首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To reduce damage from toxic insults such as glutamate excitotoxicity and oxidative stresses, neurons may deploy an array of neuroprotective mechanisms. Recent reports show that progranulin (PGRN) gene null or missense mutations leading to inactive protein, are linked to frontotemporal lobar degeneration (FTLD), suggesting that survival of certain neuronal populations needs full expression of functional PGRN. Here we show that extracellular PGRN stimulates phosphorylation/activation of the neuronal MEK/extracellular regulated kinase (ERK)/p90 ribosomal S6 kinase (p90RSK) and phosphatidylinositol-3 kinase (PI3K)/Akt cell survival pathways and rescues cortical neurons from cell death induced by glutamate or oxidative stress. Pharmacological inhibition of MEK/ERK/p90RSK signaling blocks the PGRN-induced phosphorylation and neuroprotection against glutamate toxicity while inhibition of either MEK/ERK/p90RSK or PI3K/Akt blocks PGRN protection against neurotoxin MPP+. Inhibition of both pathways had synergistic effects on PGRN-dependent neuroprotection against MPP+ toxicity suggesting both pathways contribute to the neuroprotective activities of PGRN. Extracellular PGRN is remarkably stable in neuronal cultures indicating neuroprotective activities are associated with full-length protein. Together, our data show that extracellular PGRN acts as a neuroprotective factor and support the hypothesis that in FTLD reduction of functional brain PGRN results in reduced survival signaling and decreased neuronal protection against excitotoxicity and oxidative stress leading to accelerated neuronal cell death. That extracellular PGRN has neuroprotective functions against toxic insults suggests that in vitro preparations of this protein may be used therapeutically.  相似文献   

2.
位于染色体6p22.3区域的Dysbindin基因是精神分裂症的易感基因之一.在大脑中,其功能主要是通过复杂的突触后或前机制影响谷氨酸神经递质的释放,现就Dysbindin基因在精神分裂症中的研究情况进行综述,包括Dysbindin基因及其产物,可能的致病机制,与精神分裂症的关联研究以及该基因变异对精神分裂症患者认知功能可能造成的损害.  相似文献   

3.
ErbB-4 activation inhibits apoptosis in PC12 cells.   总被引:4,自引:0,他引:4  
Neuregulins, a large family of polypeptide growth factors, exert various distinctive effects in the nervous system. neuregulins and their receptors are widely expressed in neurons implying important roles in neuronal cell functions. Recently, we have shown that ErbB-4 receptors expressed in PC12 cells mediate neuregulin-induced differentiation. In the present study we demonstrate that in the PC12-ErbB-4 cells, neuregulin rescues cells from apoptosis induced by serum deprivation or tumor necrosis factor (TNF)alpha treatment. The neuregulin-induced survival is comparable to the effect mediated by the neurotrophic factor nerve growth factor (NGF). Both neuregulin and NGF protect cells from apoptosis induced by serum deprivation and TNF alpha treatment. Moreover, neuregulin like NGF induces the survival of neuronal differentiated PC12-ErbB-4 cells. The survival effect of neuregulin is probably mediated by the phosphoinositide 3-kinase (PI3K) and protein kinase B/Akt signaling pathways. Neuregulin induces the activation of PI3K and prolonged activation of protein kinase B/Akt. In addition, inhibition of the PI3K activity prevented the neuregulin-induced survival effect.Taken together, these results indicate that survival induced by neuregulin in PC12-ErbB-4 cells requires PI3K signaling networks.  相似文献   

