首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heparin is a widely used anti-coagulant that enhances anti-thrombin (AT) activity. However, heparin also suppresses immune and inflammatory responses in various rodent models and clinical trials, respectively. The mechanism by which heparin suppresses immune responses is unclear. The effect of heparin on regulatory T cells (Tregs) in allogeneic immune responses was analysed using an acute graft-versus-host disease (aGVHD) mouse model and mixed lymphocyte reactions (MLRs). In-vitro culture systems were utilized to study the effects of heparin on Tregs. Heparin administration reduced mortality rates and increased the proportion of Tregs in the early post-transplantation period of aGVHD mice. In both murine and human MLRs, heparin increased Tregs and inhibited responder T cell proliferation. Heparin promoted functional CD4+CD25+forkhead box protein 3 (FoxP3)+ Treg generation from naive CD4+ T cells, increased interleukin (IL)-2 production and enhanced the activation of pre-existing Tregs with IL-2. Heparin-induced Treg increases were not associated with anti-coagulant activity through AT, but required negatively charged sulphation of heparin. Importantly, N-acetyl heparin, a chemically modified heparin without anti-coagulant activity, induced Tregs and decreased mortality in aGVHD mice. Our results indicate that heparin contributes to Treg-mediated immunosuppression through IL-2 production and suggest that heparin derivatives may be useful for immunopathological control by efficient Treg induction.  相似文献   

2.
The predisposition of preterm neonates to invasive infection is, as yet, incompletely understood. Regulatory T cells (Tregs) are potential candidates for the ontogenetic control of immune activation and tissue damage in preterm infants. It was the aim of our study to characterize lymphocyte subsets and in particular CD4+CD25+forkhead box protein 3 (FoxP3)+ Tregs in peripheral blood of well‐phenotyped preterm infants (n = 117; 23 + 0 – 36 + 6 weeks of gestational age) in the first 3 days of life in comparison to term infants and adults. We demonstrated a negative correlation of Treg frequencies and gestational age. Tregs were increased in blood samples of preterm infants compared to term infants and adults. Notably, we found an increased Treg frequency in preterm infants with clinical early‐onset sepsis while cause of preterm delivery, e.g. chorioamnionitis, did not affect Treg frequencies. Our data suggest that Tregs apparently play an important role in maintaining maternal‐fetal tolerance, which turns into an increased sepsis risk after preterm delivery. Functional analyses are needed in order to elucidate whether Tregs have potential as future target for diagnostics and therapeutics.  相似文献   

3.
Regulatory T cells (Tregs) control immune responses by suppressing various inflammatory cells. Tregs in newborn babies may play an important role in preventing excessive immune responses during their environmental change. We examined the number and phenotype of Tregs during the neonatal period in 49 newborn babies. Tregs were characterized by flow cytometry using cord blood (CB) and peripheral blood (PB) from the early (7–8 days after birth) and late (2–4 weeks after birth) neonatal periods. CD4+forkhead box protein 3 (FoxP3+) T cells were classified into resting Tregs (CD45RA+FoxP3low), activated Tregs (CD45RA FoxP3high) and newly activated T cells (CD45RA FoxP3low). Compared with CB and PB during the late neonatal period, the percentage of Tregs and all Treg subpopulations in the CD4+ lymphocyte population were increased significantly during the early neonatal period. Furthermore, the proportion and absolute number of activated Tregs were increased markedly compared with other Treg subpopulations, such as resting Tregs and newly activated T cells (non‐Tregs), in the early neonatal period. Increased Tregs concomitantly expressed the suppressive molecule cytotoxic T lymphocyte antigen‐4 (CTLA‐4). The up‐regulated expression of chemokine receptor 4 (CCR4) and down‐regulated expression of CCR7 were also observed in expanded Tregs. When cord blood cells were cultured in vitro with CD3 monoclonal antibodies (mAb) for 5 days, CD4+CD45RAFoxP3high cells were increased significantly during the culture. Thus, the presence of increased activated Tregs in early neonates may play an important role in immunological regulation by suppressing excessive T cell activation caused by the immediate exposure to ubiquitous antigens after birth.  相似文献   

