首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Although the ontogeny of hematopoietic stem cells (HSCs) in vertebrates has been studied intensely, a lineage relationship between the HSCs found in the developmentally successive hematopoietic organs remains to be shown. By using an in situ photoactivatable cell tracer in the transparent zebrafish embryo, we demonstrated that definitive blood precursors appeared between the dorsal aorta and axial vein, validating the homology of this tissue with the AGM (aorta-gonad-mesonephros) of amniotes. These cells first migrated through the blood to a previously undescribed caudal hematopoietic tissue (CHT), where they differentiated, expanded, and further migrated to seed the definitive hematopoietic organs, the thymus and kidney. Immigrants on the way to the thymus expressed c-myb and ikaros but not rag1; they were probably no longer HSCs, however, because they lacked scl and runx1 expression, unlike immigrants to the kidney. The CHT thus has a hematopoietic function similar to that of the mammalian fetal liver.  相似文献   

3.
4.
5.
Identifying the molecular pathways regulating hematopoietic stem cell (HSC) specification, self-renewal, and expansion remains a fundamental goal of both basic and clinical biology. Here, we analyzed the effects of Notch signaling on HSC number during zebrafish development and adulthood, defining a critical pathway for stem cell specification. The Notch signaling mutant mind bomb displays normal embryonic hematopoiesis but fails to specify adult HSCs. Surprisingly, transient Notch activation during embryogenesis via an inducible transgenic system led to a Runx1-dependent expansion of HSCs in the aorta-gonad-mesonephros (AGM) region. In irradiated adults, Notch activity induced runx1 gene expression and increased multilineage hematopoietic precursor cells approximately threefold in the marrow. This increase was followed by the accelerated recovery of all the mature blood cell lineages. These data define the Notch-Runx pathway as critical for the developmental specification of HSC fate and the subsequent homeostasis of HSC number, thus providing a mechanism for amplifying stem cells in vivo.  相似文献   

6.
目的:制备含有融合Flag标签的Runx3基因的复制缺陷型重组腺病毒,感染神经胶质细胞瘤U251,观察外源Runx3在细胞中的表达及亚细胞定位.方法:用PCR的方法扩增Runx3基因,并将Flag标签蛋白的编码基因与RUNX3基因进行融合,构建腺病毒穿梭载体pShuttle-CMV-Runx3,经Kpn Ⅰ/Xho Ⅰ双酶切鉴定并测序.利用电转化方法将经Pme Ⅰ线性化的pShuttle-CMV-Runx3穿梭载体导入BJ5183重组细菌,获取重组腺病毒质粒Ad-Runx3,再将经Pac Ⅰ线性化的Ad-Runx3重组病毒骨架质粒转染293A包装细胞,包装并扩增病毒.利用该病毒感染神经胶质细胞瘤U251,用免疫印迹法观察外源Runx3在细胞中的表达,用间接免疫荧光法观察其在细胞内的定位.结果:构建并包装表达Runx3蛋白的重组腺病毒,用重组腺病毒感染U251细胞后,经免疫印迹和间接免疫荧光法检测,可见外源导入的Runx3蛋白在细胞核内的特异性定位.结论:成功制备了含有融合Flag标签的转录因子Runx3基因的重组腺病毒,感染U251细胞,在细胞中观察到该分子表达后定位于细胞核中,为研究Runx3在神经胶质瘤发生中的作用奠定了实验基础.  相似文献   

