively. The threshold concentration for this effect was approximately 300 nM and a maximal 4–5 fold increase was observed at 10 μM MK886. MK886 also increased IK,Ca in rat mesenteric arterial myocytes (RMAMs).
  4. L538,916, an analogue of MK886 which does not block FLAP, had no effect on either IK or IK,Ca at a concentration of 10 μM.
  5. Leukotriene C4 (100 nM) had no effect on either IK or IK,Ca in RPAMs. MK886 produced its usual increase in IK,Ca and also blocked IK, in the presence of leukotriene C4. Similarly, leukotriene E4 (100 nM) did not alter the amplitude of IK. Also, the nonselective leukotriene receptor antagonist ICI 198,615 (3 μM) did not affect IK in RPAMs, and did not affect the response to MK886.
  6. Arachidonic acid (10 μM) enhanced IK,Ca in both RPAMs and RMAMs.
  7. The results show that MK886 markedly affects both IK and IK,Ca in a manner similar to that of arachidonic acid and independent of the endogenous production of leukotrienes. It is therefore possible that MK886, which is thought to compete with arachidonic acid for its binding to FLAP, may similarly occupy arachidonic acid binding sites on these K+ channels, and mimic its effects. Alternatively, MK886 might act via non-selective effects on other arachidonic acid metabolites which could modify K+ channel function.
  相似文献   

10.
  1. To characterize the P2 receptors present on the human umbilical vein endothelial-derived cell line, ECV304, cytosolic Ca2+, ([Ca2+]c), responses were recorded in single cells and in cell suspensions to a series of nucleotides and nucleotide agonists.
  2. Concentration response curves were obtained in fura-2-loaded ECV304 cell suspensions, with EC50 values of 4.2 μM for ATP, 2.5 μM for UTP and 14 μM for adenosine-5′-O-(3-thio)triphosphate (ATPγS). EC50 values for 2-methylthioATP, ADP, adenosine-5′-O-(2-thio)diphosphate (ADPβS) and AMP were 0.5 μM, 3.5 μM, 15 μM and 4.7 μM respectively, but maximal [Ca2+]c responses were less than those produced by a maximal addition of ATP/UTP. ECV304 cells were unresponsive to UDP and β,γ,methyleneATP.
  3. Cross-desensitization studies on ECV304 cells suggested that ATP and UTP recognized the same receptor. However, ADP recognized a receptor distinct from the UTP-sensitive receptor and AMP recognized a third distinct receptor.
  4. ECV304 [Ca2+]c responses to 2-methylthioATP were inhibited in the presence of 30 μM pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS), whereas [Ca2+]c responses to UTP were unaffected by this treatment.
  5. ECV304 cells responded to the diadenosine polyphosphate Ap3A with rises in [Ca2+]c. Apparent responses to Ap4A, Ap5A and Ap6A, were shown to be due to a minor nucleotide contaminant that could be removed by pre-treatment of the diadenosine samples with either alkaline phosphatase or apyrase.
  6. ECV304 cells display a pharmacology consistent with the presence of at least two P2 receptors; a P2Y2 receptor insensitive to the diadenosine polyphosphates and a P2Y1 receptor sensitive to Ap3A. In addition, ECV304 cells respond to AMP with increases in [Ca2+]c via an as yet uncharacterized receptor.
  相似文献   

11.
  1. Two types of Ca2+ channel α1-subunits were co-expressed in Xenopus oocytes with the Ca2+ channel α2- and β1-subunits. The Ba2+ current through the α1Cα2β and the α1Bα2β channels had electrophysiological and pharmacological properties of L- and N-type Ca2+ channels, respectively.
  2. Amlodipine had a strong blocking action on both the L-type and N-type Ca2+ channels expressed in the oocyte. The potency of the amlodipine block on the N-type Ca2+ channel was comparable to that on the L-type Ca2+ channel. At −100 mV holding potential, the IC50 values for amlodipine block on the L-type and N-type Ca2+ channel were 2.4 and 5.8 μM, respectively.
  3. The blocking action of amlodipine on the N-type Ca2+ channel was dependent on holding potential and extracellular pH, as has been observed with amlodipine block on the L-type Ca2+ channel. A depolarized holding potential and high pH enhanced the blocking action of amlodipine.
  4. The time course of block development by amlodipine was similar for L-type and N-type Ca2+ channels. However, it was slower than the time course of block development by nifedipine for the L-type Ca2+ channel.
  相似文献   