4.
《Mucosal immunology》2016,9(4):1015-1026
As CD4+CD25+Foxp3+ regulatory T cells (Tregs) play crucial immunomodulatory roles during infections, one key question is how these cells are controlled during antimicrobial immune responses. Mechanisms controlling their homeostasis are central to ensure efficient protection against pathogens, as well as to control infection-associated immunopathology. Here we studied how their viability is regulated in the context of mouse oropharyngeal candidiasis (OPC) infection, and found that these cells show increased protection from apoptosis during late phase of infection and reinfection. Tregs underwent reduced cell death because they are refractory to T cell receptor restimulation-induced cell death (RICD). We confirmed their resistance to RICD, using mouse and human Tregsin vitro, and by inducing α-CD3 antibody-mediated apoptosis in vivo. The enhanced viability is dependent on increased transforming growth factor-β1 (TGF-β1) signaling that results in upregulation of cFLIP (cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein) in Tregs. Protection from cell death is abrogated in the absence of TGF-β1 signaling in Tregs during OPC infection. Taken together, our data unravel the previously unrecognized role of TGF-β1 in promoting Treg viability, coinciding with the pronounced immunomodulatory role of these cells during later phase of OPC infection, and possibly other mucosal infections.  相似文献   

5.
This study determines levels of regulatory T cells (Tregs), naive Tregs, immune activation and cytokine patterns in 15 adult human immunodeficiency virus (HIV)‐infected patients receiving prolonged highly active anti‐retroviral therapy (HAART) who have known thymic output, and explores if naive Tregs may represent recent thymic emigrant Tregs. HIV‐infected patients treated with HAART with a median of 1 and 5 years were compared with healthy controls. Percentages of Tregs (CD3+CD4+CD25+CD127low), naive Tregs (CD3+CD4+CD25+CD45RA+) and activation markers (CD38+human leucocyte antigen D‐related) were determined by flow cytometry. Forkhead box P3 mRNA expression and T cell receptor excision circles (TREC) content in CD4+ cells were determined by polymerase chain reaction and cytokines analysed with Luminex technology. Levels of Tregs were significantly higher in HIV‐infected patients compared with controls, both after 1 and 5 years of HAART (P < 0·001), despite fully suppressed HIV‐RNA and normalization of both CD4 counts, immune activation and cytokine patterns. Furthermore, levels of naive Tregs were elevated significantly in HIV‐infected patients (P < 0·001) and were associated with thymic output measured as the TREC frequency in CD4+ cells (P = 0·038). In summary, Treg levels in HIV‐infected patients are elevated even after 5 years of HAART. Increased thymic production of naive Tregs may contribute to higher Treg levels in HIV‐infection.  相似文献   

6.
Documented reports about T helper type 17 (Th17) cells have revealed that Th17 plays a critical role in inflammation and autoimmunity diseases. However, the role of Th17 in cancer remains contradictory. The interplay between Th17 and tumour cells in the tumour microenvironment of primary hepatic carcinoma (PHC) needs to be explored further and the relationship between Th17, regulatory T cells (Tregs) and regulatory B cells (Bregs) has not been defined completely. In this study, numerous experiments were undertaken to elucidate the interaction of Th17 and Treg/Breg cells involved in PHC. Our work demonstrated that an increased Th17 was detected in the peripheral circulation and in tumour tissues in PHC patients. In addition, increases in peripheral blood Th17 corresponded with tumour–node–metastasis (TNM) stage progression. Also, further studies indicated that Th17 cells were promoted by tumour cells in the PHC tumour microenvironment through both contact‐dependent and ‐independent mechanisms, but cell‐contact played the major important role in promoting the production and proliferation of Th17. When isolated CD4+CD25+CD127low Tregs and CD4+CD25CD127+ non‐Tregs were cultured with autologous tumour cells, it implied that the phenotype of Th17 and Tregs was modified by tumour cells in the tumour microenvironment. As well as this, Th17 cells were also found to correlate positively with CD4+forkhead box protein 3+ Tregs and CD19+CD5+CD1dhi Bregs in PHC. Notably, Th17 increased synchronically with Tregs and Bregs in PHC. These findings may provide new clues to reveal the mechanisms of immune escape in PHC.  相似文献   

