首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Genetics in medicine》2019,21(7):1629-1638
PurposeThe diagnostic rate for Mendelian diseases by exome sequencing (ES) is typically 20–40%. The low rate is partly because ES misses deep-intronic or synonymous variants leading to aberrant splicing. In this study, we aimed to apply RNA sequencing (RNA-seq) to efficiently detect the aberrant splicings and their related variants.MethodsAberrant splicing in biopsied muscles from six nemaline myopathy (NM) cases unresolved by ES were analyzed with RNA-seq. Variants related to detected aberrant splicing events were analyzed with Sanger sequencing. Detected variants were screened in NM patients unresolved by ES.ResultsWe identified a novel deep-intronic NEB pathogenic variant, c.1569+339A>G in one case, and another novel synonymous NEB pathogenic variant, c.24684G>C (p.Ser8228Ser) in three cases. The c.24684G>C variant was observed to be the most frequent among all NEB pathogenic variants in normal Japanese populations with a frequency of 1 in 178 (20 alleles in 3552 individuals), but was previously unrecognized. Expanded screening of the variant identified it in a further four previously unsolved nemaline myopathy cases.ConclusionThese results indicated that RNA-seq may be able to solve a large proportion of previously undiagnosed muscle diseases.  相似文献   

2.
A mutation update on the nebulin gene (NEB) is necessary because of recent developments in analysis methodology, the identification of increasing numbers and novel types of variants, and a widening in the spectrum of clinical and histological phenotypes associated with this gigantic, 183 exons containing gene. Recessive pathogenic variants in NEB are the major cause of nemaline myopathy (NM), one of the most common congenital myopathies. Moreover, pathogenic NEB variants have been identified in core‐rod myopathy and in distal myopathies. In this update, we present the disease‐causing variants in NEB in 159 families, 143 families with NM, and 16 families with NM‐related myopathies. Eighty‐eight families are presented here for the first time. We summarize 86 previously published and 126 unpublished variants identified in NEB. Furthermore, we have analyzed the NEB variants deposited in the Exome Variant Server ( http://evs.gs.washington.edu/EVS/ ), identifying that pathogenic variants are a minor fraction of all coding variants (~7%). This indicates that nebulin tolerates substantial changes in its amino acid sequence, providing an explanation as to why variants in such a large gene result in relatively rare disorders. Lastly, we discuss the difficulties of drawing reliable genotype–phenotype correlations in NEB‐associated disease.  相似文献   

3.
Arthrogryposis multiplex congenita affects approximately 1 in 3,000 individuals of different ethnic backgrounds and displays an equal incidence in males and females. The underlying mechanism for congenital contracture of the joints is decreased fetal movement during intrauterine development. This disorder is associated with over 400 medical conditions and 350 known genes that display considerable variability in phenotypic expression. In this report, four fetal or perinatal autopsy cases of arthrogryposis were studied by gross morphology, microscopic histopathologic examination, and whole genome sequencing of postmortem DNA. Two stillborn sibling fetuses with arthrogryposis, pterygia, and amyoplasia had compound heterozygous pathogenic variants in NEB. A neonate with a histopathologic diagnosis of nemaline myopathy had a heterozygous de novo pathogenic variant in ACTA1. Another stillborn infant with pterygia and arthrogryposis had a heterozygous de novo likely pathogenic variant in BICD2. These cases demonstrate the utility of whole genome sequencing as the principal diagnostic method of lethal forms of skeletal muscle disorders that present with arthrogryposis and muscle amyoplasia/hypoplasia. Molecular diagnosis provides an opportunity for studying patterns of inheritance and for family counseling concerning future pregnancies.
  相似文献   

4.
Variants in ACTA1, which encodes α-skeletal actin, cause several congenital myopathies, most commonly nemaline myopathy. Autosomal recessive variants comprise approximately 10% of ACTA1 myopathy. All recessive variants reported to date have resulted in loss of skeletal α-actin expression from muscle and severe weakness from birth. Targeted next-generation sequencing in two brothers with congenital muscular dystrophy with rigid spine revealed homozygous missense variants in ACTA1. Skeletal α-actin expression was preserved in these patients. This report expands the clinical and histological phenotype of ACTA1 disease to include congenital muscular dystrophy with rigid spine and dystrophic features on muscle biopsy. This represents a new class of recessive ACTA1 variants, which do not abolish protein expression.  相似文献   

