首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we describe the derivation of novel cell lines from spontaneous mammary tumors that arose in mouse mammary tumor virus-polyomavirus (MMTV-PyV) Middle T (MidT) transgenic mice. Clonal cell lines from four mixed cell populations were tested for adenovirus transducibility and sensitivity to p53 tumor suppressor gene therapy mediated by SCH58500, a replication-deficient adenovirus that expresses human p53. The MidT2-1 cell line was selected for further characterization in vitro and in vivo. This cell line carried the PyV MidT antigen, had wild-type p53 DNA, and was sensitive to suppression of proliferation by MMAC/PTEN tumor suppressor gene therapy. MidT2-1 cells gave rise to highly aggressive tumors in syngeneic FVB mice in both the mammary fat pad and the peritoneal cavity. The histopathology of MidT2-1 tumors closely resembled the histopathology of the primary transgenic tumors. Tumor growth in vivo was inhibited by p53 gene therapy or by MMAC gene therapy. In addition, combination therapy with a number of anticancer agents had synergistic or additive efficacy in vitro. In particular, MMAC gene therapy synergized with SCH58500 or paclitaxel. In the i.p. MidT2-1 tumor model p53 gene therapy enhanced the survival benefits of paclitaxel/cisplatin chemotherapy. Combination therapy has become a mainstay in cancer treatment. In this report, we use a novel transgenic mouse tumor cell line to suggest new combinations that might be explored in clinical cancer care. These include gene therapy using the tumor suppressors MMAC and p53, chemotherapy using farnesyl transferase inhibitors, the microtubule stabilizing taxanes, and the DNA synthesis disruptors gemcitabine and cisplatin. The precise biological mechanisms by which these therapies induce their antitumor effects are not fully elucidated. However, the work presented here suggests that many of these therapeutic approaches have synergistic antitumor activity when used in combination.  相似文献   

2.
BACKGROUND: Inhibiting tumor angiogenesis is a promising new strategy for treating cancer. Difficulties with the stability, manufacture, and long-term administration of recombinant antiangiogenic proteins have prompted investigators to use gene therapy to generate these proteins in vivo. We investigated whether transfer of the gene encoding the angiogenesis inhibitor endostatin into the murine liver cell line NMuLi could inhibit tumor growth in vivo. METHODS: NMuLi cells were transduced with retroviral vectors containing the murine endostatin gene. The presence and function of endostatin in transduced cell supernatants were confirmed by competitive enzyme immunoassay and endothelial cell proliferation assays. Nude mice were given a subcutaneous or intraperitoneal injection with NMuLi cells, control transduced cells (NEF-null), or endostatin-transduced clones (NEF-Endo1 to 4) and were monitored for tumor growth. All statistical tests were two-sided. RESULTS: Supernatants from the clone secreting the lowest amount of endostatin (NEF-Endo4, 28 ng/mL) inhibited endothelial cell proliferation by 6% (95% confidence interval [CI] = 0% to 12%), and those from the clone secreting the highest amount (NEF-Endo1, 223 ng/mL) inhibited endothelial cell proliferation by 20% (95% CI = 13% to 27%). Increased levels of endostatin were detected in tumor lysates, but not serum, of mice given a subcutaneous injection of NEF-Endo1 cells. After 63 days, mice given a subcutaneous injection of parental NMuLi or NEF-null cells had tumor volumes of 2400 mm(3) (95% CI = 1478 mm(3) to 3300 mm(3)) and 2700 mm(3) (95% CI = 2241 mm(3) to 3144 mm(3)), respectively, compared with mean tumor volumes of less than 30 mm(3) in mice given an injection of NEF-Endo clones, a statistically significant difference (P<.001). After 123 days, all 16 mice given an intraperitoneal injection of parental NMuLi or NEF-null cells had died, compared with only three (9%) of 32 mice given an injection of NEF-Endo clones. CONCLUSIONS: Retroviral endostatin gene transfer leads to secretion of functional endostatin that is sufficiently active to inhibit tumor growth. Further studies of retroviral endostatin gene transfer for the treatment of cancer are warranted.  相似文献   