4.
OBJECTIVE AND DESIGN: To determine the role of phosphatidylinositol 3-kinase (PI 3-kinase) in macrophagecolony stimulating factor (M-CSF)-induced macrophage proliferation. MATERIALS: The M-CSF-dependent BAC1.2F5 murine macrophage cell line was used. METHODS: PI 3-kinase activity, Protein kinase B activation, increased cell numbers, induction of DNA synthesis and apoptosis were measured in response to serum, M-CSF and PI 3-kinase inhibitors. RESULTS: Wortmannin or LY294002 inhibited M-CSF-stimulated increases in BAC1.2F5 cell density. Further analysis showed that inhibition of PI 3-kinase had an insignificant effect on DNA synthesis, but significantly induced apoptosis. Other co-factors in serum mediated cell survival and prevented programmed cell death, in a PI 3-kinase-dependent manner. Stimulation of BAC1.2F5 macrophages with M-CSF induced phosphorylation of PKB/Akt as detected by activation-specific antibodies. Activation of PKB/Akt correlated with PI 3-kinase activation, suggesting that the protection from apoptosis in these cells is mediated by PKB/Akt. CONCLUSIONS: These results indicate that the lack of increase in cell numbers when cells are stimulated with M-CSF in the presence of PI 3-kinase inhibitors is due to a preferential PI 3-kinase requirement for protection against apoptosis, rather than a requirement for PI 3-kinase activation during the proliferation signal.  相似文献   

5.
目的:探讨紫草素对氧糖剥夺(OGD)损伤模型中大鼠原代皮层神经元的作用及机制。方法:用不同浓度(0. 02、0. 2、2和20μmol/L)紫草素对大鼠原代皮层神经元经进行预处理,再经OGD损伤处理,用乳酸脱氢酶(LDH)释放法和荧光素二乙酸酯/碘化丙啶(FDA/PI)双染法分别检测神经元活性和凋亡情况,选择最适紫草素浓度。然后,在加入紫草素之前提前加入LY294002(PI3K/Akt信号通路抑制剂,1μmol/L),用Wesern blot法检测神经元p-Akt(Ser473)水平变化,用LDH法和FDA/PI双染法检测神经元活性和凋亡率变化。结果:0. 2、2及20μmol/L的紫草素可显著提高神经元存活率(P 0. 05),同时还可使神经元内p-Akt(Ser473)水平显著升高(P 0. 05); LY294002可显著阻断紫草素对神经元p-Akt(Ser473)水平和凋亡率的影响(P 0. 05)。结论:紫草素可通过激活PI3K/Akt通路来减少OGD诱导的大鼠原代皮层神经元凋亡。  相似文献   

6.
The molecular mechanisms underlying the pathogenesis of the malignant Hodgkin's/Reed-Sternberg (HRS) cells of Hodgkin's lymphoma (HL) are largely unknown. This study investigates the contribution of phosphatidyl-inositide 3 kinase (PI3-kinase) and demonstrates that Akt, a substrate of PI3-kinase, is constitutively activated in HL-derived cell lines. Several downstream effectors of Akt signalling, including glycogen synthase kinase 3 (GSK-3) alpha and beta and mTOR substrates 4E-BP1 and p70 S6 kinase, were also phosphorylated in HL cells. The mTOR inhibitor, rapamycin, inhibited phosphorylation of these proteins. Furthermore, LY294002 inhibited phosphorylation of p70 S6 kinase and 4E-BP1, suggesting that the phosphorylation of p70 S6 kinase and 4E-BP1 in HL cells is PI3-kinase dependent. Importantly, HRS cells of primary tumour samples not only expressed high levels of activated Akt but also displayed phosphorylation of downstream targets of Akt activation including GSK-3, 4E-BP1, and p70 S6 Kinase. Inhibition of PI3-kinase and mTOR showed only modest effects on cell survival at the lower serum concentrations. However, rapamycin and doxorubicin acted synergistically to reduce HL cell survival. A combination of rapamycin and chemotherapy should be investigated in the treatment of HL.  相似文献   

7.
Patients with diabetes are at higher risk of stroke and experience increased morbidity and mortality after stroke. We hypothesized that cortical neurons develop insulin resistance, which decreases neuroprotection via circulating insulin and insulin-like growth factor-I (IGF-I). Acute insulin treatment of primary embryonic cortical neurons activated insulin signaling including phosphorylation of the insulin receptor, extracellular signal-regulated kinase (ERK), Akt, p70S6K, and glycogen synthase kinase-3β (GSK-3β). To mimic insulin resistance, cortical neurons were chronically treated with 25?mM glucose, 0.2?mM palmitic acid (PA), or 20?nM insulin before acute exposure to 20?nM insulin. Cortical neurons pretreated with insulin, but not glucose or PA, exhibited blunted phosphorylation of Akt, p70S6K, and GSK-3β with no change detected in ERK. Inhibition of the phosphatidylinositol 3-kinase (PI3-K) pathway during insulin pretreatment restored acute insulin-mediated Akt phosphorylation. Cortical neurons in adult BKS-db/db mice exhibited higher basal Akt phosphorylation than BKS-db(+) mice and did not respond to insulin. Our results indicate that prolonged hyperinsulinemia leads to insulin resistance in cortical neurons. Decreased sensitivity to neuroprotective ligands may explain the increased neuronal damage reported in both experimental models of diabetes and diabetic patients after ischemia-reperfusion injury.  相似文献   

