首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibitor of growth 2 (ING2) is associated with chromatin remodeling and regulation of gene expression by binding to a methylated histone H3K4 residue and recruiting HDAC complexes to the region. The aim of our study is to investigate the regulation of ING2 expression and the clinical significance of upregulated ING2 in colon cancer. Here, we show that the ING2 mRNA level in colon cancer tissue increased to more than twice than that in normal mucosa in the 45% of colorectal cancer cases that we examined. A putative NF‐κB binding site was found in the ING2 promoter region. We confirmed that NF‐κB could bind to the ING2 promoter by EMSA and luciferase assays. Subsequent microarray analyses revealed that ING2 upregulates expression of matrix metalloproteinase 13 (MMP13), which enhances cancer invasion and metastasis. ING2 regulation of MMP13 expression was confirmed in both ING2 overexpression and knock down experiments. MMP13 expression was further induced by coexpression of ING2 with HDAC1 or with mSin3A, suggesting that the ING2‐HDAC1‐mSin3A complex members regulates expression of MMP13. In vitro invasion assay was performed to determine functional significance of ING2 upregulation. ING2 overexpressed cells exhibited greater invasive potential. Taken together, upregulation of ING2 was associated with colon cancer and MMP13‐dependent cellular invasion, indicating that ING2 expression might be involved with cancer invasion and metastasis. Published 2009 UICC.  相似文献   

2.
Because of the poor prognosis and the development of resistance against chemotherapeutic drugs, the current treatment for advanced metastatic colorectal cancer (CRC) is ineffective. Whether curcumin (a component of turmeric) can potentiate the effect of capecitabine against growth and metastasis of CRC was investigated. The effect of curcumin on proliferation of CRC cell lines was examined by mitochondrial dye‐uptake assay, apoptosis by esterase staining, nuclear factor‐kappaB (NF‐κB) by electrophoretic mobility shift assay and gene expression by Western blot analysis. The effect of curcumin on the growth and metastasis of CRC was also examined in orthotopically implanted tumors in nude mice. In vitro, curcumin inhibited the proliferation of human CRC cell lines, potentiated capecitabine‐induced apoptosis, inhibited NF‐κB activation and suppressed NF‐κB‐regulated gene products. In nude mice, the combination of curcumin and capecitabine was found to be more effective than either agent alone in reducing tumor volume (p = 0.001 vs. control; p = 0.031 vs. capecitabine alone), Ki‐67 proliferation index (p = 0.001 vs. control) and microvessel density marker CD31. The combination treatment was also highly effective in suppressing ascites and distant metastasis to the liver, intestines, lungs, rectum and spleen. This effect was accompanied by suppressed expression of activated NF‐κB and NF‐κB‐regulated gene products (cyclin D1,c‐myc, bcl‐2, bcl‐xL, cIAP‐1, COX‐2, ICAM‐1, MMP‐9, CXCR4 and VEGF). Overall, our results suggest that curcumin sensitizes CRC to the antitumor and antimetastatic effects of capecitabine by suppressing NF‐κB cell signaling pathway. © 2009 UICC  相似文献   

3.
Calpain small subunit 1 (Capn4) plays a key role in tumor migration or invasion. In this study, expression and function of Capn4 was investigated in human nasopharyngeal carcinoma (NPC). Here we report that both mRNA and protein levels of Capn4 were elevated in NPC tissues when compared to normal NP tissues. Similarly, Capn4 was also highly expressed in multiple NPC cell lines, compared to immortalized human nasopharyngeal epithelial cell line NP69. Moreover, expression of Capn4 was significantly correlated with Epstein‐Barr virus infection, advanced stages, and lymph node or distant metastasis (P < 0.001). The patients with NPC displaying higher Capn4 had a significantly shorter overall survival (P = 0.002) and progression‐free survival (P = 0.003). Furthermore, siRNA knockdown of Capn4 suppressed cell migration and invasion in vitro and in vivo. These events resulted from Capn4 downregulation were associated with reduced expression of matrix metalloproteinase 2 (MMP2), Snail, and Vimentin. Finally, we demonstrated that Capn4 upregulated MMP2 via nuclear factor‐κB (NF‐κB) activation, manifested by increased phosphorylation of p65, a subunit of NF‐κB. Together, these findings argue a novel function of Capn4 in invasion and metastasis of NPC, and thereby suggest that Capn4 may represent an independent prognostic factor and a potential therapeutic target in NPC.  相似文献   