3.
Liu F  Tan G  Li J  Dong X  Krissansen GW  Sun X 《Cancer science》2007,98(9):1381-1387
Hepatocellular carcinoma (HCC) is one of the most common cancer-related causes of death, and is chemoresistant to anticancer drugs. Anti-angiogenic therapy has been shown to enhance the efficacy of chemotherapy to treat solid tumors. The aim of the present study was to determine whether endostatin, a potent antiangiogenic agent, could enhance the efficacy of doxorubicin to combat HCC. An endostatin expression plasmid was constructed and its expression in vitro and in vivo was detected after gene transfer. Recombinant endostatin inhibited angiogenesis in the chorioallantoic membrane assay, and showed synergistic effects with doxorubicin in inhibiting the in vitro proliferation of endothelial cells, but not that of tumor cells. Both endostatin gene therapy and doxorubicin suppressed the growth of subcutaneous human HepG2 tumors established in BALB/c nude mice, and tumor angiogenesis. Combination therapy with endostatin gene therapy and doxorubicin showed a stronger effect in suppressing tumor growth, and tumor angiogenesis, than the respective monotherapies. Gene transfer of endostatin down-regulated the expression of both hypoxia-inducible factor-1alpha and vascular endothelial growth factor (VEGF), whereas doxorubicin only down-regulated VEGF expression. Endostatin and doxorubicin synergized to down-regulate VEGF expression. Endostatin and doxorubicin combination therapy warrants investigation as a therapeutic strategy to combat HCC.  相似文献   

4.
目的:探讨重组人内皮抑制素对 TNFα和IL-8介导的人血管内皮细胞株(endothelial cell of vessels,ECV)细胞增殖的抑制作用,并观察内皮抑制素对ECV表面粘附分子表达的影响。方法:用MTT法测定ECV的增殖;用间接免疫荧光法,在流式细胞仪上测定 ECV表面粘附分子的表达。结果:内皮抑制素浓度在 100~10000 ng/ml时,能显著抑制ECV的增殖(P<0.01),并抑制IL-8和TNFα介导的ECV增殖,且呈剂量依赖性关系。内皮抑制素在 100~1000 ng/ml时可抑制内皮细胞表面CD62E、CD40等粘附分子的表达。结论:内皮抑制素不但可抑制血管内皮细胞的增殖,控制肿瘤新生血管的形成,而且可抑制血管内皮细胞表面粘附分子的表达,对肿瘤的转移亦可能起抑制作用。  相似文献   

5.
PURPOSE: We tested the combined effects of antiangiogenic endostatin and epidermal growth factor receptor (EGFR) antisense gene therapy on squamous cell carcinoma (SCC). EXPERIMENTAL DESIGN and Results: The 1483 cell line of human head and neck SCC (HNSCC) and SCC-VII/SF murine SCC cells was used to establish tumors in nude mice and immunocompetent C3H mice, respectively. Tumor-bearing mice were treated with endostatin (20 mg/kg/day, s.c.), liposomal EGFR-antisense expression plasmid (25 microg/mouse, three times/week, intratumoral), a combination of both agents, or liposomal EGFR-sense plasmid as a control. Endostatin or EGFR-antisense alone significantly, yet partially, inhibited the growth of 1483 and SCC-VII/SF tumors, and a combination of both treatments completely blocked tumor growth. Immunohistochemistry analysis demonstrated that a complete suppression of tumor angiogenesis was achieved by the combination treatment. Down-regulation of vascular endothelial growth factor was shown in EGFR-antisense-treated tumors. These results suggest that the EGFR-antisense treatment, in addition to its inhibitory activity on tumor cell proliferation, might have a synergistic effect with endostatin on SCC-induced angiogenesis. In vitro studies demonstrated that EGFR inhibition by antisense oligonucleotides or EGFR-specific tyrosine kinase inhibitor down-regulated the production of VEGF in HNSCC cells. Additional experiments demonstrated that these EGFR inhibition approaches also directly suppressed the growth of endothelial cells. CONCLUSION: A combination of endostatin and EGFR targeting strategies profoundly inhibited the angiogenesis and growth of SCC in vivo. EGFR-antisense therapy might have multiple inhibitory effects against both tumor cells and endothelial cells, leading to enhanced antitumor efficacy. Such a combination strategy might represent a novel and promising approach for HNSCC therapy.  相似文献   

