首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Candida dubliniensis is an opportunistic fungal pathogen that has been linked to oral candidiasis in AIDS patients, although it has recently been isolated from other body sites. DNA sequence analysis of the internal transcribed spacer 2 (ITS2) region of rRNA genes from reference Candida strains was used to develop molecular beacon probes for rapid, high-fidelity identification of C. dubliniensis as well as C. albicans. Molecular beacons are small nucleic acid hairpin probes that brightly fluoresce when they are bound to their targets and have a significant advantage over conventional nucleic acid probes because they exhibit a higher degree of specificity with better signal-to-noise ratios. When applied to an unknown collection of 23 strains that largely contained C. albicans and a smaller amount of C. dubliniensis, the species-specific probes were 100% accurate in identifying both species following PCR amplification of the ITS2 region. The results obtained with the molecular beacons were independently verified by random amplified polymorphic DNA analysis-based genotyping and by restriction enzyme analysis with enzymes BsmAI and NspBII, which cleave recognition sequences within the ITS2 regions of C. dubliniensis and C. albicans, respectively. Molecular beacons are promising new probes for the rapid detection of Candida species.  相似文献   

2.
Candida dubliniensis is a novel species only recently described. This emerging pathogen shares some of the phenotypic characteristics specific to C. albicans but is genetically different. In this study we typed four strains of atypical C. albicans isolated in our laboratory and compared them to 41 strains of C. albicans and 11 strains of C. dubliniensis by several phenotypic methods and by multilocus enzyme electrophoresis. Using factorial correspondence analysis, we distinguished C. dubliniensis and the atypical C. albicans strains from all strains of C. albicans. Atypical C. albicans strains were identified as C. dubliniensis.  相似文献   

3.
In this work we cloned CdPHR1 and CdPHR2 from the human fungal pathogen Candida dubliniensis. The two genes are homologues to the pH-regulated genes PHR1 and PHR2 from Candida albicans. The pH-dependent pattern of expression of CdPHR1 and CdPHR2 was conserved in C. dubliniensis. CdPHR1 could be shown to be functionally equivalent to PHR1. The pH-regulated mode of expression was maintained when CdPHR1 was integrated in C. albicans. This indicates a fundamentally similar mode of expressional regulation in the two species. CdPHR1 was furthermore capable of reversing the aberrant phenotype of a Saccharomyces cerevisiae GAS1 deletion mutant. In this species, however, expression of CdPHR1 was no longer under control of the external pH. Expression of CdPHR1 was not detected when it was introduced into Aspergillus nidulans. In conclusion, C. dubliniensis and C. albicans respond to changes in the environmental pH with a change in cell shape and differential gene expression.  相似文献   

4.
Coaggregation of Candida dubliniensis with Fusobacterium nucleatum   总被引:2,自引:0,他引:2       下载免费PDF全文
The binding of microorganisms to each other and oral surfaces contributes to the progression of microbial infections in the oral cavity. Candida dubliniensis, a newly characterized species, has been identified in human immunodeficiency virus-seropositive patients and other immunocompromised individuals. C. dubliniensis phenotypically resembles Candida albicans in many respects yet can be identified and differentiated as a unique Candida species by phenotypic and genetic profiles. The purpose of this study was to determine oral coaggregation (CoAg) partners of C. dubliniensis and to compare these findings with CoAg of C. albicans under the same environmental conditions. Fifteen isolates of C. dubliniensis and 40 isolates of C. albicans were tested for their ability to coaggregate with strains of Fusobacterium nucleatum, Peptostreptococcus micros, Peptostreptococcus magnus, Peptostreptococcus anaerobius, Porphyromonas gingivalis, and Prevotella intermedia. When C. dubliniensis and C. albicans strains were grown at 37 degrees C on Sabouraud dextrose agar, only C. dubliniensis strains coaggregated with F. nucleatum ATCC 49256 and no C. albicans strains showed CoAg. However, when the C. dubliniensis and C. albicans strains were grown at 25 or 45 degrees C, both C. dubliniensis and C. albicans strains demonstrated CoAg with F. nucleatum. Heating the C. albicans strains (grown at 37 degrees C) at 85 degrees C for 30 min or treating them with dithiothreitol allowed the C. albicans strains grown at 37 degrees C to coaggregate with F. nucleatum. CoAg at all growth temperatures was inhibited by mannose and alpha-methyl mannoside but not by EDTA or arginine. The CoAg reaction between F. nucleatum and the Candida species involved a heat-labile component on F. nucleatum and a mannan-containing heat-stable receptor on the Candida species. The CoAg reactions between F. nucleatum and the Candida species may be important in the colonization of the yeast in the oral cavity, and the CoAg of C. dubliniensis by F. nucleatum when grown at 37 degrees C provides a rapid, specific, and inexpensive means to differentiate C. dubliniensis from C. albicans isolates in the clinical laboratory.  相似文献   