7.
Background : Notch and its homologues are key regulatory receptors of the cell fate decision in various developmental processes. The int-3 oncogene was originally identified as a frequent target in Mouse Mammary Tumour Virus (MMTV)-induced mammary tumours and has been regarded as a Notch homologue, based on its similarity to the intracellular domain of Notch . Studies with int-3 transgenic mice have suggested that the int-3 transgene affects the differentiation capacity of stem cells and leads to neoplastic proliferation in epithelial cells. However, the exact nature and the in vivo expression pattern of the int-3 proto-oncogene are unknown. The function of gene products in embryogenesis is also not clear.
Results : We isolated cDNA clones corresponding to the proto-oncogene of int-3 and analysed its overall structure. The predicted amino acid sequence of the int-3 proto-oncogene contains the conserved motif found in Notch family receptors. Therefore, we name Notch-4 for the int-3 proto-oncogene. However, Notch-4 has fewer EGF repeats and shows less similarity to Notch, compared with other mammalian Notch homologues. In embryogenesis, the expression of Notch-4 was detected in endothelial cells of blood vessels forming tissues such as the dorsal aorta, intersegmental vessels, yolk sac vessels, cephalic vessels, heart, vessels in branchial arches, and capillary plexuses. In these tissues, Notch-4 expression coincided with flk-1 , the major regulatory gene of vasculogenesis and angiogenesis. We also found that Notch-4 expression was up-regulated in vitro during the differentiation of endothelial cells from embryonic stem cells (ES cells).
Conclusion : The endothelial cell specific expression pattern of Notch-4 , as well as its structural similarity of Notch, suggest that Notch-4 is an endothelial cell specific homologue of Notch and it may play a crucial role in vasculogenesis and angiogenesis.  相似文献   

8.
Hemogenic endothelium has been identified in embryonic dorsal aorta and in tissues generated from mouse embryonic stem cells, but to date there is no evidence for such bipotential cells in postnatal tissues or blood. Here we identify a cell population from human umbilical cord blood that gives rise to both endothelial cells and hematopoietic progenitors in vitro. Cord blood CD34+/CD133+ cells plated at high density in an endothelial basal medium formed an endothelial monolayer and a nonadherent cell population after 14-21 days. AML-1, a factor required for definitive hematopoiesis, was detected at low levels in adherent cells and at high levels in nonadherent cells. Nonadherent cells coexpressed the endothelial marker vascular endothelial (VE)-cadherin and the hematopoietic marker CD45, whereas adherent cells were composed primarily of VE-cadherin+/CD45- cells and a smaller fraction of VE-cadherin+/CD45+ cells. Both nonadherent and adherent cells produced hematopoietic colonies in methylcellulose, with the adherent cells yielding more colony-forming units (CFU)-GEMM compared with the nonadherent cells. To determine whether the adherent endothelial cells were producing hematopoietic progenitors, single cells from the adherent population were expanded in 96-well dishes for 14 days. The clonal populations expressed VE-cadherin, and a subset expressed AML-1, epsilon-globin, and gamma-globin. Three of 17 clonal cell populations gave rise to early CFU-GEMM hematopoietic progenitors and burst-forming unit-erythroid progenitors. These results provide evidence for hemogenic endothelial cells in human umbilical cord blood.  相似文献   

9.
10.
The general macrocirculation and branchial microcirculation of the air-breathing climbing perch, Anabas testudineus, was examined by light and scanning electron microscopy of vascular corrosion replicas. The ventral aorta arises from the heart as a short vessel that immediately bifurcates into a dorsal and a ventral branch. The ventral branch distributes blood to gill arches 1 and 2, the dorsal branch to arches 3 and 4. The vascular organization of arches 1 and 2 is similar to that described for aquatic breathing teleosts. The respiratory lamellae are well developed but lack a continuous inner marginal channel. The filaments contain an extensive nutritive and interlamellar network; the latter traverses the filament between, but in register with, the inner lamellar margins. Numerous small, tortuous vessels arise from the efferent filamental and branchial arteries and anastomose with each other to form the nutrient supply for the filament, adductor muscles, and arch supportive tissues. The efferent branchial arteries of arches 1 and 2 supply the accessory air-breathing organs. Arches 3 and 4 are modified to serve primarily as large-bore shunts between the dorsal branch of the ventral aorta and the dorsal aorta. In many filaments from arches 3 and 4, the respiratory lamellae are condensed and have only 1–3 large channels. In some instances in arch 4, shunt vessels arise from the afferent branchial artery and connect directly with the efferent filamental artery. The filamental nutrient and interlamellar systems are poorly developed or absent. The respiratory and systemic pathways in Anabas are arranged in parallel. Blood flows from the ventral branch of the ventral aorta, through gill arches 1 and 2, into the accessory respiratory organs, and then returns to the heart. Blood, after entering the dorsal branch of the ventral aorta, passes through gill arches 3 and 4 and proceeds to the systemic circulation. This arrangement optimizes oxygen delivery to the tissues and minimizes intravascular pressure in the branchial and air-breathing organs. The efficiency of this system is limited by the mixing of respiratory and systemic venous blood at the heart.  相似文献   