5.
A male neonate presented with severe weakness, hypotonia, contractures and congenital scoliosis. Skeletal muscle specimens showed marked atrophy and degeneration of fast fibers with striking nemaline rods and hypertrophy of slow fibers that were ultrastructurally normal. A neuromuscular gene panel identified a homozygous essential splice variant in TNNT3 (chr11:1956150G > A, NM_006757.3:c.681+1G > A). TNNT3 encodes skeletal troponin‐Tfast and is associated with autosomal dominant distal arthrogryposis. TNNT3 has not previously been associated with nemaline myopathy (NM), a rare congenital myopathy linked to defects in proteins associated with thin filament structure and regulation. cDNA studies confirmed pathogenic consequences of the splice variant, eliciting exon‐skipping and intron retention events leading to a frameshift. Western blot showed deficiency of troponin‐Tfast protein with secondary loss of troponin‐Ifast. We establish a homozygous splice variant in TNNT3 as the likely cause of severe congenital NM with distal arthrogryposis, characterized by specific involvement of Type‐2 fibers and deficiency of troponin‐Tfast.  相似文献   

6.
Congenital fiber type disproportion (CFTD) is a rare congenital myopathy characterized by hypotonia and generalized muscle weakness. Pathologic diagnosis of CFTD is based on the presence of type 1 fiber hypotrophy of at least 12% in the absence of other notable pathological findings. Mutations of the ACTA1 and SEPN1 genes have been identified in a small percentage of CFTD cases. The muscle tropomyosin 3 gene, TPM3, is mutated in rare cases of nemaline myopathy that typically exhibit type 1 fiber hypotrophy with nemaline rods, and recently mutations in the TPM3 gene were also found to cause CFTD. We screened the TPM3 gene in patients with a clinical diagnosis of CFTD, nemaline myopathy, and with undefined congenital myopathies. Mutations in TPM3 were identified in 6 out of 13 patients with CFTD, as well as in one case of nemaline myopathy. Review of muscle biopsies from patients with diagnoses of CFTD revealed that patients with a TPM3 mutation all displayed marked disproportion of fiber size, without type 1 fiber predominance. Several mutation‐negative cases exhibited other abnormalities, such as central nuclei and central cores. These results support the utility of the CFTD diagnosis in directing the course of genetic testing. Hum Mutat 30:1–8, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Recessive nebulin (NEB) mutations are a common cause of nemaline myopathy (NM), typically characterized by generalized weakness of early-onset and nemaline rods on muscle biopsy. Exceptional adult cases with additional cores and an isolated distal weakness have been reported. The large NEB gene with 183 exons has been an obstacle for the genetic work-up. Here we report a childhood-onset case with distal weakness and a core-rod myopathy, associated with recessive NEB mutations identified by next generation sequencing (NGS). This 6-year-old boy presented with a history of gross-motor difficulties following a normal early development. He had distal leg weakness with bilateral foot drop, as well as axial muscle weakness, scoliosis and spinal rigidity; additionally he required nocturnal respiratory support. Muscle magnetic resonance (MR) imaging showed distal involvement in the medial and anterior compartment of the lower leg. A muscle biopsy featured both rods and cores. Initial targeted testing identified a heterozygous Nebulin exon 55 deletion. Further analysis using NGS revealed a frameshifting 4 bp duplication, c.24372_24375dup (P.Val8126fs), on the opposite allele. This case illustrates that NEB mutations can cause childhood onset distal NM, with additional cores on muscle biopsy and proves the diagnostic utility of NGS for myopathies, particularly when large genes are implicated.  相似文献   

8.
Mutations in genes encoding proteins of the smooth muscle cell (SMC) contractile apparatus contribute to familial aortic aneurysms. To investigate the pathogenicity of these mutations, SMC are required. We demonstrate a novel method to generate SMC‐like cells from human dermal fibroblasts by transdifferentiation to study the effect of variants in genes encoding proteins of the SMC contractile apparatus (ACTA2 and MYH11) in patients with aortic aneurysms. Dermal fibroblasts from seven healthy donors and cells from seven patients with MYH11 or ACTA2 variants were transdifferentiated into SMC‐like cells within a 2‐week duration using 5 ng/ml TGFβ1 on a scaffold containing collagen and elastin. The induced SMC were comparable to primary human aortic SMC in mRNA expression of SMC markers which was confirmed on the protein level by immunofluorescence quantification analysis and Western blotting. In patients with MYH11 or ACTA2 variants, the effect of intronic variants on splicing was demonstrated on the mRNA level in the induced SMC, allowing classification into pathogenic or nonpathogenic variants. In conclusion, direct conversion of human dermal fibroblasts into SMC‐like cells is a highly efficient method to investigate the pathogenicity of variants in proteins of the SMC contractile apparatus.  相似文献   