5.
Candida dubliniensis is a recently described species that shares many phenotypic and morphological features with Candida albicans. The clinical significance of isolating C. dubliniensis from the pediatric population is not clear, as most clinical isolates have been recovered from the oral cavities or bloodstreams of adults infected with human immunodeficiency virus. In order to understand further the epidemiology of C. dubliniensis in our pediatric population, we identified C. dubliniensis isolates from clinical isolates previously identified in the laboratory as C. albicans and conducted a retrospective chart review of cases of C. dubliniensis infections. A total of 205 isolates from 183 patients were tested, and only 14 (6.8%) were identified as C. dubliniensis. In 5 of the 14 positive cultures, C. dubliniensis was the sole organism isolated (two respiratory tract specimens, one tongue specimen, one vaginal specimen, and one skin specimen). A case review showed that there were no adverse outcomes for any of the patients, and only one of the patients with cultures positive for C. dubliniensis was immunocompromised. In our pediatric population, the distinction of C. dubliniensis from C. albicans did not prove to have significant clinical relevance. Data from further investigations may help to define better the role of C. dubliniensis as a potential pathogen in children.  相似文献   

6.
We developed a rapid genotypic assay to differentiate the germ tube-positive yeasts Candida albicans and Candida dubliniensis. Fluorescently labeled nucleic acid probe binding and subsequent denaturation from the target site in the PCR amplicons produced characteristic peak melting temperatures (T(m)) that identified each species. Peak T(m)s of C. albicans (n = 69) and C. dubliniensis (n = 28) isolates produced in the presence of their respective probes were 61.04 +/- 0.64 degrees C and 60.52 +/- 1.01 degrees C (averages +/- standard deviations). No signal was generated when the C. albicans or C. dubliniensis probes were tested against DNA from their counterparts. Both probes reacted with Candida tropicalis DNA, but the T(m) was 51.85 +/- 0.05 degrees C with the C. albicans probe and 51.92 +/- 0.10 degrees C with the C. dubliniensis probe, differentiating C. tropicalis DNA from C. albicans and C. dubliniensis. A novel hybrid probe was designed to identify both species in a single reaction based on a 4 degrees C difference in peak T(m)s. Our assay is rapid (相似文献   

7.
A variety of fungi produce the hydrolytic enzyme beta-N-acetylhexosaminidase (HexNAcase), which can be readily detected in assays by using p-nitrophenyl-N-acetyl-beta-D-glucosaminide as a substrate. In the present study we developed a microtiter plate-based HexNAcase assay for distinguishing Candida albicans and Candida dubliniensis strains from other yeast species. HexNAcase activity was detected in 89 of 92 (97%) C. albicans strains and 4 of 4 C. dubliniensis strains but not in 28 strains of eight other Candida species, 4 Saccharomyces cerevisiae strains, or 2 Cryptococcus neoformans strains. The HexNAcase activity in C. albicans and C. dubliniensis was strain specific. All except three clinical C. albicans isolates among the C. albicans strains tested produced enzyme activity within 24 h. These strains did produce enzyme activity, however, after a prolonged incubation period. For two of these atypical strains, genomic DNA at the C. albicans HEX1 gene locus, which encodes HexNAcase, showed nucleotide differences from the sequence of control strains. Among the other Candida species tested, only C. dubliniensis had a DNA sequence that hybridized with the HEX1 probe under low-stringency conditions. The microtiter plate-based assay used in the present study for the detection of HexNAcase activity is a simple, relatively inexpensive method useful for the presumptive identification of C. albicans and C. dubliniensis.  相似文献   