8.
Wei L  Hou L  Zhu S  Wang J  Zhou J  Liu J 《Virology》2011,417(1):211-220
Phosphatidylinositol 3-kinase (PI3K)/Akt signaling is commonly activated upon virus infection and has been implicated in the regulation of diverse cellular functions such as proliferation and apoptosis. The present study demonstrated for the first time that infectious bursal disease virus (IBDV), the causative agent of a highly contagious disease in chickens, can induce Akt phosphorylation in cultured cells, by a mechanism that is dependent on PI3K. Inhibition of PI3K activation greatly enhanced virus-induced cytopathic effect and apoptotic cell death as evidenced by cleavage of poly-ADP ribose polymerase and activation of caspase-3. Investigations into the mechanism of PI3K/Akt activation revealed that IBDV activates PI3K/Akt signaling through binding of the non-structural protein VP5 to regulatory subunit p85α of PI3K resulting in the suppression of premature apoptosis and improved virus growth after infection. The results presented here provide a basis for understanding molecular mechanism of IBDV infection.  相似文献   

9.
Cortical development is disrupted in presenilin-1 null mutant (Psen1-/-) mice. Prior studies have commented on similarities between Psen1-/- and reeler mice. Reelin induces phosphorylation of Dab1 and activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Psen1 is known to modulate PI3K/Akt signaling and both known reelin receptors (apoER2 and VLDLR) are substrates for Psen1 associated gamma-secretase activity. The purpose of this study was to determine whether reelin signaling is disrupted in Psen1-/- mice. We show that, while Dab1 is hypophosphorylated late in cortical development in Psen1-/- mice, it is normally phosphorylated at earlier ages and reelin signaling is intact in Psen1-/- primary neuronal cultures. gamma-secretase activity was also not required for reelin-induced phosphorylation of Dab1. Unlike reeler mice the preplate splits in Psen1-/- brain. Thus cortical development in Psen1-/- mice fails only after splitting of the preplate and is not due to an intrinsic failure of reelin signaling.  相似文献   

10.
Insulin-like growth factor-1 (IGF-1) is a polypeptide tropic factor that plays an important role in the survival and differentiation of both neuronal and non-neuronal cells. Numerous studies have demonstrated that IGF-1 promotes neuronal cell survival via the PI3K/Akt signaling pathway. Proline-rich Akt substrate of 40kDa (PRAS40) is a recently discovered downstream target of Akt. However, the relationship between IGF-1 and PRAS40 is not known. In this study, we characterized the phosphorylation of PRAS40 induced by IGF-1 in PC12 cells and explored the signaling pathway responsible for the effect of IGF-1. IGF-1 induced the phosphorylation of Akt at Thr473 and PRAS40 at Thr246 in PC12 cells. The phosphorylation of Akt and PRAS40 induced by IGF-1 (100ng/ml) was inhibited by the phosphatidylinositide 3-kinase (PI3K) specific inhibitor LY294002 (50μM), while no inhibitory effect was observed for a MAPK kinase pathway specific inhibitor PD98059 nor a p38 MAPK inhibitor PD169316, suggesting that the phosphorylation of PRAS40 induced by IGF-1 is mediated by the PI3K pathway in PC12 cells and primary cultured neurons. In further support this hypothesis, an Akt kinase specific inhibitor, Akt inhibitor VIII, attenuated IGF-1-induced phosphorylation of PRAS40 at the concentration that blocked the phosphorylation of Akt induced by IGF-1. Taken together, these data demonstrate that IGF-1 stimulates the phosphorylation of PRAS40 at Thr246 in neuronal cells and the effect of IGF-1 is mediated, at least in part, by the PI3K/Akt signaling pathway.  相似文献   