11.
Functional characterization of Lmo2-Cre transgenic zebrafish   总被引:1,自引:0,他引:1  
Cre/loxP system is a powerful tool to manipulate the genome. Transgenic animals expressing Cre recombinase in specific tissues or cells have been widely used for conditional gene targeting, lineage tracing, and other genetic analyses. In zebrafish, the transgenic line with stable expression of Cre in specific tissues and cell subtypes has not been generated and its functional activity remains to be defined. Here we report the establishment of a stable transgenic fish Tg(zlmo2:Cre), which specifically expresses Cre in the primitive hematopoietic progenitors and vascular endothelial cells, under the control of lmo2 promoter. Our result shows that the Cre expression pattern recapitulates the endogenous lmo2 expression pattern during embryogenesis. Crossing of the Tg(zlmo2:Cre) line with another established transgenic reporter line Tg(zlmo2:loxP-DsRed-loxP-EGFP), induces a robust recombination activity in hematopoietic progenitors and vascular endothelial cells. Thus, the Tg(zlmo2:Cre) transgenic line provides an invaluable tool to dissect genetic pathways in hematopoietic development and diseases.  相似文献   

12.
The foundations of experimental hematology were laid by histologists, and while their contributions were enormous, they were limited in their interpretation of very dynamic processes by the static nature of the methodology. The middle of the twentieth century saw the introduction of techniques for hematopoietic cell marking and development of in vitro and in vivo assays for primitive hematopoietic cells, allowing dynamic studies of hematopoiesis. Paralleling this was an understanding of cellular immunology with the discovery of the role of the thymus and the identification of T and B lymphocyte lineages. In the 1960s a series of ontogenetic studies in birds and subsequently in mice revealed that hematopoietic and lymphoid development involved migration streams of primitive cells that colonized developing primary lymphoid organs as well as spleen, marrow, and liver. The yolk sac was proposed as the ultimate origin of these lympho-hematopoietic precursors. Subsequent studies identified a region associated with the dorsal aorta as the primary site of "definitive" stem cells. These opposing views are currently achieving a compromise that recognizes that both sites contribute stem cells involved in seeding the developing tissues. The clear distinction between the local origin of the inducing microenvironment provided by the endoderm or by stroma derived from mesenchymal stem cells of mesodermal origin, and the immigrant origin of the hematopoietic stem cells and progenitors, raises intriguing questions in the current climate of stem cell plasticity, cell fusion, and discovery of stem cells in adult marrow with the capacity to generate hematopoiesis as well as other mesodermal, ectodermal, and endodermal lineages.  相似文献   

13.
14.
15.
16.
During embryogenesis, left-right sidedness is established by asymmetric expression of laterality genes. A recent model predicts the presence of a functional midline that divides the left side of the embryonic disc from the right side, separating left- and right-inducing signals. We show evidence that this midline is formed from a distinct population of cells within the primitive streak. Cells in the dorsal midline of the chick primitive streak display unique expression of the gastrulation markers fgf-8 and brachyury. These midline cells are fated to die, and dead cells remain in the midline during gastrulation. Inhibition of midline cell death compromises the early expression of laterality genes, such as shh and nodal and randomizes the direction of heart looping. We suggest that cell death along the primitive streak midline is a novel mechanism involved in the regulation of left-right asymmetry during early embryogenesis.  相似文献   