7.
The function of CD4+ T cells with regulatory activity (Tregs) is the down-regulation of immune responses. This suppressive activity may limit the magnitude of effector responses, resulting in failure to control human immunodeficiency virus 1 (HIV-1) infection, but may also suppress chronic immune activation, a characteristic feature of HIV-1 disease. We evaluated the correlation between viral load, immune activation and Tregs in HIV-1-infected children. Eighty-nine HIV-1-infected children (aged 6–14 years) were included in the study and analysed for HIV-1 plasmaviraemia, HIV-1 DNA load, CD4 and CD8 cell subsets. Treg cells [CD4+ CD25highCD127lowforkhead box P3 (FoxP3high)] and CD8-activated T cells (CD8+CD38+) were determined by flow cytometry. Results showed that the number of activated CD8+CD38+ T cells increased in relation to HIV-1 RNA plasmaviraemia (r = 0·403, P < 0·0001). The proportion of Tregs also correlated positively with HIV-1 plasmaviraemia (r = 0·323, P = 0·002), but correlated inversely with CD4+ cells (r = −0·312, P = 0·004), thus suggesting a selective expansion along with increased viraemia and CD4+ depletion. Interestingly, a positive correlation was found between the levels of Tregs and CD8+CD38+ T cells (r = 0·305, P = 0·005), and the percentage of Tregs tended to correlate with HIV-1 DNA load (r = 0·224, P = 0·062). Overall, these findings suggest that immune activation contributes to the expansion of Treg cells. In turn, the suppressive activity of Tregs may impair effector responses against HIV-1, but appears to be ineffective in limiting immune activation.  相似文献   

8.
Physiological changes during normal pregnancy are characterized by an inflammatory immune response and insulin resistance. Therefore, we hypothesize that gestational diabetes mellitus (GDM) may be caused by an inappropriate adaption of the maternal immune system to pregnancy. In this study we examined the role of regulatory T cell (Treg) differentiation for the development of GDM during pregnancy. We used six-colour flow cytometric analysis to demonstrate that the total CD4+CD127low+/−CD25+ forkhead box protein 3 (FoxP3+) Treg pool consists of four different Treg subsets: naive CD45RA+ Tregs, HLA-DRCD45RA memory Tregs (DR Tregs) and the highly differentiated and activated HLA-DRlow+CD45RA and HLA-DRhigh+CD45RA memory Tregs (DRlow+ and DRhigh+ Tregs). Compared to healthy pregnancies, the percentage of CD4+CD127low+/−CD25+FoxP3+ Tregs within the total CD4+ T helper cell pool was not different in patients affected by GDM. However, the suppressive activity of the total CD4+CD127low+/−CD25+ Treg pool was significantly reduced in GDM patients. The composition of the total Treg pool changed in the way that its percentage of naive CD45RA+ Tregs was decreased significantly in both patients with dietary-adjusted GDM and patients with insulin-dependent GDM. In contrast, the percentage of DR-memory Tregs was increased significantly in patients with dietary-adjusted GDM, while the percentage of DRlow+ and DRhigh+ memory Tregs was increased significantly in patients with insulin-dependent GDM. Hence, our findings propose that alterations in homeostatic parameters related to the development and function of naive and memory Tregs may cause the reduction of the suppressive capacity of the total Treg pool in GDM patients. However, as this is an exploratory analysis, the results are only suggestive and require further validation.  相似文献   

9.
The mechanisms sustaining the absence of complete immune recovery in HIV‐infected patients upon long‐term effective highly active anti‐retroviral therapy (HAART) remain elusive. Immune activation, regulatory T cells (Tregs) or very low‐level viraemia (VLLV) have been alternatively suspected, but rarely investigated simultaneously. We performed a cross‐sectional study in HIV‐infected aviraemic subjects (mean duration of HAART: 12 years) to concomitantly assess parameters associated independently with inadequate immunological response. Patients were classified as complete immunological responders (cIR, n = 48) and inadequate immunological responders (iIR, n = 39), depending on the CD4+ T cell count (> or < 500/mm3). Clinical and virological data (including very low‐level viraemia) were collected. In parallel, immunophenotyping of CD4+ lymphocytes, including Treg subsets, and CD8+ T cells was performed. Percentages of activated CD4+ T cells, Tregs, effector Tregs and terminal effector Tregs were found to be significantly elevated in iIR. Neither the percentage of activated CD8+ T cells nor VLLV were found to be associated with iIR. In the multivariate analysis, nadir of CD4+ T cell count and percentage of Tregs were the only two parameters associated independently with iIR [odds ratio (OR) = 2·339, P = 0·001, and OR = 0·803, P = 0·041]. We present here the largest study investigating simultaneously the immune response to long‐term HAART, activation of CD4+ and CD8+ T cells, Treg percentages and very low‐level viraemia. Causative interactions between Tregs and CD4+ T cells should now be explored prospectively in a large patients cohort.  相似文献   