8.
Candida dubliniensis is phenotypically similar to Candida albicans and may therefore be underdiagnosed in the clinical microbiology laboratory. The performance of Bichro-Dubli latex agglutination test for rapid species identification of C. dubliniensis was prospectively evaluated on 111 vaginal and 118 respiratory isolates. These had presumptively been identified as C. albicans/C. dubliniensis by their green colonies on CHROMagar Candida plates. Bichro-Dubli test identifed 2 (1.8%) vaginal and 6 (5.1%) respiratory isolates as C. dubliniensis. The test was also positive for 37 C. dubliniensis control strains characterised by 18S-28S DNA-sequencing. Bichro-Dubli test is thus a sensitive and accurate tool for rapid diagnostics in routine laboratories.  相似文献   

9.
Cell components of the dimorphic pathogenic fungus Candida dubliniensis were used to prepare monoclonal antibodies (MAbs). One MAb, designated 12F7-F2, was shown by indirect immunofluorescence to be specific for a surface antigen of Candida dubliniensis yeast cells. No reactivity was observed with other fungal genera or with other Candida species, including Candida albicans, that share many phenotypic features with C. dubliniensis. The use of different chemical and physical treatments for cell component extraction suggested that the specific epitope probably resides on a protein moiety absent from C. albicans. However, we failed to identify the target protein by Western blotting, owing to its sensitivity to heat and sodium dodecyl sulfate. MAb 12F7-F2 was further used to develop a commercial latex agglutination test to identify C. dubliniensis colonies (Bichro-dubli Fumouze test; Fumouze Diagnostics). The test was validated on yeast strains previously identified by PCR and on fresh clinical isolates; these included 46 C. dubliniensis isolates, 45 C. albicans isolates, and other yeast species. The test had 100% sensitivity and specificity for C. dubliniensis isolated on Sabouraud dextrose, CHROMagar Candida, and CandiSelect media and 97.8% sensitivity for C. dubliniensis grown on Candida ID medium. The test is rapid (5 min) and easy to use and may be recommended for routine use in clinical microbiology laboratories and for epidemiological investigations.  相似文献   

10.
Candida dubliniensis is an emerging yeast pathogen generally misclassified as Candida albicans by standard diagnostic procedures. This study examined the efficiency of molecular identification, based on a discriminative PCR test, in a prospective study on the prevalence of C. dubliniensis among 103 oropharyngeal isolates from HIV-infected individuals or transplant recipients, and 30 vaginal isolates. All of the isolates had been classified as C. albicans by standard laboratory procedures. The PCR was evaluated in a blinded fashion against classification achieved by sequencing rDNA. Sequencing results corresponded 100% to the results of the discriminative PCR, indicating the validity of this rapid test. Twenty-one C. dubliniensis isolates were identified, all of them from HIV-infected individuals (prevalence 30%). The internal transcribed spacer regions of the C. dubliniensis isolates were sequenced. Phenotypic features of C. dubliniensis, namely abundant chlamydospore formation, atypical color on CHROMagar, growth defect at 45 degrees C, and colony morphology on Staib agar, were evaluated in a blinded fashion with respect to their discriminative potential, facilitating the design of further epidemiological studies. Carbohydrate assimilation patterns were determined for C. dubliniensis with a novel automated system showing that, in contrast to previous reports, C. dubliniensis is able to utilize D-xylose and trehalose. In evaluating these tests we present a rational approach to identification of the new species and characterization of C. dubliniensis isolates.  相似文献   

