首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
磷脂酰肌醇3-激酶(phosphoinositide 3-kinase,PI3K)/蛋白激酶B(protein kinase B,AKT)/哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号转导通路在多种肿瘤中异常激活,参与肿瘤细胞增殖、分化和凋亡等生命过程的调控,是抗肿瘤药物研发的重要靶点。对目前已应用于乳腺癌临床或处于临床试验阶段的PI3K/AKT/mTOR信号通路抑制剂进行归纳,并综述该通路抑制剂的联合用药策略,以期为不同亚型乳腺癌提供个体化靶向治疗方案。  相似文献   

2.
急性T淋巴细胞白血病(T-ALL)是来源于胸腺T细胞祖细胞的具有强侵袭性和异质性的血液系统恶性肿瘤。T-ALL约占儿童急性淋巴细胞白血病(ALL)的15%,在成人ALL中的比例约为25%。强化化疗方案的应用使儿童T-ALL患者预后显著提高,但成人及复发耐药T-ALL患者的预后仍较差。研制新型靶向药物特异性阻断T-ALL细胞内生存及耐药相关的异常激活信号通路近年来被认为是治疗成人及复发难治T-ALL患者的新策略。PI3K/AKT/mTOR通路是T-ALL细胞内异常激活信号通路中具有代表性的一条。目前靶向该通路的多种小分子抑制剂已被成功研制,并在治疗T-ALL的研究中取得良好效果。PI3K/AKT/mTOR通路相关抑制剂较传统化疗药物具有更高的特异性和更低的毒副作用,且诸多研究表明其与低剂量化疗药物或其他靶向药物联合治疗T-ALL能发挥协同效应。本综述将总结近年来在PI3K/AKT/mTOR通路与T-ALL相关领域的研究成果,并对基于靶向该通路治疗T-ALL的研究进展一并阐述。  相似文献   

3.
磷脂酰肌醇-3 激酶(phosphatidylinositol 3-kinase,PI 3K)- 蛋白激酶B(protein kinaseB ,PKB ,又称AKT )- 雷帕霉素靶蛋白(mammalian target of  rapamycin,mTOR)信号通路与细胞的生长、增殖、分化、凋亡、代谢等密切相关,在多种实体肿瘤中已发现该信号通路的异常。近年来,以抑制该通路特定位点的靶向治疗已成为抗肿瘤的研究热点。许多该位点新型抑制剂也已进入淋巴瘤的临床试验中,本文就该通路在淋巴瘤中的活化状态及各个分子靶点抑制剂的研究进展做一综述。  相似文献   

4.
Her-2靶向治疗是Her-2过表达乳腺癌治疗的重要组成部分,但Her-2靶向治疗的耐药严重影响了乳腺癌的治疗。研究证实乳腺癌Her-2靶向治疗出现耐药的过程中有P13K/AKT/mTOR信号通路的激活,因此对P13K/AKT/mTOR信号通路及以P13K/AKT/mTOR信号通路为靶点的药物研究对乳腺癌治疗具有重要意义。  相似文献   

5.

Background:

Mesothelioma is a notoriously chemotherapy-resistant neoplasm, as is evident in the dismal overall survival for patients with those of asbestos-associated disease. We previously demonstrated co-activation of multiple receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR), MET, and AXL in mesothelioma cell lines, suggesting that these kinases could serve as novel therapeutic targets. Although clinical trials have not shown activity for EGFR inhibitors in mesothelioma, concurrent inhibition of various activated RTKs has pro-apoptotic and anti-proliferative effects in mesothelioma cell lines. Thus, we hypothesised that a coordinated network of multi-RTK activation contributes to mesothelioma tumorigenesis.

Methods:

Activation of PI3K/AKT/mTOR, Raf/MAPK, and co-activation of RTKs were evaluated in mesotheliomas. Effects of RTK and downstream inhibitors/shRNAs were assessed by measuring mesothelioma cell viability/growth, apoptosis, activation of signalling intermediates, expression of cell-cycle checkpoints, and cell-cycle alterations.

Results:

We demonstrate activation of the PI3K/AKT/p70S6K and RAF/MEK/MAPK pathways in mesothelioma, but not in non-neoplastic mesothelial cells. The AKT activation, but not MAPK activation, was dependent on coordinated activation of RTKs EGFR, MET, and AXL. In addition, PI3K/AKT/mTOR pathway inhibition recapitulated the anti-proliferative effects of concurrent inhibition of EGFR, MET, and AXL. Dual targeting of PI3K/mTOR by BEZ235 or a combination of RAD001 and AKT knockdown had a greater effect on mesothelioma proliferation and viability than inhibition of individual activated RTKs or downstream signalling intermediates. Inhibition of PI3K/AKT was also associated with MDM2-p53 cell-cycle regulation.