4.
5.
6.
7.
8.
Gemcitabine, while a standard treatment of advanced pancreatic cancer (PaCa), alone is not very effective. New agents that are safe and effective are highly needed. Resveratrol is one such agent which is safe and multitargeted; and has been linked with suppression of survival, proliferation, invasion and angiogenesis of cancer. Whether resveratrol can sensitize PaCa to gemcitabine in vitro and in vivo was investigated. We established PaCa xenografts in nude mice, randomized into 4 groups, and treated with vehicle, gemcitabine, resveratrol and with combination. Modulation of NF‐κB and markers of proliferation, angiogenesis and invasion were ascertained using electrophoretic mobility shift assay (EMSA), immunohistochemistry and western blot analysis. Resveratrol inhibited the proliferation of 4 different human PaCa cell lines, synergized the apoptotic effects of gemcitabine, inhibited the constitutive activation of NF‐κB and expression of bcl‐2, bcl‐xL, COX‐2, cyclin D1 MMP‐9 and VEGF. In an orthotopic model of human PaCa, we found that resveratrol significantly suppressed the growth of the tumor (p < 0.001) and this effect was further enhanced by gemcitabine (p < 0.001). Both the markers of proliferation index Ki‐67 and the micro vessel density CD31 were significantly downregulated in tumor tissue by the combination of gemcitabine and resveratrol (p < 0.001 vs. control; p < 0.01 vs. gemcitabine). As compared to vehicle control, resveratrol also suppressed the NF‐κB activation and expression of cyclin D1, COX‐2, ICAM‐1, MMP‐9 and survivin. Overall our results demonstrate that resveratrol can potentiate the effects of gemcitabine through suppression of markers of proliferation, invasion, angiogenesis and metastasis.  相似文献   

9.
Prostate cancer is the most frequently diagnosed cancer and the second leading cause of death in males in the United States. Using human prostate cancer specimens, the authors have previously shown that elevated expression levels of 12‐lipoxygenase (12‐LOX) occurred more frequently in advanced stage, high‐grade prostate cancer, suggesting that 12‐LOX expression is associated with carcinoma progression and invasion. Previous reports from their group and others have shown that 12‐LOX is a positive modulator of invasion and metastasis; however, the mechanism remains unclear. In this work, a new link between 12‐LOX and the matrix metalloproteinase 9 (MMP9) in prostate cancer angiogenesis is reported. This study demonstrated that overexpression of 12‐LOX in prostate cancer PC‐3 cells resulted in elevated expression of MMP9 mRNA, protein and secretion. Exogenous addition of 12(S)‐hydroxy eicosatetraenoic acid, the sole and stable end product of arachidonic acid metabolism by 12‐LOX, is able to increase MMP9 expression in wild‐type PC‐3 cells. Furthermore, using pharmacological and genetic inhibition approaches, it was found that 12‐LOX activates phosphoinositol 3 kinase (PI3K)/Akt, which results in nuclear factor‐kappa B (NF‐κB)‐driven MMP9 expression, ensuing in enhanced chemoattraction of endothelial cells. Specific inhibitors of 12‐LOX, PI3K or NF‐κB inhibited MMP9 expression in 12‐LOX‐expressing PC‐3 cells and resulted in the blockade of the migratory ability of endothelial cells. In summary, the authors have identified a new pathway by which overexpression of 12‐LOX in prostate cancer cells leads to augmented production of MMP9 via activation of PI3K/Akt/NF‐κB signaling. The role of 12‐LOX‐mediated MMP9 secretion in endothelial cell migration may account for the proangiogenic function of 12‐LOX in prostate cancer.  相似文献   

10.
Despite significant advances in therapy, the 5‐year survival rates for patients with advanced stage oral cancers still remains poor as an appropriate treatment has not been found yet, due to side effects of chemo/radiotherapy. Verbascoside (VB), a major bioactive constituent of the Tsoong herb, displays pharmacological properties by exhibiting anti‐oxidative, anti‐inflammatory and anti‐cancer activities. However, the underlining function and mechanism of VB in human oral squamous cell carcinoma (OSCC) remains unclear. In this study, we show that VB significantly decreased the viability and metastasis of HN4 and HN6 tumor cells, while promoting apoptosis. A xenograft OSCC mouse model further showed that intraperitoneal injection of VB strongly inhibited growth and lung metastasis of implanted tumor cells. Immunoblot analysis confirmed that VB effectively suppressed nuclear factor (NF)‐κB activation and downstream Bcl‐2/Bcl‐XL expression, resulting in increased OSCC cell apoptosis. In addition, VB suppressed mRNA and protein expression of matrix metalloproteinase‐9 via suppression of NF‐κB activation, thereby inhibiting tumor cell metastasis. Inspiringly, compared to cisplatin‐treated group, VB is a biocompatible agent without signficant side effects in vivo. Collectively, our results demonstrate that VB effectively inhibits OSCC tumor cell growth and metastasis via suppression of IκB kinase complex (IKK)/NF‐κB‐related signaling activation, suggesting that VB has potential use as a potent anticancer agent in OSCC therapeutic strategies.  相似文献   