11.
The ERK MAP kinase and PI3-kinase/Akt pathways are major intracellular signaling modules, which are known to regulate diverse cellular processes including cell proliferation, survival and malignant transformation. However, it has not been fully understood how these two pathways interact with each other. Here, we demonstrate that inhibition of the ERK pathway by the MEK inhibitor U0126 or PD98059 significantly potentiates EGF- and FGF-induced Akt phosphorylation at both Thr308 and Ser473. We also show that hyperactivation of the ERK pathway greatly attenuates EGF- and FGF-induced Akt phosphorylation. Furthermore, the enhanced Akt phosphorylation induced by U0126 is inhibited by the PI3-kinase inhibitor LY294002, and is accompanied by the up-regulation of Ras activity. These results suggest that the ERK pathway inhibition enhances Akt phosphorylation through the Ras/PI3-kinase pathway. Thus, our results demonstrate that the ERK pathway negatively modulates the PI3-kinase/Akt pathway in response to growth factor stimulation.  相似文献   

12.
Previously, we showed that Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm) stimulates superoxide generation and chemotactic migration in monocytes and neutrophils. In this study, we examined the effect of WKYMVm on monocyte survival. Serum starvation-induced monocyte death was attenuated in the presence of WKYMVm, which was abated when the cells were preincubated with LY294002, suggesting the involvement of phosphoinositide-3-kinase (PI 3-kinase) in the peptide-induced monocyte survival. WKYMVm stimulated ERK and Akt activity via PI 3-kinase activation in monocytes. We also investigated the signaling pathway of WKYMVm-induced ERK and Akt activation. The WKYMVm-induced ERK activation was PI 3-kinase-dependent but PKC-independent. However, Akt activation by WKYMVm was dependent not only on PI 3-kinase but also on the PKC pathway. When monocytes were incubated with WKYMVm, caspase-3 activity, which is important for cell death, was inhibited. Pretreatment of the cells with LY294002, GF109203X, and Go 6976 but not PD98059 blocked WKYMVm-induced monocyte survival and caspase-3 inhibition. In summary, the novel chemoattractant WKYMVm enhances monocyte survival via Akt-mediated pathways, and in this process, PKC and PI 3-kinase act upstream of Akt.  相似文献   

13.
The role of the common neurotrophin receptor p75 (p75NTR) in neuronal survival and cell death remains controversial. On the one hand, p75NTR provides a positive modulatory influence on nerve growth factor (NGF) signaling through the high affinity neurotrophin receptor TrkA, and hence increases NGF survival signaling. However, p75NTR may also signal independently of TrkA, causing cell death or cell survival, depending on the cell type and stage of development. Here we demonstrate that TrkA is expressed in primary cultures of hippocampal neurons and is activated by NGF within 10 min of exposure. In primary hippocampal cultures neuroprotection by NGF against glutamate toxicity was mediated by NF-kappaB and accompanied by an increased expression of neuroprotective NF-kappaB target genes Bcl-2 and Bcl-xl. In mouse hippocampal cells lacking p75NTR (p75NTR-/-) activation of TrkA by NGF was not detectable. Moreover, neuroprotection by NGF against glutamate toxicity was abolished in p75NTR-/- neurons, and the expression of bcl-2 and bcl-xl was markedly reduced as compared to wildtype cells. NGF increased TrkA phosphorylation in hippocampal neurons and provided protection that required phosphoinositol-3-phosphate (PI3)-kinase activity and Akt phosphorylation, whereas the mitogen-activated protein kinases (MAPK), extracellular-regulated kinases (Erk) 1/2, were not involved. P75NTR signaling independent of TrkA, such as increased neutral sphingomyelinase (NSMase) activity causing enhanced levels of ceramide, were not detected after exposure of hippocampal neurons to NGF. Interestingly, inhibition of sphingosine-kinase blocked the neuroprotective effect of NGF, suggesting that sphingosine-1-phosphate was also involved in NGF-mediated survival in our cultured hippocampal neurons. Overall, our results indicate an essential role for p75NTR in supporting NGF-triggered TrkA signaling pathways mediating neuronal survival in hippocampal neurons.  相似文献   