Conclusions:

These findings show that PI3K/AKT/mTOR is a crucial survival pathway downstream of multiple activated RTKs in mesothelioma, underscoring that PI3K/mTOR is a compelling target for therapeutic intervention.  相似文献   

6.
Approximately 70−75% of breast cancers express the estrogen receptor (ER), indicating a level of dependence on estrogen for growth. Endocrine therapy is an important class of target-directed therapy that blocks the growth-promoting effects of estrogen via ER. Although endocrine therapy continues to be the cornerstone of effective treatment of ER-positive (ER+) breast cancer, many patients with advanced ER+ breast cancer encounter de novo or acquired resistance and require more aggressive treatment such as chemotherapy. Novel approaches are needed to augment the benefit of existing endocrine therapies by prolonging time to disease progression, preventing or overcoming resistance, and delaying the use of chemotherapy.  相似文献   

7.
 Burkitt淋巴瘤是一种高度侵袭性的非霍奇金淋巴瘤,是人类生长最快的肿瘤。根据流行病学及miRNA不同,分为地方型、散发型与免疫缺陷相关型。该病主要发生在儿童及青少年,少数发生于成年人。经短期、强效化疗后疗效显著,但成年、晚期、耐药的患者预后较差。PI3K/AKT/mTOR信号通路在细胞的生长、分化、代谢、生存以及增殖等方面发挥重要作用,研究发现,该信号通路在Burkitt淋巴瘤中呈激活状态,且针对该通路的抑制剂对Burkitt淋巴瘤细胞有抑制作用。通过对该信号通路与PTEN、c-Myc、自噬在Burkitt淋巴瘤中作用及相互关系的研究,了解其发病机制,设计该通路抑制剂与其他相关通路抑制剂或与单克隆抗体的联合用药,为晚期、耐药的患者寻找精准、高效、低毒的靶向治疗方案。  相似文献   

8.
The PI3K/AKT pathway is considered to play a major role in bladder carcinogenesis, but its relationships with other molecular alterations observed in bladder cancer remain unknown. We investigated PI3K/AKT pathway activation in a series of human bladder urothelial carcinomas (UC) according to PTEN expression, PTEN deletions and FGFR3, PIK3CA, KRAS, HRAS, NRAS and TP53 gene mutations. The series included 6 normal bladder urothelial samples and 129 UC (Ta n = 25, T1 n = 34, T2–T3–T4 n = 70). Expression of phospho‐AKT (pAKT), phospho‐S6‐Ribosomal Protein (pS6) (one downstream effector of PI3K/AKT pathway) and PTEN was evaluated by reverse phase protein Array. Expression of miR‐21, miR‐19a and miR‐222, known to regulate PTEN expression, was also evaluated. pAKT expression levels were higher in tumors than in normal urothelium (p < 0.01), regardless of stage and showed a weak and positive correlation with pS6 (Spearman coefficient RS = 0.26; p = 0.002). No association was observed between pAKT or pS6 expression and the gene mutations studied. PTEN expression was decreased in PTEN‐deleted tumors, and in T1 (p = 0.0089) and T2–T3–T4 (p < 0.001) tumors compared to Ta tumors; it was also negatively correlated with miR‐19a (RS = ?0.50; p = 0.0088) and miR‐222 (RS = ?0.48; p = 0.0132), but not miR‐21 (RS = ?0.27; p = 0.18) expression. pAKT and PTEN expressions were not negatively correlated, and, on the opposite, a positive and moderate correlation was observed in Ta (RS = 0.54; p = 0.0056) and T1 (RS = 0.56; p = 0.0006) tumors. Our study suggests that PI3K/AKT pathway activation occurs in the entire spectrum of bladder UC regardless of stage or known most frequent molecular alterations, and independently of low PTEN expression.  相似文献   

9.
Squamous cell lung carcinoma accounts for approximately 30% of all non-small cell lung cancers (NSCLCs). Despite progress in the understanding of the biology of cancer, cytotoxic chemotherapy remains the standard of care for patients with squamous cell lung carcinoma, but the prognosis is generally poor. The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway is one of the most commonly activated signaling pathways in cancer, leading to cell proliferation, survival, and differentiation. It has therefore become a major focus of clinical research. Various alterations in the PI3K/AKT/mTOR pathway have been identified in squamous cell lung carcinoma and a number of agents targeting these alterations are in clinical development for use as single agents and in combination with other targeted and conventional treatments. These include pan-PI3K inhibitors, isoform-specific PI3K inhibitors, AKT inhibitors, mTOR inhibitors, and dual PI3K/mTOR inhibitors. These agents have demonstrated antitumor activity in preclinical models of NSCLC and preliminary clinical evidence is also available for some agents. This review will discuss the role of the PI3K/AKT/mTOR pathway in cancer and how the discovery of genetic alterations in this pathway in patients with squamous cell lung carcinoma can inform the development of targeted therapies for this disease. An overview of ongoing clinical trials investigating PI3K/AKT/mTOR pathway inhibitors in squamous cell lung carcinoma will also be included.  相似文献   