11.
Candida dubliniensis,a new fungal pathogen   总被引:6,自引:0,他引:6  
There is a high interest in Candida species other than Candida albicans because of the rise and the epidemiological shifts in candidiasis. These emerging Candida species are favored by the increase of immunocompromised patients and the use of new medical practices, and m. Most oropharyngeal candidiasis can be foundare observed in those HIV-infected patients infected with human immunodeficiency virus (HIV). Candida dubliniensis is a recently described opportunistic pathogen that is closely related to C. albicans but differs from it with respect to epidemiology, certain virulence characteristics, and the ability to develop fluconazole resistance in vitro. C. dubliniensis has been linked to oral candidiasis in AIDS patients, although it has recently been associated to invasive disease. C. dubliniensis shares diagnostic characteristics with C. albicans, as germ tube- and chlamydospore-production, and it is generally misclassified as C. albicans by standard diagnostic procedures. Several recent studies have attempted to elucidate useful phenotypic and genotypic characteristics for separating both species. A large variety of methods have been developed with the aim of facilitating rapid and, accurate identification of this species. These have included differential chromogenic isolation platesculture media, direct immunological tests, and enhanced manual and automated biochemical and enzymatic panels. Chromogenic isolation media, as CHROMagar Candida, demonstrate better detection rates than traditional media, and allow the presumptive identification of C. dubliniensis by means of colony color (dark-green colonies). API 20 C AUX system is considered a reference method, but ID 32 C strip, the VITEK Yeast Biochemical Card and the VITEK 2 ID-YST system correctly identify most C. dubliniensis isolates, being the latter the most accurate. Spectroscopic methods, such as Fourier transformed-infrared spectroscopy, offer potential advantages. However, many authors consider that standard methods for differentiation of Candida species are time-consuming, often insensitive and can fail to distinguish C. dubliniensis. To overcome these low sensitivity, poor specificity and intolerable delay,drawbacks, molecular tools have been developed to discriminate C. dubliniensis, and particularly those based on the polymerase chain reaction. But, molecular tools prove difficult and too complex for routine use in the clinical laboratory setting and new developments are necessary. Moreover, an increased resistance to antifungal drugs has been described. Although preliminary studies indicate that most strains of C. dubliniensis are susceptible to antifungal agents, fluconazole-resistant strains have been detected. Furthermore, fluconazole-resistant strains are easily derived in vitro, showing an increased expression of multidrug resistance transporters, as MDR1.  相似文献   

12.
Candida dubliniensis is a recently identified chlamydospore-positive yeast species associated with oral candidiasis in human immunodeficiency virus (HIV)-infected (HIV+) patients and is closely related to Candida albicans. Several recent reports have described atypical oral Candida isolates with phenotypic and genetic properties similar to those of C. dubliniensis. In this study 10 atypical chlamydospore-positive oral isolates from HIV+ patients in Switzerland, the United Kingdom, and Argentina and 1 isolate from an HIV-negative Irish subject were compared to reference strains of C. albicans and Candida stellatoidea and reference strains of C. dubliniensis recovered from Irish and Australian HIV+ individuals. All 11 isolates were phenotypically and genetically similar to and phylogenetically identical to C. dubliniensis. These findings demonstrate that the geographical distribution of C. dubliniensis is widespread, and it is likely that it is a significant constituent of the normal oral flora with the potential to cause oral candidiasis, particularly in immunocompromised patients.  相似文献   

13.
Isolates of Candida dubliniensis may be misidentified as Candida albicans in microbiological laboratories if only the germ tube and/or the chlamydospore test is used for identification to the species level. In this study, we have evaluated the efficacy of tobacco agar for the differentiation of C. dubliniensis from C. albicans. On this medium at 28 degrees C, all 30 C. dubliniensis isolates produced yellowish-brown colonies with hyphal fringes and abundant chlamydospores, whereas 54 C. albicans isolates formed smooth, white-to-cream-colored colonies with no chlamydospore production. This medium provides a simple tool for presumptive differentiation of C. dubliniensis from C. albicans.  相似文献   