6.
Beck MT  Chen NY  Franek KJ  Chen WY 《Cancer research》2003,63(13):3598-3604
In previous studies (Chen, W. Y. et al., Clin. Cancer Res., 5:3583-3593, 1999; Chen, N Y. et al., Int. J. Oncol., 20:813-818, 2002), we have demonstrated the ability of the human prolactin (hPRL) antagonist, G129R, to inhibit human breast cancer cell proliferation in vitro and to slow the growth rate of tumors in mice. We further revealed that the possible mechanisms of G129R antitumor effects act through the induction of apoptosis via the regulation of bcl-2 gene expression. It has been established that to sustain tumor growth, it is necessary for the development of a network of blood vessels to bring in nutrients, a process called angiogenesis. The disruption of angiogenesis has been proven to be an effective strategy to cause regression of certain tumors. One of the best-studied angiogenesis inhibitors is endostatin, which acts through the inhibition of endothelial cells. In this study, we combine the anti-breast tumor effects of G129R and the antiangiogenic effects of endostatin by creating a novel fusion protein (G129R-endostatin) specifically for breast cancer therapy. The data presented here demonstrated that this novel fusion protein was able to bind to the PRL receptor (PRLR) on T-47D human breast cancer cells and inhibit the signal transduction induced by PRL. At the same time, G129R-endostatin inhibited human umbilical vein endothelial cell (HUVEC) proliferation and disrupted the formation of endothelial tube structures with potency similar to that of endostatin. More importantly, the therapeutic efficacy of G129R-endostatin was confirmed using a mouse breast cancer cell line 4T1 in vivo. G129R-endostatin has a significantly prolonged serum half-life as compared with that of G129R or endostatin alone, and exhibited greater tumor inhibitory effects than G129R and endostatin individually or in combination. Taken together, these data demonstrate the dual therapeutic effects of G129R-endostatin, and suggests that this fusion protein has great promise as a novel anti-breast cancer agent.  相似文献   

7.
Cancer therapies based on the inhibition of angiogenesis by endostatin have recently been developed. We demonstrate that a mutated form of human endostatin (P125A) can inhibit the angiogenic switch in the C3(1)/Tag mammary cancer model. P125A has a stronger growth-inhibitory effect on endothelial cell proliferation than wild-type endostatin. We characterize the angiogenic switch, which occurs during the transition from preinvasive lesions to invasive carcinoma in this model, and which is accompanied by a significant increase in total protein levels of vascular endothelial growth factor (VEGF) and an invasion of blood vessels. Expression of the VEGF(188) mRNA isoform, however, is suppressed in invasive carcinomas. The VEGF receptors fetal liver kinase-1 (Flk-1) and Fms-like tyrosine kinase-1 (Flt-1) become highly expressed in epithelial tumor and endothelial cells in the mammary carcinomas, suggesting a potential autocrine effect for VEGF on tumor cell growth. Angiopoietin-2 mRNA levels are also increased during tumor progression. CD-31 (platelet-endothelial cell adhesion molecule [PECAM]) staining revealed that blood vessels developed in tumors larger than 1 mm The administration of P125A human endostatin in C3(1)/Tag females resulted in a significant delay in tumor onset, decreased tumor multiplicity and tumor burden and prolonged survival of the animals. Endostatin treatment did not reduce the number of preinvasive lesions, proliferation rates or apoptotic index, compared with controls. However, mRNA levels of a variety of proangiogenic factors (VEGF, VEGF receptors Flk-1 and Flt-1, angiopoietin-2, Tie-1, cadherin-5 and PECAM) were significantly decreased in the endostatin-treated group compared with controls. These results demonstrate that P125A endostatin inhibits the angiogenic switch during mammary gland adenocarcinoma tumor progression in the C3(1)/Tag transgenic model.  相似文献   