9.
Nemaline myopathy (NM) is a group of congenital myopathies, characterized by the presence of distinct rod-like inclusions "nemaline bodies" in the sarcoplasm of skeletal muscle fibers. To date, ACTA1, NEB, TPM3, TPM2, TNNT1, and CFL2 have been found to cause NM. We have identified recessive RYR1 mutations in a patient with severe congenital NM, through high-throughput screening of congenital myopathy/muscular dystrophy-related genes using massively parallel sequencing with target gene capture. The patient manifested fetal akinesia, neonatal severe hypotonia with muscle weakness, respiratory insufficiency, swallowing disturbance, and ophthalomoplegia. Skeletal muscle histology demonstrated nemaline bodies and small type 1 fibers, but without central cores or minicores. Congenital myopathies, a molecularly, histopathologically, and clinically heterogeneous group of disorders are considered to be a good candidate for massively parallel sequencing.  相似文献   

10.
11.
Severe congenital neutropenia (SCN) is a rare disorder, often due to pathogenic variants in genes such as ELANE, HAX1, and SBDS. SRP54 pathogenic variants are associated with SCN and Shwachman-Diamond-like syndrome. Thirty-eight patients with SRP54-related SCN are reported in the literature. We present an infant with SCN, without classic Shwachman-Diamond syndrome features, who presented with recurrent bacterial infections and an SRP54 (c.349_351del) pathogenic variant. Despite ongoing granulocyte colony-stimulating factor therapy, this patient has no evidence of malignant transformation. Here we establish a framework for the future development of universal guidelines to care for this patient population.  相似文献   

12.
The ACTA1 gene encodes skeletal muscle α‐actin, which is the predominant actin isoform in the sarcomeric thin filaments of adult skeletal muscle, and essential, along with myosin, for muscle contraction. ACTA1 disease‐causing mutations were first described in 1999, when a total of 15 mutations were known. In this article we describe 177 different disease‐causing ACTA1 mutations, including 85 that have not been described before. ACTA1 mutations result in five overlapping congenital myopathies: nemaline myopathy; intranuclear rod myopathy; actin filament aggregate myopathy; congenital fiber type disproportion; and myopathy with core‐like areas. Mixtures of these histopathological phenotypes may be seen in a single biopsy from one patient. Irrespective of the histopathology, the disease is frequently clinically severe, with many patients dying within the first year of life. Most mutations are dominant and most patients have de novo mutations not present in the peripheral blood DNA of either parent. Only 10% of mutations are recessive and they are genetic or functional null mutations. To aid molecular diagnosis and establishing genotype–phenotype correlations, we have developed a locus‐specific database for ACTA1 variations ( http://waimr.uwa.edu.au ). Hum Mutat 30:1–11, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure syndrome characterized by erythroid aplasia. Pathogenic variants in ribosomal protein (RP) genes, GATA1, TSR2, and EPO, are considered to be the etiology of DBA. Variants in 5′-untranslated regions (UTRs) of these genes are poorly studied and can complicate the variant interpretation. We investigated the functional consequences NM_001011.4:c.-19 + 1G > T variant in the donor splice-site of the RPS7 5′-UTR. This variant was found in a family where two sons with DBA were carriers. Father, who also had this variant, developed myelodysplastic syndrome, which caused his death. Search for candidate causal variants and copy number variations in DBA-associated genes left RPS7 variant as the best candidate. Trio whole exome sequencing analysis revealed no pathogenic variants in other genes. Functional analysis using luciferase expression system revealed that this variant leads to disruption of splicing. Also, a decrease in the levels of mRNA and protein expression was detected. In conclusion, the established consequences of 5′-UTR splice-site variant c.-19 + 1G > T in the RPS7 gene provide evidence that it is likely pathogenic.  相似文献   