10.
王媛  白玉贤 《现代肿瘤医学》2019,(21):3923-3926
索拉非尼(sorafenib)作为原发性肝癌(hepatocellular carcinoma,HCC)靶向治疗的一线药物已广泛应用于临床,然而部分HCC患者对索拉非尼治疗耐药导致临床疗效欠佳,联合其他靶向药物的临床实验仍未取得突破,故深入研究索拉非尼耐药机制,逆转索拉非尼耐药对于改善肝癌治疗的预后具有重要意义。最新研究发现,PI3K/AKT/mTOR信号通路在索拉非尼耐药机制中起重要作用,本文将从PI3K/AKT/mTOR信号通路促进肿瘤血管生成、参与细胞自噬、抑制肿瘤细胞凋亡并促进其增殖、与RAS/RAF/ERK/MEK信号通路交联及其促进上皮-间质转化等几个方面,概述其在索拉非尼治疗原发性肝癌时产生耐药的机制,为进一步开发治疗原发性肝癌的新型药物提供研究方向。  相似文献   

11.
Improved efficacy of neoadjuvant endocrine-targeting therapies in luminal breast carcinomas could be achieved with optimal use of pathway targeting agents. In a mouse model of ductal breast carcinoma we identify a tumor regressive stromal reaction that is induced by neoadjuvant endocrine therapy. This reparative reaction is characterized by tumor neovascularization accompanied by infiltration of immune cells and carcinoma-associated fibroblasts that stain for phosphorylated ribosomal protein S6 (pS6), downstream the PI3K/Akt/mTOR pathway. While tumor variants with higher PI3K/Akt/mTOR activity respond well to a combination of endocrine and PI3K/Akt/mTOR inhibitors, tumor variants with lower PI3K/Akt/mTOR activity respond more poorly to the combination therapy than to the endocrine therapy alone, associated with inhibition of stromal pS6 and the reparative reaction. In human breast cancer xenografts we confirm that such differential sensitivity to therapy is primarily determined by the level of PI3K/Akt/mTOR in tumor cells. We further show that the clinical response of breast cancer patients undergoing neoadjuvant endocrine therapy is associated with the reparative stromal reaction. We conclude that tumor level and localization of pS6 are associated with therapeutic response in breast cancer and represent biomarkers to distinguish which tumors will benefit from the incorporation of PI3K/Akt/mTOR inhibitors with neoadjuvant endocrine therapy.  相似文献   

12.
Hepatocellular carcinoma (HCC) has high morbidity and mortality rates. It is therefore imperative to study the underlying mechanism of HCC to identify potential prognostic biomarkers and therapeutic targets. Recently, GINS2 has been identified to be a cancer-promoting gene in different cancer types. Nevertheless, the exact mechanism of GINS2 in HCC remains to be elucidated. To systematically explore the significance of GINS2, we first assessed the relative expression of GINS2 in pan-cancers based on data obtained from the HCCDB, TIMER, and TCGA databases. Then, we explored the clinical significance of GINS2 in HCC through Kaplan-Meier method as well as univariate and multivariate cox regression analysis. Additionally, functional enrichment analysis of GINS2 was done through GO, KEGG, PPI network, and immune cell infiltration analyses. Functional experiments were also conducted to investigate the biological significance of GINS2 in HCC cell lines. Our research revealed that GINS2 is involved in HCC progression and highlighted its potential value as a crucial diagnostic and therapeutic target for HCC.  相似文献   

13.
磷脂酰肌醇3-激酶(PI3K)/AKT/哺乳动物雷帕霉素靶标(mTOR)通路在人类肿瘤的恶性转化及其随后的生长、增殖和转移中起重要作用。临床前研究表明,PI3K/AKT/mTOR通路在膀胱癌中经常被激活。因此,这一通路被认为是膀胱癌治疗干预的候选通路,针对该通路不同成分的抑制剂正处于临床开发的不同阶段。在这里,重点介绍我们对PI3K/AKT/mTOR通路的最新研究进展,并讨论以该通路为靶点的治疗药物作为膀胱癌治疗药物的发展障碍及发展潜力。  相似文献   