12.
  1. The blood-brain barrier is formed by capillary endothelial cells and is regulated by cell-surface receptors, such as the G protein-coupled P2Y receptors for nucleotides. Here we investigated some of the characteristics of control of brain endothelial cells by these receptors, characterizing the phospholipase C and Ca2+ response and investigating the possible involvement of mitogen-activated protein kinases (MAPK).
  2. Using an unpassaged primary culture of rat brain capillary endothelial cells we showed that ATP, UTP and 2-methylthio ATP (2MeSATP) give similar and substantial increases in cytosolic Ca2+, with a rapid rise to peak followed by a slower decline towards basal or to a sustained plateau. Removal of extracellular Ca2+ had little effect on the peak Ca2+-response, but resulted in a more rapid decline to basal. There was no response to α,β-MethylATP (α,βMeATP) in these unpassaged cells, but a response to this P2X agonist was seen after a single passage.
  3. ATP (log EC50 −5.1±0.2) also caused an increase in the total [3H]-inositol (poly)phosphates ([3H]-InsPx) in the presence of lithium with a rank order of agonist potency of ATP=UTP=UDP>ADP, with 2MeSATP and α,βMeATP giving no detectable response.
  4. Stimulating the cells with ATP or UTP gave a rapid rise in the level of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), with a peak at 10 s followed by a decline to a sustained plateau phase. 2MeSATP gave no detectable increase in the level of Ins(1,4,5)P3.
  5. None of the nucleotides tested affected basal cyclic AMP, while ATP and ATPγS, but not 2MeSATP, stimulated cyclic AMP levels in the presence of 5 μM forskolin.
  6. Both UTP and ATP stimulated tyrosine phosphorylation of p42 and p44 mitogen-activated protein kinase (MAPK), while 2MeSATP gave a smaller increase in this index of MAPK activation. By use of a peptide kinase assay, UTP gave a substantial increase in MAPK activity with a concentration-dependency consistent with activation at P2Y2 receptors. 2MeSATP gave a much smaller response with a lower potency than UTP.
  7. These results are consistent with brain endothelial regulation by P2Y2 receptors coupled to phospholipase C, Ca2+ and MAPK; and by P2Y1-like (2MeSATP-sensitive) receptors which are linked to Ca2+ mobilization by a mechanism apparently independent of agonist stimulated Ins (1,4,5)P3 levels. A further response to ATP, acting at an undefined receptor, caused an increase in cyclic AMP levels in the presence of forskolin. The differential MAPK coupling of these receptors suggests that they exert fundamentally distinct influences over brain endothelial function.
  相似文献   

13.
  1. The mechanisms underlying the midazolam-induced relaxation of the noradrenaline (NA)-contraction were studied by measuring membrane potential, isometric force and intracellular concentration of Ca2+([Ca2+]i) in endothelium-denuded muscle strips from the rabbit mesenteric resistance artery. The actions of midazolam were compared with those of nicardipine, an L-type Ca2+-channel blocker.
  2. Midazolam (30 and 100 μM) did not modify either the resting membrane potential or the membrane depolarization induced by 10 μM NA.
  3. NA (10 μM) produced a phasic, followed by a tonic increase in both [Ca2+]i and force. Midazolam (10–100 μM) did not modify the resting [Ca2+]i, but attenuated the NA-induced phasic and tonic increases in [Ca2+]i and force, in a concentration-dependent manner. In contrast, nicardipine (0.3 μM) attenuated the NA-induced tonic, but not phasic, increases in [Ca2+]i and force.
  4. In Ca2+-free solution containing 2 mM EGTA, NA (10 μM) transiently increased [Ca2+]i and force. Midazolam (10–100 μM), but not nicardipine (0.3 μM), attenuated this NA-induced increase in [Ca2+]i and force, in a concentration-dependent manner. However, midazolam (10 and 30 μM), had no effect on the increases in [Ca2+]i and force induced by 10 mM caffeine.
  5. In ryanodine-treated strips, which have functionally lost the NA-sensitive Ca2+- storage sites, NA slowly increased [Ca2+]i and force. Nicardipine (0.3 μM) did not modify the resting [Ca2+]i but partly attenuated the NA-induced increases in [Ca2+]i and force. In the presence of nicardipine, midazolam (100 μM) lowered the resting [Ca2+]i and further attenuated the remaining NA-induced increases in [Ca2+]i and force.
  6. The [Ca2+]i-force relationship was obtained in ryanodine-treated strips by the application of ascending concentrations of Ca2+ (0.16–2.6 mM) in Ca2+-free solution containing 100 mM K+. NA (10 μM) shifted the [Ca2+]i-force relationship to the left and enhanced the maximum Ca2+-induced force. Under these conditions, whether in the presence or absence of 10 μM NA, midazolam (10 and 30 μM) attenuated the increases in [Ca2+]i and force induced by Ca2+ without changing the [Ca2+]i-force relationship.
  7. It was concluded that, in smooth muscle of the rabbit mesenteric resistance artery, midazolam inhibits the NA-induced contraction through its inhibitory action on NA-induced Ca2+ mobilization. Midazolam attenuates NA-induced Ca2+ influx via its inhibition of both nicardipine-sensitive and -insensitive pathways. Furthermore, midazolam attenuates the NA-induced release of Ca2+ from the storage sites. This effect contributes to the midazolam-induced inhibition of the NA-induced phasic contraction.
  相似文献   

