首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Metformin, an inexpensive and well-tolerated oral agent commonly used in the first-line treatment of type 2 dia-betes, has become the focus of intense research as a candidate anticancer agent. Here, we discuss the potential of metformin in cancer therapeutics, particularly its functions in multiple signaling pathways, including AMP-activated protein kinase, mammalian target of rapamycin, insulin-like growth factor, c-Jun N-terminal kinase/mitogen-activated protein kinase (p38 MAPK), human epidermal growth factor receptor-2, and nuclear factor kappaB pathways. In addi-tion, cutting-edge targeting of cancer stem cells by metformin is summarized.  相似文献   

3.
Hemangiopericytoma (HPC) is a highly vascularized mesenchymal tumor. Local recurrence and distant metastasis are common features of HPC. Considering the remarkable hyper-vasculature phenotype of HPC, we assumed that dysregulated angiogenic signaling pathways were involved in HPC. The key components of angiogenic signaling pathways including VEGF–VEGF-R2, EphrinB2-EphB4 and DLL4-Notch were examined by real-time RT-PCR, Western blotting and immunostaining in 17 surgical specimens of HPC patients and in 6 controls. A significant upregulation of VEGF and VEGF-R2 associated with elevated levels of p-Akt and proliferating cell nuclear antigen (PCNA) was detected in HPC. Moreover, a dramatic increase in the mRNA and protein expression of EphB4 and its downstream factor p-Erk1/2 was found in HPC. A massive activation of core-components of DLL4-Notch signaling was detected in HPC. Double-immunofluorescent staining confirmed the expression of these upregulated key factors in the endothelial cells of tumor vessels. The present study identified the activation of multiple and crucial angiogenic signaling pathways, which could function individually and/or synergistically to stimulate angiogenesis in HPC and eventually contribute to tumor growth and progression. Our findings emphasize the importance to target multiple angiogenic signaling pathways when an anti-angiogenic therapy is considered for this highly vascularized tumor.  相似文献   

4.
Mukohara T  Civiello G  Johnson BE  Janne PA 《Oncology》2005,68(4-6):500-510
The majority of malignant pleural mesotheliomas (MPMs) aberrantly express the epidermal growth factor receptor (ErbB1). We examined the efficacy of GW572016 (lapatinib), a dual inhibitor of ErbB1/ErbB2 with a panel of 10 MPM cell lines. Two of the 10 MPM cell lines, H2373 and H2452, underwent G1/S cell cycle arrest and growth inhibition with an IC(50) of 1 muM and 0.8 muM, respectively. There was no relationship between the presence or the amount of ErbB1, phospho-ErbB1, phospho-ErbB2, ErbB3, ErbB4, phospho-Akt, and Akt or the ability of lapatinib to inhibit phospho-ErbB1 in these cell lines compared to those that did not respond to lapatinib. The sensitive cell lines had a time-dependent decrease in phospho-Akt and/or ERK1/2, and an increase in p27 and when treated with lapatinib. The combination of lapatinib with U0126, LY294002 or rapamycin caused greater growth inhibition than either drug alone in the sensitive cell lines while this did not occur in the resistant cell lines. Our findings suggest that ErbB1 alone is a therapeutic target for the minority of mesotheliomas and that combining ErbB1 inhibitors with signal transduction inhibitors in mesothelioma will enhance their effectiveness. Furthermore, combinations of growth factor and signal transduction inhibitors may be needed to inhibit the growth of the majority of MPM cell lines, and therefore patients with MPM.  相似文献   