14.
The dysbindin gene (DTNBP1) is located in chromosome 6p22.3, one of the regions of positive linkage for schizophrenia. A strong genetic association between DTNBP1 and schizophrenia has been replicated through many recent studies. In particular, dysbindin protein has been found to play a role in the glutamate neural transmission in the brain. In this study, we attempted to replicate the previously reported positive association between DTNBP1 and schizophrenia in the Korean population. Our sample included 194 patients with schizophrenia based on DSM-IV and 351 normal controls. We genotyped five SNPs including SNP A in promoter region of DTNBP1. The allele and genotype association were analyzed and the simulated haplotype was investigated as well. As the result, we could not find a significant association of DTNBP1 with schizophrenia in this Korean sample. Additional analysis of the subgroup of schizophrenia having familial loading of major psychiatric disorders did not show association, either. In summary, DTNBP1 is not likely to be a major susceptibility gene for schizophrenia in this Korean population. This result of no association also implies possible genetic heterogeneity of schizophrenia. Further studies with more dense SNPs of the whole gene sequence for various populations will be necessary to understand the genetic contribution of DTNBP1 for the development of schizophrenia.  相似文献   

15.
The synapsins are a family of neuronal phosphoproteins evolutionarily conserved in invertebrate and vertebrate organisms. Their best-characterised function is to modulate neurotransmitter release at the pre-synaptic terminal, by reversibly tethering synaptic vesicles (SVs) to the actin cytoskeleton. However, many recent data have suggested novel functions for synapsins in other aspects of the pre-synaptic physiology, such as SV docking, fusion and recycling. Synapsin activity is tightly regulated by several protein kinases and phosphatases, which modulate the association of synapsins to SVs as well as their interaction with actin filaments and other synaptic proteins. In this context, synapsins act as a link between extracellular stimuli and the intracellular signalling events activated upon neuronal stimulation. Genetic manipulation of synapsins in various in vivo models has revealed that, although not essential for the basic development and functioning of neuronal networks, these proteins are extremely important in the fine-tuning of neuronal plasticity, as shown by the epileptic phenotype and behavioural abnormalities characterising mouse lines lacking one or more synapsin isoforms.  相似文献   

16.
Using a neuronal model of serum starved SK-N-SH neuroblastoma cells, we showed previously that the phosphorylation of Akt and the mTOR substrates S6K and S6 through the vascular endothelial growth factor receptor VEGFR2 was enhanced by treatments with the phosphatase PP2A inhibitor okadaic acid (OA). These findings suggested that PP2A inhibition uncouples the regulation of Akt signaling by mTOR and affects cell survival. We therefore examined the effects of mTOR inhibition on Akt phosphorylation at sites threonine 308 (T308) and serine 473 (S473) and survival in OA treated cells. OA induced a loss in cell viability, the accumulation of hyperactivated Akt as monomeric and ubiquitinated forms and an increase in the total levels of ubiquitinated proteins. These events were exacerbated by treatments with an allosteric (rapamycin) but not an active-site inhibitor (PP242) of mTOR. Notably, rapamycin augmented the OA-induced hyperphosphorylation of Akt by suppressing a negative feedback loop of Akt activation through VEGFR2 and its downstream target phosphatidylinositol 3-kinase (PI3K). Treatments with the antioxidant N-acetlycysteine but not the pan caspase inhibitor Z-VAD-FMK promoted survival. Unlike reports that rapamycin promotes survival through increased Akt activation, these findings show that rapamycin-induced hyperphosphorylation of Akt fails to rescue our neuronal model from an oxidative stress-induced and caspase-independent cell death mediated by PP2A inhibition. Moreover, the exacerbation of OA-induced events by rapamycin suggests that mTOR and PP2A work in concert to regulate cell survival, activated Akt and the levels of ubiquitinated proteins.  相似文献   