14.
15.
16.
Endometrial cancer (EC) is a common malignant tumor that lacks any therapeutic target and, in many cases, recurrence is the leading ca use of morbidity and mortality in women. Widely known EC has a strongly positive correlation with abnormal lipid metabolism. Squalene epoxidase (SQLE), a crucial enzyme in the cholesterol synthesis pathway regulating lipid metabolic processes has been found to be associated with various cancers in recent years. Here, we focused on studying the role of SQLE in EC. Our study revealed that SQLE expression level was upregulated significantly in EC tissues. In vitro experiments showed that SQLE overexpression significantly promoted the proliferation, and inhibited cell apoptosis of EC cells, whereas SQLE knockdown or use of terbinafine showed the opposite results. Furthermore, we found out that the promotional effect of SQLE on the proliferation of EC cells might be achieved by activating the PI3K/AKT pathway. In vivo, studies confirmed that the knockdown of SQLE or terbinafine can observably inhibit tumor growth in nude mice. These results indicate that SQLE may promote the progression of EC by activating the PI3K/AKT pathway. Moreover, SQLE is a potential target for EC treatment and its inhibitor, terbinafine, has the potential to become a targeted drug for EC treatment.  相似文献   

17.
The PI3K/AKT/mTOR pathway regulates cell growth and proliferation and is often dysregulated in cancer due to mutation, amplification, deletion, methylation and post-translational modifications. We and others have shown that activation of this pathway in non-small cell lung cancer (NSCLC) leads to a more aggressive disease which correlates to poor prognosis for patients. A multitude of selective inhibitors are in development which target key regulators in this pathway, however the success of PI3K targeted inhibition has been hampered by a high rate of innate and acquired resistance. Response to PI3K inhibition may be improved by co-targeting potential mediators of resistance, such as related cell surface receptors or other intracellular signaling pathways which cross-talk with the PI3K pathway. Inhibition of the PI3K pathway may also overcome radioresistance, chemoresistance and immune evasion in NSCLC. The identification of appropriate patient cohorts who will benefit from PI3K co-targeted inhibition strategies will be key to the success of these inhibitors.  相似文献   

18.
PI3K/Akt/mTOR信号通路抑制剂在乳腺癌中的研究进展   总被引:1,自引:0,他引:1  
目的:总结PI3K/Akt/mTOR信号通路靶向治疗在乳腺癌中的研究进展.方法:以“PI3K/Akt/mTOR、信号通路和乳腺癌”等为关键词,检索2000-01-2011-06 PubMed、Ovid和Springer等数据库的相关文献.纳入标准:1)关于PI3K/Akt/mTOR信号通路的组成、功能特点;2)PI3K/Akt/mTOR信号通路与乳腺癌的关系研究;3)以PI3K/Akt/mTOR信号通路中关键分子为靶点的乳腺癌治疗.根据纳入标准,符合分析的文献40篇.结果:信号转导通路的异常是肿瘤发生、发展的重要步骤,PI3K/Akt/mTOR信号通路与人类多种肿瘤密切相关,其在肿瘤细胞的增殖、存活、抵抗凋亡、血管发生和转移以及对放化疗抵抗中发挥了重要作用.乳腺癌中常见PI3K/Akt/mTOR信号通路的异常激活,以此通路为靶点的药物已成为乳腺癌治疗的研究热点.结论:靶向PI3K/Akt/mTOR通路中关键分子的众多药物在乳腺癌开展了一系列相关的临床试验研究,一部分显示出较好的安全性和有效性.随着对PI3K/Akt/mTOR通路的分子生物学机制的深入研究,期待靶向此通路的抑制剂将会在乳腺癌治疗中发挥巨大的作用,进一步提高乳腺癌患者的疗效和改善预后.  相似文献   

19.
张瑶  李家合 《肿瘤学杂志》2021,27(2):153-157
近年来针对前列腺癌靶向治疗的研究作为新的热点受到越来越多的关注,主要集中在非AR途径的通路及靶点的探索,其中较为成熟且具有明显研究价值的途径之一是磷脂酰肌3-羟激酶(PI3K)/丝氨酸-苏氨酸蛋白激酶(AKT)信号通路.研究表明,该信号通路的异常活化与疾病的发展和转归有显著相关性,在机体细胞的生长、增殖、凋亡以及炎症反...  相似文献   

20.
The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is implicated in the pathogenesis of pancreatic neuroendocrine tumors (pNETs). Activation of this pathway is driven by aberrant tyrosine kinase receptor activities. Mutations in the PI3K/Akt/mTOR pathway occur in 15% of pNETs, and expression of genes of the PI3K/Akt/mTOR pathway is altered in the majority of pNETs. The mTOR inhibitor everolimus has been approved by the FDA for the treatment of pNET, but its efficacy may be limited by its inability to prevent mTORC2-mediated activation of Akt. Specific inhibitors of PI3K, Akt, or other pathway nodes, and their concomitant use with mTOR inhibitors, or agents with dual activity, may be more effective. Preclinical studies demonstrate that inhibitors of the PI3K pathway have antitumor activity in pNET cells, either through direct inhibition of individual pathway nodes or indirect inhibition of molecular chaperones such as heat-shock protein 90. Clinical studies are underway evaluating individual node and dual node inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号