5.
Walters DK  Jelinek DF 《Oncogene》2004,23(6):1197-1205
Receptor crosstalk is an emerging and recurrent theme in cytokine and growth factor signaling; however, insight into the mechanism(s) underlying these interactions remains limited. Recently, we reported that crosstalk occurs between ErbB3 and the interferon alpha (IFN-alpha) signaling complex in the myeloma cell line KAS-6/1 and that this crosstalk contributes to the regulation of cell proliferation. In this study, we examined the mechanism underlying the transactivation of ErbB3 in the IFN-alpha growth-responsive KAS-6/1 cells. The examination of IFN-alpha receptor 1 and 2 (IFNAR1 and IFNAR2) levels revealed that the KAS-6/1 cell line overexpresses IFNAR1 relative to other myeloma cell lines that are growth arrested by IFN-alpha. Subsequent investigation of Tyk2, which is constitutively associated with IFNAR1, demonstrated that Tyk2 activation is uniquely sustained in the KAS-6/1 cell line following IFN-alpha stimulation. Interestingly, silencing of Tyk2 expression via siRNA resulted in attenuation of ErbB3 transactivation. However, inhibition of Jak1 expression also decreased IFN-alpha-induced tyrosine phosphorylation of ErbB3. Finally, siRNA downregulation of Tyk2 and Jak1 was found to decrease IFN-alpha-stimulated proliferation. These findings validate our previous report of ErbB3 involvement in IFN-alpha-induced proliferation and further suggest that both Janus kinase members, Tyk2 and Jak1, play a role in the transactivation of ErbB3 in this model system.  相似文献   

6.
Growth factors and antiapoptotic signaling pathways in multiple myeloma.   总被引:1,自引:0,他引:1  
Failure of myeloma cells to undergo apoptosis plays an important role in the accumulation of myeloma cells within the bone marrow (BM). Moreover, inhibition of drug-induced apoptosis has been indicated as a major contributor of drug resistance in myeloma. The BM microenvironment promotes survival and blocks the apoptotic effects of various cytotoxic agents through the production of cytokines as well as through direct physical interactions. Several antiapoptotic proteins and antiapoptotic signaling cascades have been identified that contribute to the antiapoptotic phenotype of the myeloma cell. In this review, we discuss mechanisms that result in enhanced survival and drug resistance of myeloma cells. Insight into these mechanisms is essential to make progress in the therapy of myeloma.  相似文献   

7.
Signal transduction in cancer cells is a sophisticated process that involves receptor tyrosine kinases (RTKs) that eventually trigger multiple cytoplasmic kinases, which are often serine/threonine kinases. A number of tumor models have identified several key cellular signaling pathways that work independently, in parallel, and/or through interconnections to promote cancer development. Three major signaling pathways that have been identified as playing important roles in cancer include the phosphatidyl inositol-3-kinase (PI3K)/AKT, protein kinase C (PKC) family, and mitogen-activated protein kinase (MAPK)/Ras signaling cascades. In clinical trials, highly selective or specific blocking of only one of the kinases involved in these signaling pathways has been associated with limited or sporadic responses. Improved understanding of the complexity of signal transduction processes and their roles in cancer has suggested that simultaneous inhibition of several key kinases at the level of receptors and/or downstream serine/threonine kinases may help to optimize the overall therapeutic benefit associated with molecularly targeted anticancer agents. Using targeted agents to inhibit multiple signaling pathways has emerged as a new paradigm for anticancer treatment based on preclinical and clinical data showing potent anti-tumor activity of single drugs inhibiting multiple molecular targets or combination therapies involving multiple drugs with selective or narrow target specificity. Preclinical and clinical studies point to molecules on vascular endothelial cells and pericytes as being important targets for anticancer therapies, as well as molecules on or within tumor cells themselves. This suggests that optimal therapeutic approaches to cancer may involve targeting multiple molecules found in both the tumor and supportive tissues. In this review, we will use the most recent preclinical and clinical data to describe this emerging paradigm for anticancer therapy involving targeting multiple signaling pathways with tyrosine or serine/threonine kinase inhibitors.  相似文献   