17.
The fundamental pathological process(es) associated with schizophrenia (SZ) remain(s) uncertain, but multiple lines of evidence suggest that this condition is associated with excessive stimulation of striatal dopamine (DA) D2 receptors, deficient stimulation of medial prefrontal cortex (mPFC) D1 receptors as well as neuronal apoptosis. Unlike typical antipsychotics, stepholidine (SPD), which is isolated from the Chinese herb stephania, has D1 and D2 dual properties and regulates neuronal cell differentiation and proliferation. It is unknown, however, whether it possesses a neuroprotective property. Here, we report that SPD prevented neuronal cell death from H2O2 exposure and increased the levels of phosphorylated Akt (pAkt), a serine/threonine protein kinase. The SPD-induced neuroprotection and activation of Akt were blocked by LY294002, a PI3-K inhibitor, suggesting that the anti-apoptotic action of SPD is mediated via the PI3-K/Akt signaling pathway. Thus, as a survival or anti-apoptotic factor for neuronal cells, SPD may contribute to the therapeutic action of SPD in SZ treatment.  相似文献   

18.
Zhang QG  Han D  Xu J  Lv Q  Wang R  Yin XH  Xu TL  Zhang GY 《Neuroscience》2006,143(2):431-444
Activation of Akt/protein kinase B has been recently reported to play an important role in ischemic tolerance. We here demonstrate that the decreased protein expression and phosphorylation of phosphatase and tensin homolog deleted from chromosome 10 (PTEN) underlie the increased Akt-Ser-473 phosphorylation in the hippocampal CA1 subfield in ischemic preconditioning (IPC). Co-immunoprecipitation analysis reveals that Akt physically interacts with Rac1, a small Rho family GTPase required for mixed lineage kinase 3 (MLK3) autophosphorylation, and both this interaction and Rac1-Ser-71 phosphorylation induced by Akt are promoted in preconditioned rats. In addition, we show that Akt activation results in the disassembly of the plenty of SH3s (POSH)-MLK3-Rac1 signaling complex and down-regulation of the activation of MLK3/c-Jun N-terminal kinase (JNK) pathway. Akt activation results in decreased serine phosphorylation of 14-3-3, a cytoplasmic anchor of Bax, and prevents ischemia-induced mitochondrial translocation of Bax, release of cytochrome c, and activation of caspase-3. The expression of Fas ligand is also decreased in the CA1 region. Akt activation protects against apoptotic neuronal death as shown in TUNEL staining following IPC. Intracerebral infusion of LY294002 before IPC reverses the increase in Akt phosphorylation and the decrease in JNK signaling activation, as well as the neuroprotective action of IPC. Our results suggest that activation of pro-apoptotic MLK3/JNK3 cascade can be suppressed through activating anti-apoptotic phosphoinositide 3-kinase/Akt pathway induced by a sublethal ischemic insult, which provides a functional link between Akt and the JNK family of stress-activated kinases in ischemic tolerance.  相似文献   

19.
We have investigated the role of phosphatidylinositol 3-kinase (PI3K) and serine/threonine protein kinase B (Akt) in mediating vascular smooth muscle cells (VSMC) sodium pump (Na+, K(+)-ATPase) regulatory interactions between insulin-like growth factor-1 (IGF-1) and angiotensin II (Ang II). Treatment with IGF-1 (100 nM) for 30 min or Ang II (100 nM) for 10 min increased sodium pump activity. Pretreatment with Ang II for 10 min, abolished IGF-1 increased sodium pump activity. Given separately for 6 h, Ang II and IGF-1 stimulated alpha1 mRNA accumulation. Phosphorylation on Ser473 of Akt was increased after treatment with both IGF-1 and Ang II. Pretreatment with 100 nM of PI3K inhibitor Wortmannin (WT) for 30 min decreased: IGF-1 and Ang II-stimulated pump activity, phosphorylation of Akt and PI3K protein expression. Pretreatment with Ang II attenuated IGF-1-stimulated sodium pump activity, phosphorylation of Akt and PI3K protein expression. IGF-1 increased the association between IRS-1 and p85, and Ang II as well as PI3K inhibition decreased this IGF-1 effect. These results suggest that Ang II, which increases pump activity alone, reduces the IGF-1 stimulation of sodium pump activity by attenuating PI3K/Akt signaling. These results implicate PI3K/Akt pathways in Ang II/IGF-1 regulation of the sodium pump in VSMC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号