10.
Forkhead box P3 (FoxP3)+ regulatory T cells (Tregs) are functionally deficient in systemic lupus erythematosus (SLE), characterized by reduced surface CD25 [the interleukin (IL)‐2 receptor alpha chain]. Low‐dose IL‐2 therapy is a promising current approach to correct this defect. To elucidate the origins of the SLE Treg phenotype, we studied its role through developmentally defined regulatory T cell (Treg) subsets in 45 SLE patients, 103 SLE‐unaffected first‐degree relatives and 61 unrelated healthy control subjects, and genetic association with the CD25‐encoding IL2RA locus. We identified two separate, uncorrelated effects contributing to Treg CD25. (1) SLE patients and unaffected relatives remarkably shared CD25 reduction versus controls, particularly in the developmentally earliest CD4+FoxP3+CD45ROCD31+ recent thymic emigrant Tregs. This first component effect influenced the proportions of circulating CD4+FoxP3highCD45RO+ activated Tregs. (2) In contrast, patients and unaffected relatives differed sharply in their activated Treg CD25 state: while relatives as control subjects up‐regulated CD25 strongly in these cells during differentiation from naive Tregs, SLE patients specifically failed to do so. This CD25 up‐regulation depended upon IL2RA genetic variation and was related functionally to the proliferation of activated Tregs, but not to their circulating numbers. Both effects were found related to T cell IL‐2 production. Our results point to (1) a heritable, intrathymic mechanism responsible for reduced CD25 on early Tregs and decreased activation capacity in an extended risk population, which can be compensated by (2) functionally independent CD25 up‐regulation upon peripheral Treg activation that is selectively deficient in patients. We expect that Treg‐directed therapies can be monitored more effectively when taking this distinction into account.  相似文献   

11.
Programmed cell death‐1 (PD‐1) plays an important role in peripheral T cell tolerance, but whether or not it affects the differentiation of helper T cell subsets remains elusive. Here we describe the importance of PD‐1 in the control of T helper type 1 (Th1) cell activation and development of forkhead box protein 3 (FoxP3+) regulatory T cells (Tregs). PD‐1‐deficient T cell‐specific T‐bet transgenic (P/T) mice showed growth retardation, and the majority died within 10 weeks. P/T mice showed T‐bet over‐expression, increased interferon (IFN)‐γ production by CD4+ T cells and significantly low FoxP3+ Treg cell percentage. P/T mice developed systemic inflammation, which was probably induced by augmented Th1 response and low FoxP3+ Treg count. The study identified a unique, previously undescribed role for PD‐1 in Th1 and Treg differentiation, with potential implication in the development of Th1 cell‐targeted therapy.  相似文献   

12.
Regulatory T (Treg) cell therapy is a promising approach for immune tolerance induction in autoimmunity conditions and cell/organ transplantations. Insufficient isolation yields and impurity during downstream processes and Treg instability after adoptive transfer in inflammatory conditions are major limitations to Treg therapy, and indicate the importance of seeking a valid, reliable method for de-novo generation of Tregs. In this research, we evaluated Treg-like cells obtained from different Treg differentiation protocols in terms of their yield, purity and activity. Differentiation was performed on naive CD4+ cells and a naive CD4+/Treg co-culture by using three different protocols – ectopic expression of forkhead box protein P3 (E-FoxP3), soluble transforming growth factor β (S-TGF) and small molecules [N-acetyl puromycin and SR1555 (N-Ac/SR)]. The results showed that a high yield of a homogeneous population of Treg-like cells could be achieved by the N-Ac/SR method under a T helper type 17 (Th17)-polarizing condition, particularly interleukin (IL)-6 and TGF-β, when compared with the E-FoxP3 and S-TGF methods. Surprisingly, SR completely inhibited the differentiation of IL-17-producing cells and facilitated Treg generation in the inflammatory condition and had highly suppressive activity against T cell proliferation without Treg-specific demethylase region (TSDR) demethylation. For the first time, to our knowledge, we report the generation of efficient, pure Treg-like cells by using small molecules during in-vitro inflammatory conditions. Our results suggested that the N-Ac/SR method has several advantages for Treg generation when compared with the other methods, including a higher purity of Tregs, easier procedure, superior suppressive activity during the inflammatory condition and decreased cost.  相似文献   