17.
18.
The first haematopoietic stem cells (HSC) develop in the dorsal aorta as haematopoietic intra-aortic clusters (HIAC). To evaluate the initial steps of definitive haematopoiesis, we have studied the emergence and the expression profile of podocalyxin-like protein 1 (PCLP1)-expressing cells in early chick embryos. Here we demonstrate that at embryonic day 2 (E2), the PCLP1+ cells are present in the splanchnic mesoderm and in the ventral lining of the paired dorsal aorta. Following aortic fusion at E3, the PCLP1-expressing cells are exclusively found in the aortic floor and as the development proceeds, both the haematopoietic clusters and the aortic endothelial cells express PCLP1. In parallel with the early PCLP1 expression, bone morphogenetic protein 4 (BMP4) expression was detected in the splanchnopleura and thereafter in the densely packed mesenchymal cells beneath the HIAC. The microarray analyses of early E3 PCLP1+ cells revealed elevated expression of genes known to be involved in the stem cell function. These data suggest that splanchnopleura-derived PCLP1-expressing cells give rise to the earliest definitive haematopoietic progenitors.  相似文献   

19.
Wnt signaling plays several roles in hematopoiesis, promoting hemopoietic stem cell (HSC) self-renewal, providing proliferative signals for immature progenitors and regulating lineage commitment. To ascertain which Wnt proteins and receptors are important during hematopoietic development, we used two systems; in vitro hematopoietic differentiation of embryonic stem (ES) cells and tissues isolated from sites specific for hematopoiesis during mouse embryogenesis. Initially genes involved in hematopoiesis were profiled and indicate differentiating ES cells undergo a wave of primitive hematopoiesis (Day 3.75) similar to the mouse yolk sac, followed by a wave of more definitive hematopoiesis (Day 7.75) comparable to the aorta-gonad-mesonephros (AGM) and E15.5 liver with lineage commitment by Day 15. A similar biphasic expression pattern occurred for Wnt/Fzd/LRP genes with Wnt 3, 5a, 8a, Fzd4, and LRP5 becoming upregulated during primitive hematopoiesis, followed by Wnt3a, 6, 7b, 10b, and 16 during more definitive hematopoiesis. High expression of Wnt5a, Fzd4, and LRP5 during the first phase of hematopoiesis suggests these genes are involved in early hematopoietic regulation. Wnt3a and 16 were also expressed at specific stages, with Wnt16 detected when the earliest lymphoid progenitors are formed (AGM and 2 degrees BC of ES differentiation). Wnt3a expression corresponded with the induction of definitive hematopoiesis a period, which involves rapid expansion of HSC (Day 7.75 of ES differentiation, AGM and E15.5 liver). Supplementation with Wnt3a during ES hematopoietic differentiation increased proliferation and appeared to promote stem cell expansion. Overall this study provides valuable information on the Wnt/Fzd/LRP involved in supporting embryonic hematopoiesis.  相似文献   

20.
Isolation and expression analysis of three zebrafish angiopoietin genes.   总被引:3,自引:0,他引:3  
The Tie1 and Tie2 receptor tyrosine kinases and the Tie2 ligands, the angiopoietins, play critical roles in vertebrate vascular embryogenesis, helping to mediate the interaction between endothelial cells and the pericytes or vascular smooth muscle cells that envelop and support them. We have obtained full-length cDNA sequences for zebrafish orthologs of angiopoietin-1 (ang1), angiopoietin-2 (ang2), and angiopoietin-like-3 (angptl3). Ang1 is expressed in head ventral mesenchyme, in the ventromedial region of somites, in mesenchyme surrounding trunk axial vessels, and in the hypochord, a transient embryonic structure of endodermal origin that has been implicated in dorsal aorta assembly in both zebrafish and Xenopus. Ang2 is expressed in head and anterior trunk ventral mesenchyme and the developing pronephric glomeruli. Angptl3 is expressed in the yolk syncytial layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号