14.
Collagen VI‐related myopathy, caused by pathogenic variants in the genes encoding collagen VI, represents a clinical continuum from Ullrich congenital muscular dystrophy (UCMD) to Bethlem myopathy (BM). Clinical data of 60 probands and their family members were collected and muscle biopsies of 26 patients were analyzed. COL6A1, COL6A2 and COL6A3 exons were analyzed by direct sequencing or next generation sequencing (NGS). Sixty patients were characterized by delayed motor milestones, muscle weakness, skin and joint changes with 40 UCMD and 20 BM. Muscle with biopsies revealed dystrophic changes and showed completely deficiency of collagen VI or sarcolemma specific collagen VI deficiency. We identified 62 different pathogenic variants in these 60 patients, with 34 were first reported while 28 were previously known; 72 allelic pathogenic variants in COL6A1 (25/72, 34.7%), COL6A2 (33/72, 45.8%) and COL6A3 (14/72, 19.4%). We also found somatic mosaic variant in the parent of 1 proband by personal genome machine amplicon deep sequencing for mosaicism. Here we provide clinical, histological and genetic evidence of collagen VI‐related myopathy in 60 Chinese patients. NGS is a valuable approach for diagnosis and accurate diagnosis provides useful information for genetic counseling of related families.  相似文献   

15.
Biallelic variants of the gene DNAJC12, which encodes a cochaperone, were recently described in patients with hyperphenylalaninemia (HPA). This paper reports the retrospective genetic analysis of a cohort of unsolved cases of HPA. Biallelic variants of DNAJC12 were identified in 20 patients (generally neurologically asymptomatic) previously diagnosed with phenylalanine hydroxylase (PAH) deficiency (phenylketonuria [PKU]). Further, mutations of DNAJC12 were identified in four carriers of a pathogenic variant of PAH. The genetic spectrum of DNAJC12 in the present patients included four new variants, two intronic changes c.298‐2A>C and c.502+1G>C, presumably affecting the splicing process, and two exonic changes c.309G>T (p.Trp103Cys) and c.524G>A (p.Trp175Ter), classified as variants of unknown clinical significance (VUS). The variant p.Trp175Ter was detected in 83% of the mutant alleles, with 14 cases homozygous, and was present in 0.3% of a Spanish control population. Functional analysis indicated a significant reduction in PAH and its activity, reduced tyrosine hydroxylase stability, but no effect on tryptophan hydroxylase 2 stability, classifying the two VUS as pathogenic variants. Additionally, the effect of the overexpression of DNAJC12 on some destabilizing PAH mutations was examined and a mutation‐specific effect on stabilization was detected suggesting that the proteostasis network could be a genetic modifier of PAH deficiency and a potential target for developing mutation‐specific treatments for PKU.  相似文献   

16.
Kabuki syndrome is characterized by a variable degree of intellectual disability, characteristic facial features, and complications in various organs. Many variants have been identified in two causative genes, that is, lysine methyltransferase 2D (KMT2D) and lysine demethylase 6A (KDM6A). In this study, we present the results of genetic screening of 100 patients with a suspected diagnosis of Kabuki syndrome in our center from July 2010 to June 2018. We identified 76 variants (43 novel) in KMT2D and 4 variants (3 novel) in KDM6A as pathogenic or likely pathogenic. Rare variants included a deep splicing variant (c.14000‐8C>G) confirmed by RNA sequencing and an 18% mosaicism level for a KMT2D mutation. We also characterized a case with a blended phenotype consisting of Kabuki syndrome, osteogenesis imperfecta, and 16p13.11 microdeletion. We summarized the clinical phenotypes of 44 patients including a patient who developed cervical cancer of unknown origin at 16 years of age. This study presents important details of patients with Kabuki syndrome including rare clinical cases and expands our genetic understanding of this syndrome, which will help clinicians and researchers better manage and understand patients with Kabuki syndrome they may encounter.  相似文献   