8.
Romidepsin is a cyclic molecule that inhibits histone deacetylases. It is Food and Drug Administration-approved for treatment of cutaneous and peripheral T-cell lymphoma, but its precise mechanism of action against malignant T cells is unknown. To better understand the biological effects of romidepsin in these cells, we exposed PEER and SUPT1 T-cell lines, and a primary sample from T-cell lymphoma patient (Patient J) to romidepsin. We then examined the consequences in some key oncogenic signaling pathways. Romidepsin displayed IC50 values of 10.8, 7.9 and 7.0 nm in PEER, SUPT1 and Patient J cells, respectively. Strong inhibition of histone deacetylases and demethylases, increased production of reactive oxygen species and decreased mitochondrial membrane potential were observed, which may contribute to the observed DNA-damage response and apoptosis. The stress-activated protein kinase/c-Jun N-terminal kinase signaling pathway and unfolded protein response in the endoplasmic reticulum were activated, whereas the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) and β-catenin pro-survival pathways were inhibited. The decreased level of β-catenin correlated with the upregulation of its inhibitor SFRP1 through romidepsin-mediated hypomethylation of its gene promoter. Our results provide new insights into how romidepsin invokes malignant T-cell killing, show evidence of its associated DNA hypomethylating activity and offer a rationale for the development of romidepsin-containing combination therapies.  相似文献   

9.
Although formation of urothelial carcinoma of the bladder (UCB) requires multiple steps and proceeds along divergent pathways, the underlying genetic and molecular determinants for each step and pathway remain undefined. By developing transgenic mice expressing single or combinatorial genetic alterations in urothelium, we demonstrated here that overcoming oncogene-induced compensatory tumor barriers was critical for urothelial tumor initiation. Constitutively active Ha-ras (Ras*) elicited urothelial hyperplasia that was persistent and did not progress to tumors over a 10 months period. This resistance to tumorigenesis coincided with increased expression of p53 and all pRb family proteins. Expression of a Simian virus 40 T antigen (SV40T), which disables p53 and pRb family proteins, in urothelial cells expressing Ras* triggered early-onset, rapidly-growing and high-grade papillary UCB that strongly resembled the human counterpart (pTaG3). Urothelial cells expressing both Ras* and SV40T had defective G(1)/S checkpoint, elevated Ras-GTPase and hyperactivated AKT-mTOR signaling. Inhibition of the AKT-mTOR pathway with rapamycin significantly reduced the size of high-grade papillary UCB but hyperactivated mitogen-activated protein kinase (MAPK). Inhibition of AKT-mTOR, MAPK and STAT3 altogether resulted in much greater tumor reduction and longer survival than did inhibition of AKT-mTOR pathway alone. Our studies provide the first experimental evidence delineating the combinatorial genetic events required for initiating high-grade papillary UCB, a poorly defined and highly challenging clinical entity. Furthermore, they suggest that targeted therapy using a single agent such as rapamycin may not be highly effective in controlling high-grade UCB and that combination therapy employing inhibitors against multiple targets are more likely to achieve desirable therapeutic outcomes.  相似文献   

10.
11.
Molecular pathways: dysregulated glutamatergic signaling pathways in cancer   总被引:1,自引:0,他引:1  
The neurotransmitter glutamate interacts with glutamate receptor proteins, leading to the activation of multiple signaling pathways. Dysfunction in the glutamatergic signaling pathway is well established as a frequent player in diseases such as schizophrenia, Alzheimer disease, and brain tumors (gliomas). Recently, aberrant functioning of this pathway has also been shown in melanoma. In both glioma and melanoma, glutamate secretion stimulates tumor growth, proliferation, and survival through activation of the mitogen-activated protein kinase and phosphoinositide 3-kinase/Akt pathways. In the future, extracellular glutamate levels and glutamatergic signaling may serve as biological markers for tumorigenicity and facilitate targeted therapy for melanoma. .  相似文献   