14.
  1. The Ca2+ buffering function of sarcoplasmic reticulum (SR) in the resting state of arteries from spontaneously hypertensive rats (SHR) was examined. Differences in the effects of cyclopiazonic acid (CPA) and thapsigargin, agents which inhibit the Ca2+-ATPase of SR, on tension and cellular Ca2+ level were assessed in endothelium-denuded strips of femoral arteries from 13-week-old SHR and normotensive Wistar-Kyoto rats (WKY).
  2. In resting strips preloaded with fura-PE3, the addition of CPA (10 μM) or thapsigargin (100 nM) caused an elevation of cytosolic Ca2+ level ([Ca2+]i) and a contraction. These responses were significantly greater in SHR than in WKY.
  3. The addition of verapamil (3 μM) to the resting strips caused a decrease in resting [Ca2+]i, which was significantly greater in SHR than in WKY. In SHR, but not in WKY, this decrease was accompanied by a relaxation from the resting tone, suggesting the maintenance of myogenic tone in the SHR artery.
  4. Verapamil (3 μM) abolished differences between SHR and WKY. The effects of verapamil were much greater on the contraction than on the [Ca2+]i.
  5. The resting Ca2+ influx in arteries measured after a 5 min incubation of the artery with 45Ca was not increased by CPA or thapsigargin in either SHR or WKY. The net Ca2+ entry measured after a 30 min incubation of the artery with 45Ca was decreased by CPA or thapsigargin in both SHR and WKY. The resting Ca2+ influx was significantly higher in SHR than in WKY, and was decreased by nifedipine (100 nM) in the SHR artery, but was unchanged in the WKY artery.
  6. The resting 45Ca efflux from the artery was increased during the addition of CPA (10 μM). This increase was less in SHR than in WKY. The resting 45Ca efflux was the same in SHR and WKY.
  7. These results suggest that (1) the Ca2+ influx via L-type voltage-dependent Ca2+ channels (VDCCs) was increased in the resting state of the SHR femoral artery, (2) the greater part of the increased Ca2+ influx was buffered by Ca2+ uptake into the SR and some Ca2+ reached the myofilaments resulting in the maintenance of the myogenic tone, and (3) therefore the functional elimination of SR by CPA or thapsigargin caused a large elevation of [Ca2+]i and a potent contraction in this artery. During this process, the contraction was mainly due to the basal Ca2+ influx via L-type VDCCs. The present study also showed the existence of a relatively large compartment of [Ca2+]i which does not contribute to the contraction during the addition of CPA or thapsigargin.
  相似文献   

15.
An intronless open reading frame encoding a protein (361aa in length) was isolated from a rat genomic library probed with a DNA fragment from rat heart. This protein showed 83% sequence identity with the human P2Y4 (hP2Y4) receptor and represents a homologue of the human pyrimidinoceptor. However, the rP2Y4 receptor is not selective for uridine nucleotides and, instead, shows an agonist potency order of ITP=ATP=ADP(pure)=UTP=ATPγS=2-MeSATP=Ap4A>UDP(pure). ADP, ATPγS, 2-MeSATP and UDP are partial agonists. Thus, in terms of agonist profile, rP2Y4 is more like the P2U receptor subtype. The rP2Y4 receptor was reversibly antagonized by Reactive blue 2 but not by suramin which, otherwise, inhibits the hP2Y2 receptor (a known P2U receptor). Thus, rP2Y4 and the P2Y2 subtype appear to be structurally distinct forms of the P2U receptor (where ATP and UTP are equi-active) but can be distinguished as suramin-insensitive and suramin-sensitive P2U receptors, respectively.  相似文献   