14.
Although Candida dubliniensis is a close genetic relative of Candida albicans, it colonizes and infects fewer sites. Nearly all instances of candidiasis caused by C. dubliniensis are restricted to the oral cavity. As cell surface hydrophobicity (CSH) influences virulence of C. albicans, CSH properties of C. dubliniensis were investigated and compared to C. albicans. Growth temperature is one factor which affects the CSH status of stationary-phase C. albicans. However, C. dubliniensis, similar to other pathogenic non-albicans species of Candida, was hydrophobic regardless of growth temperature. For all Candida species tested in this study (C. albicans, C. dubliniensis, C. glabrata, C. krusei, C. parapsilosis, and C. tropicalis), CSH status correlated with coaggregation with the anaerobic oral bacterium Fusobacterium nucleatum. Previous studies have shown that CSH status of C. albicans involves multiple surface proteins and surface protein N-glycans. The hydrophobic surface glycoprotein CAgp38 appears to be expressed by C. albicans constitutively regardless of growth temperature and medium. C. dubliniensis expresses a 38-kDa protein that cross-reacts with the anti-CAgp38 monoclonal antibody; however, expression of the protein was growth medium and growth temperature dependent. The anti-CAgp38 monoclonal antibody has been shown to inhibit adhesion of C. albicans to extracellular matrix proteins and to vascular endothelial cells. Since protein glycosylation influences the CSH status of C. albicans, we compared the cell wall mannoprotein content and composition between C. albicans and C. dubliniensis. Similar bulk compositional levels of hexose, phosphate, and protein in their N-glycans were determined. However, a component of the C. albicans N-glycan, acid-labile phosphooligomannoside, is expressed much less or negligibly by C. dubliniensis, and when present, the oligomannosides are predominantly less than five mannose residues in length. In addition, the acid-labile phosphooligomannoside profiles varied among the three strains of C. dubliniensis we tested, indicating the N-glycan of C. dubliniensis differs from C. albicans. For C. albicans, the acid-labile phosphooligomannoside influences virulence and surface fibrillar conformation, which affects exposure of hydrophobic surface proteins. Given the combined role in C. albicans of expression of specific surface hydrophobic proteins in pathogenesis and of surface protein glycosylation on exposure of the proteins, the lack of these virulence-associated CSH entities in C. dubliniensis could contribute to its limited ability to cause disseminated infections.  相似文献   

15.
Candida dubliniensis was first established as a novel yeast species in 1995. It is particularly associated with recurrent episodes of oral candidosis in human immunodeficiency virus (HIV)-infected patients, but it has also been detected at other anatomical sites and at a low incidence level in non-HIV-infected patients. It shares so many phenotypic characteristics with C. albicans that it is easily misidentified as such. No rapid, simple, and commercial test that allows differentiation between C. dubliniensis and C. albicans has been developed, until now. Accurate species identification requires the use of genotype-based techniques that are not routinely available in most clinical microbiology diagnostic laboratories. The present study was designed to evaluate the efficiency of a new test (the immunochromatographic membrane [ICM] albi-dubli test; SR2B, Avrille, France) to differentiate between C. albicans and C. dubliniensis. The organisms evaluated were strains whose identities had previously been confirmed by PCR tests and freshly isolated clinical strains and included 58 C. albicans isolates, 60 C. dubliniensis isolates, and 82 isolates belonging to other species of yeast. The ICM albi-dubli test is based on the principle of immunochromatographic analysis and involves the use of two distinct monoclonal antibodies that recognize two unrelated epitopes expressed by both species or specific to only one species. The assay requires no complex instrumentation for analysis and can be recommended for routine use in clinical microbiology laboratories. Results are obtained within 2 h and 30 min and are easy to interpret. This evaluation demonstrated the good performance of this immunochromatographic test for C. albicans and C. dubliniensis isolated on Sabouraud dextrose agar, CHOROMagar Candida, and CandidaSelect, with sensitivities and specificities ranging from 93.1 to 100%. These parameters decreased, however, to 91.4% when the test was performed with yeast isolated with Candida ID.  相似文献   

16.
CHROMagar Candida and Candida ID2 are widely used for the isolation and presumptive identification of Candida spp. based on the color of the colonies on these two media. We have studied the usefulness of these chromogenic media for differentiating Candida dubliniensis from Candida albicans isolates. One hundred isolates of C. dubliniensis and 100 C. albicans isolates were tested on Candida ID2, CHROMagar Candida (CHROMagar), and CHROMagar Candida reformulated by BBL. CHROMagar Candida and CHROMagar Candida BBL did not allow a clear differentiation of the two species based upon the shade of the green color of C. dubliniensis colonies. However, on Candida ID2, all C. dubliniensis isolates produced turquoise blue colonies whereas 91% of C. albicans colonies were cobalt blue. The sensitivity and the specificity for differentiating between C. dubliniensis fromC. albicans on Candida ID2 were 100% and 91%, respectively; whereas on CHROMagar Candida these values were 63% and 89% and on CHROMagar Candida BBL they were 18% and 98%. Candida ID2 agar provides a simple and accurate laboratory approach for the identification and differentiation of C. dubliniensis on the basis of the colony color.  相似文献   