12.
13.
14.
The aberrant behavior of cancer reflects upregulation of certain oncogenic signaling pathways that promote proliferation, inhibit apoptosis, and enable the cancer to spread and evoke angiogenesis. Theoretically, it should be feasible to decrease the activity of these pathways-or increase the activity of pathways that oppose them-with noncytotoxic agents. Since multiple pathways are dysfunctional in most cancers, and cancers accumulate new oncogenic mutations as they progress, the greatest and most durable therapeutic benefit will likely be achieved with combination regimens that address several targets. Thus, a multifocal signal modulation therapy (MSMT) of cancer is proposed. This concept has already been documented by researchers who have shown that certain combinations of signal modulators-of limited utility when administered individually-can achieve dramatic suppression of tumor growth in rodent xenograft models. The present essay attempts to guide development of MSMTs for prostate cancer. Androgen ablation is a signal-modulating measure already in standard use in the management of delocalized prostate cancer. The additional molecular targets considered here include the type 1 insulin-like growth factor receptor, the epidermal growth factor receptor, mammalian target of rapamycin, NF-kappaB, hypoxia-inducible factor-1alpha, hsp90, cyclooxygenase-2, protein kinase A type I, vascular endothelial growth factor, 5-lipoxygenase, 12-lipoxygenase, angiotensin II receptor type 1, bradykinin receptor type 1, c-Src, interleukin-6, ras, MDM2, bcl-2/bclxL, vitamin D receptor, estrogen receptor-beta, and PPAR-. Various nutrients and phytochemicals suspected to have potential utility in prostate cancer prevention and therapy, but whose key molecular targets are still unknown, might reasonably be incorporated into MSMTs for prostate cancer; these include lycopene, selenium, green tea polyphenols, genistein, and silibinin. MSMTs can be developed systematically by testing various combinations of signal-modulating agents, in concentrations that can feasibly be achieved and maintained clinically, on human prostate cancer cell lines; combinations that appear promising can then be tested in xenograft models and, ultimately, in the clinic. Some signal modulators can increase response to cytotoxic drugs by upregulating effectors of apoptosis. When MSMTs fail to raise the spontaneous apoptosis rate sufficiently to achieve tumor stasis or regression, incorporation of appropriate cytotoxic agents into the regimen may improve the clinical outcome.  相似文献   

15.
Physical exercise, a potent functional intervention in protecting against cardiovascular diseases, is a hot topic in recent years. Exercise has been shown to reduce cardiac risk factors, protect against myocardial damage, and increase cardiac function. This improves quality of life and decreases mortality and morbidity in a variety of cardiovascular diseases, including myocardial infarction, cardiac ischemia/reperfusion injury, diabetic cardiomyopathy, cardiac aging, and pulmonary hypertension. The cellular adaptation to exercise can be associated with both endogenous and exogenous factors: 1) exercise induces cardiac growth via hypertrophy and renewal of cardiomyocytes, and 2) exercise induces endothelial progenitor cells to proliferate, migrate and differentiate into mature endothelial cells, giving rise to endothelial regeneration and angiogenesis. The cellular adaptations associated with exercise are due to the activation of several signaling pathways, in particular, the growth factor neuregulin1 (NRG1)-ErbB4-C/EBPβ and insulin-like growth factor (IGF)-1-PI3k-Akt signaling pathways. Of interest, microRNAs (miRNAs, miRs) such as miR-222 also play a major role in the beneficial effects of exercise. Thus, exploring the mechanisms mediating exercise-induced benefits will be instrumental for devising new effective therapies against cardiovascular diseases.  相似文献   

16.
Beta-adrenergic signaling has been found to regulate multiple cellular processes that contribute to the initiation and progression of cancer, including inflammation, angiogenesis, apoptosis/anoikis, cell motility and trafficking, activation of tumor-associated viruses, DNA damage repair, cellular immune response, and epithelial-mesenchymal transition. In several experimental cancer models, activation of the sympathetic nervous system promotes the metastasis of solid epithelial tumors and the dissemination of hematopoietic malignancies via β-adrenoreceptor-mediated activation of protein kinase A and exchange protein activated by adenylyl cyclase signaling pathways. Within the tumor microenvironment, β-adrenergic receptors on tumor and stromal cells are activated by catecholamines from local sympathetic nerve fibers (norepinephrine) and circulating blood (epinephrine). Tumor-associated macrophages are emerging as key targets of β-adrenergic regulation in several cancer contexts. Sympathetic nervous system regulation of cancer cell biology and the tumor microenvironment has clarified the molecular basis for long-suspected relationships between stress and cancer progression, and now suggests a highly leveraged target for therapeutic intervention. Epidemiologic studies have linked the use of β-blockers to reduced rates of progression for several solid tumors, and preclinical pharmacologic and biomarker studies are now laying the groundwork for translation of β-blockade as a novel adjuvant to existing therapeutic strategies in clinical oncology.  相似文献   