13.
Both invariant natural killer T (NK T) cells and CD4+CD25+ T regulatory cells (Tregs) regulate the immune system to maintain homeostasis. In a tumour setting, NK T cells activated by α‐galactosylceramide (α‐GalCer) execute anti‐tumour activity by secreting cytokines. By contrast, Tregs intrinsically suppress antigen‐specific immune responses and are often found to be elevated in tumour patients. In this study, we have shown that Tregs regulate NK T cell function negatively in vitro, suggesting a direct interaction between these cell types. In a murine mammary tumour model, we demonstrated that administration of either α‐GalCer or anti‐CD25 antibody alone markedly suppressed tumour formation and pulmonary metastasis, and resulted in an increase in the survival rate up to 44% (from a baseline of 0%). When treatments were combined, depletion of Tregs boosted the anti‐tumour effect of α‐GalCer, and the survival rate jumped to 85%. Our results imply a potential application of combining Treg cell depletion with α‐GalCer to stimulate NK T cells for cancer therapy.  相似文献   

14.
15.
The prevalence of allergic asthma and incidences of helminth infections in humans are inversely correlated. Although experimental studies have established the causal relation between parasite infection and allergic asthma, the mechanism of the parasite-associated immunomodulation is not fully elucidated. Using a murine model of asthma and nematode parasite Heligmosomoides polygyrus, we investigated the roles of regulatory B cells (Breg) and T cells (Treg) in mediation of the protection against allergic asthma by parasite. H. polygyrus infection significantly suppressed ovalbumin (OVA)-induced allergic airway inflammation (AAI) evidenced by alleviated lung histopathology and reduced numbers of bronchoalveolar inflammatory cell infiltration, and induced significant responses of interleukin (IL)-10+ Breg, IL-10+ Treg and forkhead box protein 3 (FoxP3)+ Treg in mesenteric lymph node and spleen of the mice. Adoptive transfer of IL-10+ Breg and IL-10+ Treg cell prevented the lung immunopathology in AAI mice. Depletion of FoxP3+ Treg cells in FoxP3-diphtheria toxin (DT) receptor transgenic mice by diphtheria toxin (DT) treatment exacerbated airway inflammation in parasite-free AAI mice and partially abrogated the parasite-induced protection against AAI. IL-10+ Breg cells were able to promote IL-10+ Treg expansion and maintain FoxP3+ Treg cell population. These two types of Tregs failed to induce CD19+ B cells to transform into IL-10+ Breg cells. These results demonstrate that Breg, IL-10+ Treg and FoxP3+ Treg cells contribute in A discrepant manner to the protection against allergic airway immunopathology by parasiteS. Breg cell might be a key upstream regulatory cell that induces IL-10+ Treg response and supports FoxP3+ Treg cell population which, in turn, mediate the parasite-imposed immunosuppression of allergic airway inflammation. These results provide insight into the immunological relationship between parasite infection and allergic asthma.  相似文献   

16.
Regulatory T cells (Tregs) constitute a fascinating subpopulation of CD4+ T cells due to their ability to limit the immune response against self and non‐self antigens. Murine models and antibodies directed against surface and intracellular molecules have allowed elucidation of the mechanisms that govern their development and function. However, these markers used to their classification lack of specificity, as they can be expressed by activated T cells. Similarly, there are slight differences between animal models, in steady state and pathological conditions, anatomical localization and strategy of analysis by flow cytometry. Here, we revised the most common markers utilized for Treg typification by flow cytometry such as CD25, forkhead box protein 3 (FoxP3) and CD127, along with our data obtained in different body compartments of humans, mice and rats. Furthermore, we revised and determined the expression of other molecules important for the phenotypical characterization of Treg cells. We draw attention to the drawbacks of those markers used in chronic states of inflammation. However, until a specific marker for the identification of Tregs is discovered, the best combination of markers will depend upon the tissue or the degree of inflammation from which Tregs derive.  相似文献   