8.
Endostatin, a proteolytic fragment of collagen XVIII, is a potent inhibitor of angiogenesis and tumor growth. We studied the development of carcinogen-induced skin tumors in transgenic J4 mice overexpressing endostatin in their keratinocytes. Unexpectedly, we did not observe any differences in tumor incidence and multiplicity between these and control mice, nor in the rate of conversion of benign papillomas to malignant squamous cell carcinomas (SCC). We did find, however, that endostatin regulates the terminal differentiation of keratinocytes because the SCCs in the J4 mice were less aggressive and more often well differentiated than those in the control mice. We observed an inhibition of tumor angiogenesis by endostatin at an early stage in skin tumor development, but more strikingly, there was a significant reduction in lymphatic vessels in the papillomas and SCCs in association with elevated endostatin levels and also a significant inhibition of lymph node metastasis in the J4 mice. We showed that tumor-infiltrating mast cells strongly expressed vascular endothelial growth factor-C (VEGF-C), and that the accumulation of these cells was markedly decreased in the tumors of the J4 mice. Moreover, endostatin inhibited the adhesion and migration of murine MC/9 mast cells on fibronectin in vitro. Our data suggest that endostatin can inhibit tumor lymphangiogenesis by decreasing the VEGF-C levels in the tumors, apparently via inhibition of mast cell migration and adhesion, and support the view that the biological effects of endostatin are not restricted to endothelial cells because endostatin also regulates tumor-associated inflammation and differentiation, and the phenotype of epithelial tumors.  相似文献   

9.
Human endostatin has an internal Asn-Gly-Arg (NGR) motif at position 126-128 following a proline at position 125. Asn-Gly-Arg-containing peptides have been shown to target tumour vasculature and inhibit aminopeptidase N activity. We previously compared the in vitro and in vivo biological activities of native endostatin and endostatin with a proline to alanine mutation (P125A-endostatin). P125A-endostatin exhibited greater inhibition of both endothelial cell proliferation and human ovarian cancer growth compared to native endostatin. Here we explore further the effects on biological activity of the P125A mutation, and show that aminopeptidase N is not involved. To determine whether the increased biological activity of the mutant was due to unmasking of downstream NGR-sequence, effect of endostatin on aminopeptidase N activity was investigated. Neither the native nor the P125A-endostatin inhibited aminopeptidase N. However, synthetic peptides consisting of the S118-T131 region of endostatin inhibited aminopeptidase N. These results suggest that the internal NGR site in native or mutant endostatin is not accessible to aminopeptidase N, and that this activity is not involved in the enhanced biological activity of the P125A form. P125A-endostatin bound to endothelial cells more efficiently than native endostatin and exhibited greater inhibition of not only proliferation but also migration of endothelial cells. P125A-endostatin also localised into tumour tissue to a higher degree than the native protein, and displayed greater inhibition of growth of colon cancer in athymic mice. Both proteins inhibited tumour cell-induced angiogenesis effectively. Real-time PCR analysis showed that both native and P125A-endostatin decreased expression of key proangiogenic growth factors. Vascular endothelial growth factor and angiopoietin 1 were downregulated more by the mutant. These studies suggest that the region around P125 can be modified to improve the biological activity of endostatin.  相似文献   