11.
Double cortin‐like kinase 1 (DCLK1) plays important roles during the epithelial‐mesenchymal transition (EMT) process in human colorectal cancer (CRC). However, the role of DCLK1 in regulating the EMT of CRC is still poorly understood. In this study, we report evidence that DCLK1 acts as a potent oncogene to drive its extremely malignant character of EMT in an NF‐κB‐dependent manner in CRC cells. Mechanistic investigations showed that DCLK1 induced the NF‐κBp65 subunit expression through the PI3K/Akt/Sp1 axis and activated NF‐κBp65 through the PI3K/Akt/IκBα pathway during the EMT of CRC cells. Moreover, we found that silencing the expression of DCLK1 inhibited the invasion and metastasis of CRC cells in vivo. Collectively, our findings identify DCLK1 as a pivotal regulator of an EMT axis in CRC, thus implicating DCLK1 as a potential therapeutic target for CRC metastasis.  相似文献   

12.
The targeting of αvβ3 is a promising therapeutic strategy for suppressing tumor metastasis. However, it is unclear whether the therapeutic efficacy could be influenced by metastasis‐promoting factor(s) in vivo. Here we report that Toll‐like receptor 4 (TLR4) ligand released from damaged tumor cells or bacteria had a negative effect on the therapeutic effect of a recombinant CBD‐HepII polypeptide of fibronectin (CH50) that suppresses tumor metastasis by targeting αvβ3. The TLR4 ligand could antagonize the inhibitory effect of CH50 on tumor cell adhesion and invasion by promoting the expression and activity of αvβ3 in tumor cells. The TLR4 ligand also reduced the antimetastasis effect of CH50 by promoting tumor cell survival in circulation. Moreover, TLR4 ligands released by tumor cells in circulation could increase the survival and proliferation capacity of tumor cells after extravasation, resulting in the formation of more metastatic nodules. The effect of TLR4 signaling was mainly mediated by nuclear factor‐κB (NF‐κB). Inhibiting NF‐κB could abrogate the negative effect of TLR4 ligand, and augment the inhibitory effect of CH50 on tumor metastasis. Consistently, the combination of NF‐κB inhibitor and CH50 significantly inhibited metastasis of tumor cells in vivo and prolonged the survival of mice. The findings in this study suggest that the combination of NF‐κB inhibitor and αvβ3 antagonist would be a novel therapeutic option for the prevention of tumor metastasis. (Cancer Sci 2012; 103: 1319–1326)  相似文献   

13.
Fusion proteins created by chromosomal abnormalities are key components of mesenchymal cancer development. The most common chromosomal translocation in liposarcomas, t(12;16)(q13;p11), creates the FUS-CHOP fusion gene. In the past, we generated FUS-CHOP and CHOP transgenic mice and have shown that while FUS-CHOP transgenic develop liposarcomas, mice expressing CHOP, which lacks the FUS domain, display essentially normal white adipose tissue (WAT) development, suggesting that the FUS domain of FUS-CHOP plays a specific and critical role in the pathogenesis of liposarcoma. To test the significance of FUS and CHOP domain interactions within a living mouse, we generated mice expressing the FUS domain and crossed them with CHOP-transgenic mice to generate double-transgenic FUSxCHOP animals. Here we report that expression of the FUS domain restores liposarcoma development in CHOP-transgenic mice. Our results provide genetic evidence that FUS and CHOP domains function in trans for the mutual restoration of liposarcoma. These results identify a new mechanism of tumor-associated fusion genes and might have impact beyond myxoid liposarcoma.  相似文献   