17.
There is increasing evidence that inflammation in the synovium plays a major role in the progression of osteoarthritis (OA). However, the immunogenic properties of mesenchymal stromal cells (MSCs), which are considered to regulate immunity in various diseases, remain largely unknown in OA. The purpose of this study was to determine the influence of MSCs from OA patients on regulatory T cells (Tregs) in an allogeneic co‐culture model. Bone marrow (BM) and synovial membrane (SM) were harvested from hip joints of OA patients and co‐cultured with lymphocytes enriched in CD4+CD25+CD127 regulatory T cells (Treg+LC) from healthy donors. Treg proportions and MSC markers were assessed by flow cytometry. Cytokine levels were assessed after 2 and 5 days of co‐cultivation. Additionally, Treg+LC cultures were analysed in the presence of interleukin (IL)‐6 and MSC‐supernatant complemented medium. B‐MSCs and S‐MSCs were able to retain the Treg proportion compared to lymphocyte monocultures. T cell–MSC co‐cultures showed a significant increase of IL‐6 compared to MSC cultures. S‐MSCs produced higher amounts of IL‐6 compared to B‐MSCs, both in single and T cell co‐cultures. The effect of retaining the Treg percentage could be reproduced partially by IL‐6 addition to the medium, but could only be observed fully when using MSC culture supernatants. Our data demonstrate that retaining the Treg phenotype in MSC–T cell co‐cultures can be mediated by MSC derived from OA patients. IL‐6 plays an important role in mediating these processes. To our knowledge, this study is the first describing the interaction of MSCs from OA patients and Tregs in an allogeneic co‐culture model.  相似文献   

18.
Helicobacter pylori is one of the most common infections in the world. Despite inciting inflammation, immunological clearance of the pathogen is often incomplete. CD4+CD25hiforkhead box protein 3 (FoxP3+) regulatory T cells (Tregs) are potent suppressors of different types of immune responses and have been implicated in limiting inflammatory responses to H. pylori. Investigating the influence of H. pylori on Treg function and proliferation, we found that H. pylori-stimulated dendritic cells (DCs) induced proliferation in Tregs and impaired their suppressive capability. This effect was mediated by interleukin (IL)-1β produced by H. pylori-stimulated DCs. These data correlated with in-vivo observations in which H. pylori+ gastric mucosa contained more Tregs in active cell division than uninfected stomachs. Inciting local proliferation of Tregs and inhibiting their suppressive function may represent a mechanism for the chronic gastritis and carcinogenesis attributable to H. pylori.  相似文献   

19.
《Human immunology》2016,77(9):727-733
The regulation of potentially harmful immune responses by regulatory T (Treg) cells is essential for maintaining peripheral immune tolerance and homeostasis. Especially CD4+ Treg cells have been regarded as pivotal regulators of autoreactive and inflammatory responses as well as inducers of immune tolerance by using a variety of immune suppressive mechanisms.Besides the well-known classical CD4+CD25+FoxP3+ Treg cells, CD4+ T cells expressing the immune tolerizing molecule human leukocyte antigen G (HLA-G) have been recently described as another potent thymus-derived Treg (tTreg) cell subset. Albeit both tTreg subsets share common molecular characteristics, the mechanisms of their immunosuppressive function differ fundamentally. Dysfunction and numerical abnormalities of classical CD4+ tTreg cells have been implicated in the pathogenesis of several immune-mediated diseases such as multiple sclerosis (MS). Clearly, a deeper understanding of the various CD4+ tTreg subsets and also the underlying mechanisms of impaired immune tolerance in these disorders are essential for the development of potential therapeutic strategies.This review focuses on the current knowledge on defining features and functioning of HLA-G+CD4+ tTreg cells as well as their emerging role in various pathologies with special emphasis on the pathogenesis of MS. Furthermore, future research possibilities together with potential therapeutic applications are discussed.  相似文献   

20.
The role of mast cells (MCs) in the generation of adaptive immune responses especially in the transplant immune responses is far from being resolved. It is reported that mast cells are essential intermediaries in regulatory T cell (Treg) transplant tolerance, but the mechanism has not been clarified. To investigate whether bone marrow‐derived mast cells (BMMCs) can induce Tregs by expressing transforming growth factor beta 1 (TGF‐β1) in vitro, bone marrow cells obtained from C57BL/6 (H‐2b) mice were cultured with interleukin (IL)‐3 (10 ng/ml) and stem cell factor (SCF) (10 ng/ml) for 4 weeks. The purity of BMMCs was measured by flow cytometry. The BMMCs were then co‐cultured with C57BL/6 T cells at ratios of 1:2, 1:1 and 2:1. Anti‐CD3, anti‐CD28 and IL‐2 were administered into the co‐culture system with (experiment groups) or without (control groups) TGF‐β1 neutralizing antibody. The percentages of CD4+CD25+forkhead box P3 (FoxP3)+ Tregs in the co‐cultured system were analysed by flow cytometry on day 5. The Treg percentages were significantly higher in all the experiment groups compared to the control groups. These changes were deduced by applying TGF‐β1 neutralizing antibody into the co‐culture system. Our results indicated that the CD4+ T cells can be induced into CD4+CD25+FoxP3+ T cells by BMMCs via TGF‐β1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号