17.
Anophthalmia and microphthalmia (A/M) are developmental ocular malformations defined as the complete absence or reduction in size of the eye. A/M is a highly heterogeneous disorder with SOX2 and FOXE3 playing major roles in dominant and recessive pedigrees, respectively; however, the majority of cases lack a genetic etiology. We analyzed 28 probands affected with A/M spectrum (without mutations in SOX2/FOXE3) by whole-exome sequencing. Analysis of 83 known A/M factors identified pathogenic/likely pathogenic variants in PAX6, OTX2 and NDP in three patients. A novel heterozygous likely pathogenic variant in PAX6, c.767T>C, p.(Val256Ala), was identified in two brothers with bilateral microphthalmia, coloboma, primary aphakia, iris hypoplasia, sclerocornea and congenital glaucoma; the unaffected mother appears to be a mosaic carrier. While A/M has been reported as a rare feature, this is the first report of congenital primary aphakia in association with PAX6 and the identified allele represents the first variant in the PAX6 homeodomain to be associated with A/M. A novel pathogenic variant in OTX2, c.651delC, p.(Thr218Hisfs*76), in a patient with syndromic bilateral anophthalmia and a hemizygous pathogenic variant in NDP, c.293 C>T, p.(Pro98Leu), in two brothers with isolated bilateral microphthalmia and sclerocornea were also identified. Pathogenic/likely pathogenic variants were not discovered in the 25 remaining A/M cases. This study underscores the utility of whole-exome sequencing for identification of causative mutations in highly variable ocular phenotypes as well as the extreme genetic heterogeneity of A/M conditions.  相似文献   

18.
Inherited muscular disorders (IMDs) are clinically and genetically heterogeneous genetic disorders. We investigated the mutational spectrum and genotype–phenotype correlations in Korean patients with IMD. We developed a targeted panel of 69 known IMD genes and recruited a total of 209 Korean patients with IMD. Targeted capture sequencing identified 994 different variants. Among them, 98 variants were classified as pathogenic/likely pathogenic variants; 38 were novel variations. A total of 39 patients had the pathogenic/likely pathogenic variants. Among them, 75 (36%) patients were genetically confirmed, and 18 (9%) patients had one heterozygous variant of recessive myopathy. However, two genetically confirmed patients had an additional heterozygous variant of another recessive myopathy. Four patients with one heterozygous variant of a recessive myopathy showed different phenotypes, compared with the known phenotype of the identified gene. The major causative genes of Korean patients with IMDs were DMD (19 patients), COL6A1 (9), DYSF (9), GNE (7), LMNA (7), CAPN3 (6), and RYR1 (5). This study showed the mutational and clinical spectra in Korean patients with IMD and confirmed the usefulness of strategies utilizing targeted sequencing.  相似文献   

19.
Noonan syndrome (NS) is a common autosomal dominant/recessive disorder. No large-scale study has been conducted on NS in China, which is the most populous country in the world. Next-generation sequencing (NGS) was used to identify pathogenic variants in patients that exhibited NS-related phenotypes. We assessed the facial features and clinical manifestations of patients with pathogenic or likely pathogenic variants in the RAS-MAPK signaling pathway. Gene-related Chinese NS facial features were described using artificial intelligence (AI).NGS identified pathogenic variants in 103 Chinese patients in eight NS-related genes: PTPN11 (48.5%), SOS1 (12.6%), SHOC2 (11.7%), KRAS (9.71%), RAF1 (7.77%), RIT1 (6.8%), CBL (0.97%), NRAS (0.97%), and LZTR1 (0.97%). Gene-related facial representations showed that each gene was associated with different facial details. Eight novel pathogenic variants were detected and clinical features because of specific genetic variants were reported, including hearing loss, cancer risk due to a PTPN11 pathogenic variant, and ubiquitous abnormal intracranial structure due to SHOC2 pathogenic variants. NGS facilitates the diagnosis of NS, especially for patients with mild/moderate and atypical symptoms. Our study describes the genotypic and phenotypic spectra of NS in China, providing new insights into distinctive clinical features due to specific pathogenic variants.  相似文献   

20.
To identify genetic causes of intellectual disability (ID), we screened a cohort of 986 individuals with moderate to severe ID for variants in 565 known or candidate ID‐associated genes using targeted next‐generation sequencing. Likely pathogenic rare variants were found in ~11% of the cases (113 variants in 107/986 individuals: ~8% of the individuals had a likely pathogenic loss‐of‐function [LoF] variant, whereas ~3% had a known pathogenic missense variant). Variants in SETD5, ATRX, CUL4B, MECP2, and ARID1B were the most common causes of ID. This study assessed the value of sequencing a cohort of probands to provide a molecular diagnosis of ID, without the availability of DNA from both parents for de novo sequence analysis. This modeling is clinically relevant as 28% of all UK families with dependent children are single parent households. In conclusion, to diagnose patients with ID in the absence of parental DNA, we recommend investigation of all LoF variants in known genes that cause ID and assessment of a limited list of proven pathogenic missense variants in these genes. This will provide 11% additional diagnostic yield beyond the 10%–15% yield from array CGH alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号