16.
  1. CHO cells expressing the α1C-a subunit (cardiac isoform) and the α1C-b subunit (vascular isoform) of the voltage-dependent L-type Ca2+ channel were used to investigate whether tissue selectivity of Ca2+ channel blockers could be related to different affinities for α1C isoforms.
  2. Inward current evoked by the transfected α1 subunit was recorded by the patch-clamp technique in the whole-cell configuration.
  3. Neutral dihydropyridines (nifedipine, nisoldipine, (+)-PN200-110) were more potent inhibitors of α1C-b-subunit than of α1C-a-subunit. This difference was more marked at a holding potential of −100 mV than at −50 mV. SDZ 207-180 (an ionized dihydropyridine) exhibited the same potency on the two isoforms.
  4. Pinaverium (ionized non-dihydropyridine derivative) was 2 and 4 fold more potent on α1C-a than on α1C-b subunit at Vh of −100 mV and −50 mV, respectively. Effects of verapamil were identical on the two isoforms at both voltages.
  5. [3H]-(+)-PN 200-110 binding experiments showed that neutral dihydropyridines had a higher affinity for the α1C-b than for the α1C-a subunit. SDZ 207-180 had the same affinity for the two isoforms and pinaverium had a higher affinity for the α1C-a subunit than for the α1C-b subunit.
  6. These results indicate marked differences among Ca2+ channel blockers in their selectivity for the α1C-a and α1C-b subunits of the Ca2+ channel.
  相似文献   

17.
  1. We have used whole-cell patch clamping methods to study and characterize the cytolytic P2X7 (P2Z) receptor in the NTW8 mouse microglial cell line.
  2. At room temperature, in an extracellular solution containing 2 mM Ca2+ and 1 mM Mg2+, 2′- and 3′-O-(4-benzoylbenzoyl)-adenosine-5′-triphosphate (Bz-ATP; 300 μM), or ATP (3 mM), evoked peak whole cell inward currents, at a holding potential of −90 mV, of 549±191 and 644±198 pA, respectively. Current-voltage relationships generated with 3 mM ATP reversed at 4.6 mV and did not display strong rectification.
  3. In an extracellular solution containing zero Mg2+ and 500 μM Ca2+ (low divalent solution), brief (0.5 s) application of these agonists elicited larger maximal currents (909±138 and 1818±218 pA, Bz-ATP and ATP, respectively). Longer application of ATP (1 mM for 30 s) produced larger, slowly developing, currents which reached a plateau after approximately 15–20 s and were reversible on washing. Under these conditions, in the presence of ATP, ethidium bromide uptake could be demonstrated. Further applictions of 1 mM ATP produced rapid currents of the same magnitude as those observed during the 30 s application. Subsequent determination of concentration-effect curves to Bz-ATP, ATP and 2-methylthio-ATP yielded EC50 values of 58.3, 298 and 505 μM, respectively. These affects of ATP were antagonized by pyridoxal-phosphate-6-azophenyl- 2′, 4′-disulphonic acid (PPADS; 30 μM) but not suramin (100 μM).
  4. In low divalent solution, repeated application of 1 mM ATP for 1 s produced successively larger currents which reached a plateau, after 8 applications, of 466% of the first application current. PPADS (30 μM) prevented this augmentation, while 5-(N,N-hexamethylene)-amiloride (HMA) (100 μM) accelerated it such that maximal augmentation was observed after only one application of ATP in the presence of HMA. At a bath temperature of 32°C, current augmentation also occurred in normal divalent cation containing solution.
  5. These data demonstrate that mouse microglial NTW8 cells possess a purinoceptor with pharmacological characteristics resembling the P2X7 receptor. We suggest that the current augmentation phenomenon observed reflects formation of the large cytolytic pore characteristic of this receptor. We have demonstrated that pore formation can occur under normal physiological conditions and can be modulated pharmacologically, both positively and negatively.
  相似文献   

18.
  1. The contractile response to nitric oxide (NO) in ral ileal myenteric plexus-longitudinal muscle strips was pharmacologically analysed.
  2. NO (10−7M) induced only contraction while 10−6M NO induced contraction followed by relaxation. Methylene blue (up to 10−4M) did not affect the NO-induced contractions but significantly reduced the relaxation evoked by 10−6M NO. Administration of 8-bromo-cyclic GMP (10−6–10−4M) only induced relaxation.
  3. Sodium nitroprusside (SNP; 10−7–10−5M) induced concentration-dependent contractions per se; the contractile response to NO, administered within 10 min after SNP, was concentration-dependently reduced. The guanosine 3′:5′-cyclic monophosphate (cyclic GMP) content of the tissues was not increased during contractions with 10−8M NO and 10−6M SNP; it was increased by a factor of 2 during contraction with 10−7M NO, and by a factor of 12 during relaxation with 3×10−6M NO.
  4. The NO-induced contractions were not affected by ryanodine (3×10−5M) but were concentration-dependently reduced by nifedipine (10−8–10−7M) and apamin (3×10−9–3×10−8M).
  5. These results suggest that cyclic GMP is not involved in the NO-induced contraction in the rat small intestine. The NO-induced contraction is related to extracellular Ca2+ influx through L-type Ca2+ channels, that might be activated in response to the closure of Ca2+-dependent K+ channels.
  相似文献   