17.
The development of a satisfactory means to reliably distinguish between the two closely related species Candida albicans and Candida dubliniensis in the clinical mycology laboratory has proved difficult because these two species are phenotypically so similar. In this study, we have detected homologues of the pH-regulated C. albicans PHR1 and PHR2 genes in C. dubliniensis. Restriction fragment length polymorphism analysis suggests that there are significant sequence differences between the genes of the two species. In order to exploit this apparent difference, oligonucleotide primers based on the coding sequence of the C. albicans PHR1 structural gene were designed and used in PCR experiments. Use of these primers with C. albicans template DNA from 17 strains yielded a predicted 1.6-kb product, while C. dubliniensis template DNA from 19 strains yielded no product. We therefore propose that PCR using these primers is a rapid and reliable means of distinguishing the two germ tube- and chlamydospore-producing species C. albicans and C. dubliniensis.  相似文献   

18.
Candida albicans and C. dubliniensis are two species responsible for oral candidiasis, especially in immunocompromised patients. Microbial infection is preceded by adherence and biofilm formation. Biofilm formation represents the most common form of C. albicans in the oral cavity and is considered to be one of the most important virulence factors. In this study, the biofilm formation ability of C. dubliniensis was compared with that of C. albicans in terms of biomass (quantified using crystal violet) and activity (assessed by formazan salts formation). Both species formed heterogeneous biofilms; however, species and strain variations were seen in the quantification of biomass and activity. There was no correlation between pseudohyphae formation and biofilm formation capability.  相似文献   

19.
An in vitro assay to study multiple Candida biofilms, in parallel, has been carried out using the Calgary biofilm device (CBD). We here report: i) standardization of the CBD for Candida albicans biofilm formation, ii) kinetics of C. albicans biofilm formation, iii) biofilm formation by five Candida species, and iv) effect of dietary carbohydrates on biofilm formation. The biofilm metabolic activity on all CBD pegs was similar (p=0.6693) and C. albicans biofilm formation revealed slow growth up to 36 h and significantly higher growth up to 48 h (p<0.001). Significant differences in total biofilm metabolic activity were seen for glucose, fructose and lactose grown C. albicans compared with sucrose and maltose grown yeasts. Candida krusei developed the largest biofilm mass (p<0.05) relative to C. albicans, C. glabrata, C. dubliniensis and C. tropicalis. Scanning electron microscopy revealed that C. krusei produced a thick multilayered biofilm of pseudohyphal forms embedded within the polymer matrix, whereas C. albicans, C. dubliniensis and C. tropicalis biofilms consisted of clusters or chains of cells with sparse extracellular matrix material. We conclude that CBD is a useful, simple, low cost miniature device for parallel study of Candida biofilms and factors modulating this phenomenon.  相似文献   

20.
Candida dubliniensis is often associated with C. albicans in cultures. Easy-to-perform selective isolation procedures for these closely related species do not exist. Therefore, we evaluated previously described discriminatory phenotypic markers for C. dubliniensis. A total of 150 oral rinses from human immunodeficiency virus (HIV)-infected patients were cultured on CHROMagar Candida. Dark green colonies described as being indicative of C. dubliniensis and other green colonies, 170 in total, were isolated. Chlamydospore formation, intracellular beta-D-glucosidase activity, ability to grow at 42 degrees C, carbohydrate assimilation pattern obtained by the API ID 32C, and Fourier transform infrared (FT-IR) spectroscopy were used for phenotypic characterization. Sequencing of the 5' end of the nuclear large-subunit (26S) ribosomal DNA gene was used for definitive species identification for C. dubliniensis. C. dubliniensis was found in 34% of yeast-colonized HIV-infected patients. The color of the colonies on CHROMagar Candida proved to be insufficient for selecting C. dubliniensis, since only 30 of 53 proven C. dubliniensis isolates showed a dark green color in primary cultures. The described typical chlamydospore formation can give only some indication of C. dubliniensis. The assimilation pattern proved to be insufficient to discriminate C. dubliniensis from C. albicans. All C. dubliniensis strains showed no or highly restricted growth at 42 degrees C and a lack of beta-D-glucosidase activity. Unfortunately, atypical C. albicans strains can also exhibit these phenotypic traits. FT-IR spectroscopy combined with hierarchical clustering proved to be as reliable as genotyping for discriminating the two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号