10.
Endostatin, a fragment of the COOH-terminal domain of mouse collagen XVIII is a recently demonstrated endogenous inhibitor of tumor angiogenesis and endothelial cell growth. Antiangiogenic therapy with endostatin in animals requires multiple and prolonged administration of the protein. Gene therapy could provide an alternative approach to continuous local delivery of this antiangiogenic factor in vivo. Established MCa-4 murine mammary carcinomas, grown in immunodeficient mice, were treated with intratumoral injection of endostatin plasmid at 7-day intervals. At the time of sacrifice, 14 days after the first injection, endostatin-treated tumor weights were 51% of controls (P < 0.01). Tumor growth inhibition was accompanied by a marked reduction in total vascular density. Specifically, computerized image analysis showed a 18-21% increase in the median distances between tumor cells and both the nearest anatomical (CD31-stained) vessel [48.1 +/- 3.8 versus 38.3 +/- 1.6 microm (P < 0.05)] and the nearest tumor-specific (CD105-stained) vessel [48.5 +/- 1.5 versus 39.8 +/- 1.5 microm (P < 0.01)]. An increased apoptotic index of tumor cells in endostatin-treated tumors [3.2 +/- 0.5% versus 1.9 +/- 0.3% (P < 0.05)] was observed in conjunction with a significant decrease in tumor perfused vessels (DiOC7 staining), and an increase in tumor cell hypoxia (EF5 staining). Hypoxia resulting from endostatin therapy most likely caused a compensatory increase of in situ vascular endothelial growth factor (VEGF) and VEGF receptor mRNA expression. Increased immunoreactivity of endostatin staining in endostatin-treated tumors was also associated with an increased thrombospondin-1 staining [1.12 +/- 0.16 versus 2.44 +/- 0.35]. Our data suggest that intratumoral delivery of the endostatin gene efficiently suppresses murine mammary carcinoma growth and support the potential utility of the endostatin gene for cancer therapy.  相似文献   

11.
Mouse endostatin inhibits the formation of lung and liver metastases   总被引:30,自引:0,他引:30  
Angiogenesis is required for tumor formation. Several studies have demonstrated that tumor angiogenesis is regulated by a balance between proangiogenesis and antiangiogenesis factors and that this balance varies in different organ environments. To investigate whether expression of an angiogenesis inhibitor by cancer cells could alter this balance and prevent tumor formation in different organ environments, we engineered stable transfectants from RenCa mouse renal carcinoma cells and SW620 human colon carcinoma cells to constitutively secrete a mouse endostatin protein with c-myc and polyhistidine (His) tags. Production and secretion of the endostatin-c-myc-His fusion protein by endostatin-transfected cells were confirmed by immunofluorescence staining and Western blot analysis. The endostatin transfectants and control transfectants, stably transfected with a control plasmid, had similar in vitro growth rates compared with their parental cell lines. Conditioned medium from endostatin-transfected cells inhibited human umbilical vein endothelial cell proliferation by 36-51% compared with conditioned medium from control cells. After inoculation into mice, flank tumors from endostatin-transfected cells were 73-91% smaller than flank tumors from control cells after 3 weeks. Inoculation of a cell mixture containing 25% endostatin-transfected cells and 75% control cells resulted in inhibition of flank tumor formation as effective as after inoculation of 100% endostatin-transfected cells. Formation of lung metastases by RenCa endostatin-transfected cells and formation of liver metastases by SW620 endostatin-transfected cells were dramatically inhibited compared with formation of metastases by control cells. These findings demonstrate that endostatin can inhibit tumor formation in different organ environments and that gene delivery of endostatin into even a minority of tumor cells may be an effective strategy to prevent progression of micrometastases to macroscopic disease.  相似文献   

12.
Tumors must induce the formation of new blood vessels in order to grow and metastasize. Endostatin, a cleaved product of collagen XVIII, inhibits endothelial cell proliferation and suppresses tumor growth and metastases. Several recent reports have questioned the efficacy of endostatin as a tumor suppressor in experimental animals. Our objective was to determine whether endostatin expression in breast cancer cells inhibits neovascularization and tumor growth in nude mice. MDA-MB-435 cells were transfected with an endostatin expression vector while control cells were transfected with an empty vector. Endostatin expression and secretion were confirmed by RT-PCR and a dot blot assay. No differences were observed in the growth rates of the endostatin-expressing and control clones in vitro. When injected into male and female nude mice, tumors from the control clones increased in size 10-15 fold over 8-10 weeks. In contrast, the endostatin clones formed small tumors which did not increase in size after the first 3 weeks. The endostatinderived tumors had a significantly higher apoptotic index (5.6%) compared to controls (2.0%) and showed a marked reduction in vascularization. In conclusion, expression of endostatin in MDA-MB-435 breast cancer cells effectively suppressed breast tumor growth by inhibiting angiogenesis and increasing apoptosis.  相似文献   