19.
  1. The inhibitory effects of cilnidipine (FRC-8653) and various organic Ca2+ channel blockers on high voltage-activated Ba2+ currents (HVA IBa) in rat sympathetic neurones were examined by means of the conventional whole-cell patch-clamp recording mode under voltage-clamped conditions.
  2. HVA IBa was classified into three different current components with subtype selective peptide Ca2+ channel blockers. No ω-Agatoxin IVA-sensitive (P-type) or ω-conotoxin MVIIC-sensitive (Q-type) current components were observed. Most (>85%) IBa was found to consist of ω-conotoxin GVIA-sensitive N-type components.
  3. The application of cilnidipine inhibited HVA IBa in a concentration-dependent manner. The Kd value for cilnidipine was 0.8 μM. Cilnidipine did not shift the current-voltage (I-V) relationship for HVA IBa, as regards the threshold potential and peak potential where the amplitude reached a maximum.
  4. High concentrations of three hypotensive Ca2+ channel blockers, nifedipine, diltiazem and verapamil, all inhibited HVA IBa in a concentration-dependent manner. The Kd values for nifedipine, diltiazem and verapamil were 131, 151 and 47 μM, respectively. A piperazine-type Ca2+ channel blocker, flunarizine, showed a relatively potent blocking action on IBa. The Kd value was about 3 μM.
  5. These results thus show that cilnidipine potently inhibits the sympathetic Ca2+ channels which predominantly consist of an ω-Cg-GVIA-sensitive component. This blockade of the N-type Ca2+ channel, as well as the L-type Ca2+ channel by cilnidipine suggests that it could be used therapeutically for treatment of hypersensitive sympathetic disorders associated with hypertension.
  相似文献   

20.
  1. In this study, the underlying mechanism of stimulation of respiratory burst by kazinol B, a natural isoprenylated flavan, in rat neutrophils in vitro was investigated.
  2. Kazinol B concentration-dependently stimulated the superoxide anion (O2[dot over 2]) generation, with a lag but transient activation profile, in neutrophils but not in a cell-free system. The maximum response (13.2±1.4 nmol O2[dot over 2] 10 min−1 per 106 cells) was observed at 10 μM kazinol B.
  3. Pretreatment of neutrophils with phorbol 12-myristate 13-acetate (PMA) or formylmethionyl-leucyl-phenylalanine (fMLP) significantly enhanced the O2[dot over 2] generation following the subsequent stimulation of cells with kazinol B.
  4. Cells pretreated with EGTA or a protein kinase inhibitor staurosporine effectively attenuated the kazinol B-induced O2[dot over 2] generation. However, a p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 and a phosphoinositide 3-kinase (PI3K) inhibitor wortmannin had no effect on the kazinol B-induced response.
  5. Kazinol B significantly stimulated [Ca2+]i elevation in neutrophils, with a lag and slow rate of rise activation profile, and this response was attenuated by a phospholipase C (PLC) inhibitor U73122. Kazinol B also stimulated the inositol bis- and trisphosphate (IP2 and IP3) formation with a 1 min lag time.
  6. The membrane-associated PKC-α and PKC-θ but not PKC-ι were increased following the stimulation of neutrophils with kazinol B. It was more rapid and sensitive in the activation of PKC-θ than PKC-α by kazinol B. Kazinol B partially inhibited the [3H]phorbol 12,13-dibutyrate ([3H]PDB) binding to the neutrophil cytosolic PKC.
  7. Neither the cellular mass of phosphatidic acid (PA) and phosphatidylethanol (PEt), in the presence of ethanol, nor the protein tyrosine phosphorylation were stimulated by kazinol B. In addition, the kazinol B-induced O2[dot over 2] generation remained relatively unchanged in cells pretreated with ethanol or a tyrosine kinase inhibitor genistein.
  8. Collectively, these results indicate that the stimulation of the respiratory burst by kazinol B is probably mediated by the synergism of PKC activation and [Ca2+]i elevation in rat neutrophils.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号