14.
15.
16.
NEK2 (NIMA‐related expressed kinase 2) is a serine/threonine centrosomal kinase that acts as a critical regulator of centrosome structure and function. Aberrant NEK2 activities lead to failure in regulating centrosome duplication. NEK2 overexpression promotes tumorigenesis and is associated with poor prognosis in several cancers. Increased NEK2 expression during the late pathological stage has been detected in the Oncomine liver dataset and hepatocellular carcinoma (HCC) specimens. Elevated NEK2 protein is associated with poor overall survival in patients with HCC. However, the precise roles and mechanisms of NEK2 in liver cancer progression remain largely unknown. An earlier functional study revealed that NEK2 mediates drug resistance (cisplatin or lipo‐doxorubicin) via expression of an ABCC10 transporter. Active angiogenesis and metastasis underlie the rapid recurrence and poor survival of HCC. Results from the current study showed that NEK2 mediates tumor growth, metastasis and angiogenesis in vivo. NEK2‐mediated drug resistance was blocked by a specific PI3K or AKT inhibitor. Moreover, NEK2 mediated liver cancer cell migration via pAKT/NF‐κB signaling and matrix metalloproteinase (MMP) activation. Angiogenesis was induced via the same signaling pathway and IL‐8 stimulation. Our findings collectively indicate that NEK2 modulates hepatoma cell functions, including growth, drug resistance, metastasis and angiogenesis via downstream genes activation.  相似文献   

17.
18.
Although the introduction of bortezomib and immunomodulatory drugs has led to improved outcomes in patients with multiple myeloma, the disease remains incurable. In an effort to identify more potent and well‐tolerated agents for myeloma, we have previously reported that 1′‐acetoxychavicol acetate (ACA), a natural condiment from South‐East Asia, induces apoptotic cell death of myeloma cells in vitro and in vivo through inhibition of NF‐κB‐related functions. Searching for more potent NF‐κB inhibitors, we developed several ACA analogs based on quantitative structure–activity relationship analysis. TM‐233, one of these ACA analogs, inhibited cellular proliferation and induced cell death in various myeloma cell lines with a lower IC50 than ACA. Treatment with TM‐233 inhibited constitutive activation of JAK2 and STAT3, and then downregulated the expression of anti‐apoptotic Mcl‐1 protein, but not Bcl‐2 and Bcl‐xL proteins. In addition, TM‐233 rapidly decreased the nuclear expression of NF‐κB and also decreased the accumulation of cytosolic NF‐κB. We also examined the effects of TM‐233 on bortezomib‐resistant myeloma cells that we recently established, KMS‐11/BTZ and OPM‐2/BTZ. TM‐233, but not bortezomib, inhibited cellular proliferation and induced cell death in KMS‐11/BTZ and OPM‐2/BTZ cells. Interestingly, the combination of TM‐233 and bortezomib significantly induced cell death in these bortezomib‐resistant myeloma cells through inhibition of NF‐κB activity. These results indicate that TM‐233 could overcome bortezomib resistance in myeloma cells mediated through different mechanisms, possibly inhibiting the JAK/STAT pathway. In conclusion, TM‐233 might be a more potent NF‐κB inhibitor than ACA, and could overcome bortezomib resistance in myeloma cells.  相似文献   

19.
20.
Although the importance of the host tissue microenvironment in cancer progression and metastasis has been established, the spatiotemporal process establishing a cancer metastasis‐prone tissue microenvironment remains unknown. In this study, we aim to understand the immunological character of a metastasis‐prone microenvironment in a murine 4T1 breast tumor model, by using the activation of nuclear factor‐κb (NF‐κB) in cancer cells as a sensor of inflammatory status and by monitoring its activity by bioluminescence imaging. By using a 4T1 breast cancer cell line stably expressing an NF‐κB/Luc2 reporter gene (4T1 NF‐κB cells), we observed significantly increased bioluminescence approximately 7 days after metastasis‐prone orthotopic mammary fat‐pad inoculation but not ectopic s.c. inoculation of 4T1 NF‐κB cells. Such in vivo NF‐κB activation within the fat‐pad 4T1 tumor was diminished in immune‐deficient SCID or nude mice, or T cell‐depleted mice, suggesting the requirement of host T cell‐mediated immune responses. Given the fat‐pad 4T1 tumor expressed higher inflammatory mediators in a T cell‐dependent mechanism compared to the s.c. tumor, our results imply the importance of the surrounding tissue microenvironment for inflaming tumors by collaborating with T cells to instigate metastatic spread of 4T1 breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号