17.
Activation of receptor tyrosine kinases (RTK) plays a key role in the prognosis of mammary cancer. Lapatinib is a small molecule dual RTK inhibitor that targets epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2). Identifying the protein targets involved in the effects of lapatinib and other RTK inhibitors might help determine why preventive efficacy varies. In this study, female Sprague-Dawley rats were given methylnitrosourea (MNU) by intravenous injection resulting in the development of multiple estrogen receptor-positive tumors. Treatment with lapatinib beginning 5 days after MNU was highly effective in preventing cancer development. In addition, we treated rats with palpable mammary tumors with lapatinib daily. In these tumor-bearing animals, treatment continued for 42 days and therapeutic results were obtained. Some rats bearing cancers were treated for 5 days, and the resulting lesions were examined for biomarker modulation. Lapatinib effectively suppressed the abundance of HER2, phosphorylated HER2 (Tyr1221/1222), and phosphorylated EGFR (Tyr1173, Tyr1110) compared with tumors from untreated rats. Protein array analyses allowed parallel determination of the effect of lapatinib on the relative levels of protein phosphorylation and proteins associated with apoptosis. These results combined with immunoreactivity data indicated that, in addition to EGFR and HER2, lapatinib treatment was associated with changes in a number of other signaling molecules, including IGF-1R, Akt, and downstream targets such as GSK3, p27, p53, and cyclin D1 presumably leading to impaired proliferation, apoptosis, or cell-cycle arrest.  相似文献   

18.
19.
 自噬是细胞内分解代谢的途径,它对于细胞的生存、分化、发展和内环境的稳定有着重要的作用。最近研究表明自噬具有促进和抑制肿瘤的双重作用。这种双重作用是通过一些肿瘤相关信号转导通路完成的,其中包括哺乳动物的雷帕霉素靶蛋白复合物1(mTORC1)依赖的信号转导通路、Beclin1网络系统、LKB1-AMPK信号转导通路和p53及相关自噬信号转导通路。各通路在诱导和抑制自噬方面彼此独立又相互关联,在肿瘤的发生和发展的过程中发挥着不同的作用。  相似文献   

20.
It has been suggested in many studies that combined treatment with chemotherapeutic agents and apoptosis-inducing ligands belonging to TNFR family is a more effective strategy for cancer treatment. However, the role of androgen regulation of TNFR family-induced apoptosis in prostate cancer is poorly understood. In this study, we investigated the dose-dependent effects of androgen on TNF-alpha and TRAIL-mediated apoptosis in LNCaP. To investigate the interaction between the androgen receptor (AR) and the caspase-2 gene, chromatin immunoprecipitation analysis was used, and we are the first to identify that AR interacts in vivo with an androgen-responsive elements in intron 8 of caspase-2 gene. We have found that DHT inhibited apoptosis in dose-dependent manner. There is a direct, androgen-dependent correlation between the levels of activated Akt and caspase activation after treatment with TNF-alpha and TRAIL. We have also found that there are at least two different regulatory mechanisms of p53 expression by androgen: at the gene and protein levels. At the same time, the level of AR was found to be higher in LNCaP-si-p53 compared to LNCaP-mock cells. These data indicate that there is a mutual regulation of expression between p53 and AR. Our study suggests that androgen-dependent outcome of apoptotic treatment can occur, at least in part, via the caspase-2, Akt and p53-mediated pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号