13.
Alcohol consumption is a risk factor for breast cancer in humans. Experimental studies indicate that alcohol exposure promotes malignant progression of mammary tumors. However, the underlying cellular and molecular mechanisms remain unclear. Alcohol induces a pro-inflammatory response by modulating the expression of cytokines and chemokines. Monocyte chemoattractant protein-1 (MCP-1), also known as chemokine (C-C motif) ligand 2, is a pro-inflammatory chemokine implicated in breast cancer development/malignancy. We investigated the role of MCP-1 in alcohol-promoted mammary tumor progression. Using a xenograft model, we demonstrated that alcohol increased tumor angiogenesis and promoted growth/metastasis of breast cancer cells in C57BL/6 mice. Alcohol up-regulated the expression of MCP-1 and its receptor CCR2 in breast cancer cells in vitro and in vivo. Using a three-dimensional tumor/endothelial cell co-culture system, we demonstrated MCP-1 regulated tumor/endothelial cell interaction and promoted tumor angiogenesis. More importantly, MCP-1 mediated alcohol-promoted angiogenesis; an antagonist of the MCP-1 receptor CCR2 significantly inhibited alcohol-stimulated tumor angiogenesis. The CCR2 antagonist abolished ethanol-stimulated growth of mammary tumors in mice. We further demonstrated that MCP-1 enhanced the migration, but not the proliferation of endothelial cells as well as breast cancer cells. These results suggest that MCP-1 plays an important role in ethanol-stimulated tumor angiogenesis and tumor progression.  相似文献   

14.
Glucose-regulated protein 78 (GRP78)/BiP is a multifunctional protein which plays a major role in endoplasmic reticulum (ER) protein processing, protein quality control, maintaining ER homeostasis, and controlling cell signaling and viability. Previously, using a transgene-induced mammary tumor model, we showed that Grp78 heterozygosity impeded cancer growth through suppression of tumor cell proliferation and promotion of apoptosis and the Grp78(+/-) mice exhibited dramatic reduction (70%) in the microvessel density (MVD) of the endogenous mammary tumors, while having no effect on the MVD of normal organs. This observation suggests that GRP78 may critically regulate the function of the host vasculature within the tumor microenvironment. In this article, we interrogated the role of GRP78 in the tumor microenvironment. In mouse tumor models in which wild-type (WT), syngeneic mammary tumor cells were injected into the host, we showed that Grp78(+/-) mice suppressed tumor growth and angiogenesis during the early phase but not during the late phase of tumor growth. Growth of metastatic lesions of WT, syngeneic melanoma cells in the Grp78(+/-) mice was potently suppressed. We created conditional heterozygous knockout of GRP78 in the host endothelial cells and showed severe reduction of tumor angiogenesis and metastatic growth, with minimal effect on normal tissue MVD. Furthermore, knockdown of GRP78 expression in immortalized human endothelial cells showed that GRP78 is a critical mediator of angiogenesis by regulating cell proliferation, survival, and migration. Our findings suggest that concomitant use of current chemotherapeutic agents and novel therapies against GRP78 may offer a powerful dual approach to arrest cancer initiation, progression, and metastasis.  相似文献   

15.
Ding XQ  Chen Y  Li L  Liu RY  Huang JL  Lai K  Wu XJ  Ke ML  Huang WL 《癌症》2003,22(11):1152-1157
背景与目的:舌癌是口腔常见的恶性肿瘤,目前常规采用以手术为主结合放疗化疗的综合治疗,总体的5年生存率只有50%左右,抗肿瘤血管生成治疗已成为舌癌治疗的研究方向之~。本实验以5型E1缺陷型腺病毒携带的人内皮抑素基因(Ad/hEnd)感染舌癌细胞(Tca8113)和人脐静脉内皮细胞株(ECV),并对荷瘤裸鼠舌癌的抑瘤效果进行观察,研究其在舌癌细胞中的表达及对舌癌抑制作用。方法:(1)免疫组化法检测内皮抑素蛋白在Tca8113细胞和ECV细胞中的表达及分布。ELISA法检测上清中内皮抑素含量,Western blot检测内皮抑素基因在Tca8113和ECV细胞的表达特征。(2)流式细胞仪检测Ad/hEnd感染ECV后的细胞周期及凋亡,WST-1法检测Ad/hEnd对ECV细胞增殖的抑制。(3)Ad/hEnd对荷瘤裸鼠的舌癌的生长抑制分析。结果:(1)实验结果显示感染Ad/hEnd后。Tca8113细胞和ECV细胞胞浆内可有效合成内皮抑素蛋白,细胞培养液上清中的内皮抑素蛋白表达浓度呈时间剂量依赖关系,最高达到597ng/ml,可持续到第7天,并且表达产物有抑制人体静脉内皮细胞ECV生长特性。呈剂量依赖关系。(2)Ad/hEnd可延长感染后的ECV细胞的S期及G2期。并出现细胞凋亡现象。(3)应用Ad/hEnd后第3天肿瘤体积增长受到抑制,第6天开始肿瘤抑制明显增强,第3周抑瘤率达45.8%。结论:本实验制备的重组腺病毒Ad/hEnd能在ECV和Tca8113细胞中有效表达内皮抑素,表达产物可影响ECV细胞周期、抑制ECV细胞增殖、诱导ECV细胞凋亡及抑制荷瘤裸鼠舌癌的生长。  相似文献   

16.
Previous experiments have shown that a vascular endothelial growth factor (VEGF)-DT385 toxin conjugate inhibits endothelial cell proliferation, angiogenesis and solid tumor growth in a xenotransplant model system. Here, we report that VEGF-DT385 toxin conjugate effectively inhibits spontaneous tumorigenesis. The C3(1)/SV40 TAg transgenic mouse model of mammary gland carcinogenesis was used to determine the effectiveness of VEGF-DT385 toxin conjugate in delaying the onset of disease and the development of solid tumors. Animals were treated daily with conjugate for a period of 7 days. Therapy was initiated at week 14 of development before any visible adenocarcinomas were evident. Treatment of mice with VEGF-DT385 toxin conjugate significantly delayed the onset of tumorigenesis and inhibited solid tumor growth by more than 92%. Furthermore, conjugate treated animals showed less than twice the number of tumor nodules when compared to control mice. Finally, this vascular targeting agent significantly increased survival time of animals by 5 weeks. VEGF-DT385 toxin conjugate resulted in temporary weight loss and no long-lasting toxicity was seen. More importantly, using this established tumor model, VEGF-DT385 toxin conjugate appeared to be as effective as a similar treatment schedule with recombinant human endostatin. Our results suggest that VEGF-DT385 toxin conjugate is a potent inhibitor of mammary adenocarcinoma growth and might be useful in breast cancer therapy.  相似文献   

17.
The growth and metastasis of nasopharyngeal carcinoma (NPC), one of the most common cancers in southern China, is closely related to neovascularization. Here, we examined whether intra-tumoral delivery of endostatin gene could lead to long-term local expression of bioactive endostatin at therapeutic levels. We constructed a recombinant adenoviral vector carrying the human endostatin gene (Ad/hEndo), which expressed high-level endostatin protein in NPC CNE-2 cells, and significantly inhibited the proliferation and migration of vascular endothelial cells in vitro. Tumor growth and angiogenesis in NPC CNE-2 xenografted tumors were significantly inhibited after 5 courses of intra-tumoral treatment with Ad/hEndo in vivo. Endostatin mRNA in tumor tissues peaked at 1-2 days after intra-tumoral administration and disappeared within 1 week, whereas the plasma endostatin protein levels peaked at 3 days after administration and lasted 2-3 weeks. The therapeutically relevant endostatin transgene expression was achieved during the course of multiple intra-tumoral administrations with Ad/hEndo. Multiple injections with adenoviral vectors did not lead to continuous increases of adenovirus neutralizing antibodies in serum. Thus, adenovirus-mediated intra-tumoral introduction of the human endostatin gene may form a viable new treatment for NPC, although readministration every 2-3 weeks may be necessary for the best effect.  相似文献   

18.
Vascular endothelial growth factor (VEGF), a bifunctional protein enhancing vascular permeability and stimulating endothelial growth, is thought to be responsible for fluid accumulation and angiogenesis in ascites tumors. To investigate the effects of stable expression of the soluble form of Flt-1 VEGF receptor (sFlt-1), a known endogenous inhibitor of VEGF, on the malignant ascites tumors, we cotransduced RMG-1 human ovarian cancer cells with adeno-associated virus vectors carrying the sFlt-1 cDNA and Neo gene or Neo gene alone and isolated both the sFlt-1-expressing clone and the Neo-expressing clone. In vitro growth characteristics were essentially the same. As expected, conditioned medium collected from the sFlt-1-expressing cells significantly inhibited the human umbilical vein endothelial cell proliferation in the presence of recombinant VEGF. Expression of sFlt-1 significantly suppressed RMG-1 cell-induced angiogenesis in vivo in the mouse dorsal air sac assay model. We then inoculated sFlt-1- or Neo alone-expressing cells i.p. into female BALB/c nude mice. The average volume of ascites fluid, number of leaked RBCs, and number of cancer cells were significantly lower in mice injected with sFlt-1-expressing cells than in the controls. Survival time was significantly prolonged in mice injected with sFlt-1-expressing cells. These results suggest that inhibition of VEGF activity by sFlt-1 expression may provide a means to control carcinomatous ascites and angiogenesis of malignant ascites tumors.  相似文献   

19.
Endostatin, an angiogenesis inhibitor tested in multiple clinical trials, selectively targets neovascular endothelial cells, suppressing tumor growth. To enhance the therapeutic efficacy of endostatin, we fused endostatin with cytosine deaminase, which converts a prodrug 5-flucytosine into a cytotoxic 5-fluorouracil. This therapeutic strategy was developed based on the observation that the endostatin-green fluorescence protein gene and endostatin-luciferase gene selectively target to endothelial cells in vitro and to the tumor site in vivo, respectively. When we used the endostatin-cytosine deaminase fusion protein to treat s.c. grafted tumors or experimental metastasis tumors, our results showed that endostatin-cytosine deaminase treatment provided stronger tumor growth suppression and increased mean survival time of the mice compared with the treatments of endostatin alone, cytosine deaminase alone, or endostatin plus cytosine deaminase. The endostatin-cytosine deaminase protein significantly inhibited the growth of endothelial cells and preferentially induced tumor cell apoptosis. This endostatin-cytosine deaminase fusion approach opens an avenue for cancer-targeting therapy.  相似文献   

20.
EGCG对肿瘤生物抑制机制影响的探讨   总被引:1,自引:0,他引:1  
目的:探讨表没食子儿茶素没食子酸酯(EGCG)通过抑制血管内皮生长因子(VEGF)的血管生成效应减少肿瘤生长和血管生成。方法:MTT法检测内皮细胞生长、Transwell检测内皮细胞迁移,同时检测内皮细胞体外小管形成情况及Matrigel胶塞体内实验检测体内血管生成情况;建立异位胃癌裸鼠模型,检测肿瘤生长及肿瘤组织微血管密度,明确EGCG对肿瘤生长和血管生成的抑制作用及其机制。结果:体外实验显示,随着EGCG处理时间和剂量的增加,VEGF诱导生长的内皮细胞数呈时间和剂量依赖性地减少;随着EGCG剂量的增加,VEGF诱导迁移的内皮细胞数和形成的小管样结构也剂量依赖性地减少,差异有统计学意义,P<0.05;Matrigel胶塞体内实验也显示EGCG抑制VEGF诱导的胶塞血管化;动物实验显示治疗组肿瘤生长缓慢,生长曲线明显低于对照组,平均肿瘤抑制率为60.4%,P<0.01;治疗组肿瘤组织微血管密度显著降低,P<0.01。结论:EGCG可以抑制VEGF诱导的血管生成,从而抑制肿瘤生长和血管生成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号